Update README.md
#1
by
Linyuana
- opened
README.md
CHANGED
@@ -1,4 +1,64 @@
|
|
1 |
---
|
2 |
base_model:
|
3 |
- Qwen/Qwen3-8B-Base
|
4 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
base_model:
|
3 |
- Qwen/Qwen3-8B-Base
|
4 |
+
---
|
5 |
+
# Model Card for Model ID
|
6 |
+
|
7 |
+
⚠️ This is a **temporary repository** for our [EMNLP 2025] demo paper submission.
|
8 |
+
The project is currently hosted here for review and demonstration purposes.
|
9 |
+
It will be migrated to the official organization repository once it becomes available.
|
10 |
+
|
11 |
+
All code, models, and documentation are maintained here until then.
|
12 |
+
|
13 |
+
Github: [LMT](https://github.com/NiuTrans/LMT)
|
14 |
+
|
15 |
+
## Model Details
|
16 |
+
|
17 |
+
### Model Description
|
18 |
+
|
19 |
+
BiMaTE (Bi-Centric Machine Translation Expert) is a large-scale, LLM-based, Chinese-English-Centric multilingual translation model designed to facilitate high-quality translation between Chinese, English, and numerous other global languages.
|
20 |
+
|
21 |
+
- **Model type:** Causal Language Model for Machine Translation
|
22 |
+
- **Languages:** 60
|
23 |
+
- **Translation directions:** 234
|
24 |
+
- **Base Model:** Qwen3-8B-Base
|
25 |
+
- **Training Strategy:**
|
26 |
+
1. Monolingual Continual Pretraining (CPT): 30B tokens
|
27 |
+
2. Mixed Continual Pretraining (CPT): 60B tokens (monolingual, bilingual)
|
28 |
+
3. Supervised Finetuning (SFT): Post-training on smaller-scale, high-quality translation data.
|
29 |
+
|
30 |
+
## Quickstart
|
31 |
+
|
32 |
+
```python
|
33 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
34 |
+
|
35 |
+
model_name = "luoyingfeng/BiMaTE-8B"
|
36 |
+
|
37 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side='left')
|
38 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
39 |
+
|
40 |
+
prompt = "Translate the following text from English into Chinese.\nEnglish: The concept came from China where plum blossoms were the flower of choice.\nChinese: "
|
41 |
+
messages = [{"role": "user", "content": prompt}]
|
42 |
+
text = tokenizer.apply_chat_template(
|
43 |
+
messages,
|
44 |
+
tokenize=False,
|
45 |
+
add_generation_prompt=True,
|
46 |
+
)
|
47 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
48 |
+
|
49 |
+
generated_ids = model.generate(**model_inputs, max_new_tokens=512, num_beams=5, do_sample=False)
|
50 |
+
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
51 |
+
|
52 |
+
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
53 |
+
|
54 |
+
print("response:", outputs)
|
55 |
+
```
|
56 |
+
|
57 |
+
## Support Languages
|
58 |
+
|
59 |
+
| Resource Tier | Languages |
|
60 |
+
| :---- | :---- |
|
61 |
+
| High-resource Languages (13) | Arabic(ar), English(en), Spanish(es), German(de), French(fr), Italian(it), Japanese(ja), Dutch(nl), Polish(pl), Portuguese(pt), Russian(ru), Turkish(tr), Chinese(zh) |
|
62 |
+
| Medium-resource Languages (18) | Bulgarian(bg), Bengali(bn), Czech(cs), Danish(da), Modern Greek(el), Persian(fa), Finnish(fi), Hindi(hi), Hungarian(hu), Indonesian(id), Korean(ko), Norwegian(no), Romanian(ro), Slovak(sk), Swedish(sv), Thai(th), Ukrainian(uk), Vietnamese(vi) |
|
63 |
+
| Low-resouce Languages (29) | Amharic(am), Azerbaijani(az), Tibetan(bo), Modern Hebrew(he), Croatian(hr), Armenian(hy), Icelandic(is), Javanese(jv), Georgian(ka), Kazakh(kk), Central Khmer(km), Kirghiz(ky), Lao(lo), Mongolian(mn), Marathi(mr), Malay(ms), Burmese(my), Nepali(ne), Pashto(ps), Sinhala(si), Swahili(sw), Tamil(ta), Telugu(te), Tajik(tg), Tagalog(tl), Uighur(ug), Urdu(ur), Uzbek(uz), Yue Chinese(yue) |
|
64 |
+
|