krinal's picture
Update README.md
b48399f
|
raw
history blame
3 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - DFKI-SLT/few-nerd
model-index:
  - name: span-marker-robert-base
    results: []
license: apache-2.0
language:
  - en

span-marker-robert-base

This model is a fine-tuned version of roberta-base on few-nerd dataset using SpanMarker an module for NER. It achieves the following results on the evaluation set:

  • Loss: 0.0214
  • Overall Precision: 0.7642
  • Overall Recall: 0.7947
  • Overall F1: 0.7791
  • Overall Accuracy: 0.9397

Training and evaluation data

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Overall Precision Overall Recall Overall F1 Overall Accuracy
0.0214 0.08 100 0.0219 0.7641 0.7679 0.7660 0.9330
0.0199 0.16 200 0.0243 0.7442 0.7679 0.7559 0.9348
0.0179 0.24 300 0.0212 0.7730 0.7580 0.7654 0.9361
0.0188 0.33 400 0.0225 0.7616 0.7710 0.7662 0.9343
0.0149 0.41 500 0.0240 0.7537 0.7783 0.7658 0.9375
0.015 0.49 600 0.0230 0.7540 0.7829 0.7682 0.9362
0.0137 0.57 700 0.0232 0.7746 0.7538 0.7640 0.9319
0.0123 0.65 800 0.0218 0.7651 0.7879 0.7763 0.9393
0.0103 0.73 900 0.0223 0.7688 0.7964 0.7824 0.9397
0.0108 0.82 1000 0.0209 0.7763 0.7816 0.7789 0.9397
0.0116 0.9 1100 0.0213 0.7743 0.7879 0.7811 0.9398
0.0119 0.98 1200 0.0214 0.7653 0.7947 0.7797 0.9400

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3