t5-vi-instruct-hf

This model is a fine-tuned version of google/flan-t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6943

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
2.3267 0.0085 100 1.9629
2.0179 0.0171 200 1.7591
1.831 0.0256 300 1.6275
1.7046 0.0342 400 1.5287
1.7428 0.0427 500 1.4256
1.5482 0.0513 600 1.3708
1.6759 0.0598 700 1.3091
1.3827 0.0684 800 1.2703
1.3831 0.0769 900 1.2452
1.3291 0.0855 1000 1.2163
1.4892 0.0940 1100 1.1667
1.252 0.1026 1200 1.1614
1.2592 0.1111 1300 1.1390
1.24 0.1197 1400 1.1300
1.2874 0.1282 1500 1.1025
1.1944 0.1368 1600 1.1121
1.1848 0.1453 1700 1.0787
1.1624 0.1538 1800 1.0771
1.1606 0.1624 1900 1.0543
1.1327 0.1709 2000 1.0570
1.1515 0.1795 2100 1.0289
1.1878 0.1880 2200 1.0197
1.1357 0.1966 2300 1.0111
1.1731 0.2051 2400 1.0004
1.2001 0.2137 2500 0.9900
1.1556 0.2222 2600 0.9905
1.0853 0.2308 2700 0.9713
1.0645 0.2393 2800 0.9911
1.067 0.2479 2900 0.9769
1.0773 0.2564 3000 0.9609
1.0611 0.2650 3100 0.9627
1.0406 0.2735 3200 0.9590
1.0593 0.2821 3300 0.9496
1.0488 0.2906 3400 0.9362
1.0286 0.2991 3500 0.9402
1.0386 0.3077 3600 0.9375
1.0311 0.3162 3700 0.9409
1.0082 0.3248 3800 0.9225
1.0254 0.3333 3900 0.9102
1.0138 0.3419 4000 0.9152
1.027 0.3504 4100 0.9093
1.0049 0.3590 4200 0.9113
1.0084 0.3675 4300 0.8997
0.9844 0.3761 4400 0.8973
1.0041 0.3846 4500 0.8924
1.0071 0.3932 4600 0.8991
0.9672 0.4017 4700 0.8899
0.9882 0.4103 4800 0.8971
0.9994 0.4188 4900 0.8927
0.9825 0.4274 5000 0.8883
0.9643 0.4359 5100 0.8765
0.987 0.4444 5200 0.8773
0.977 0.4530 5300 0.8685
0.9527 0.4615 5400 0.8775
0.9825 0.4701 5500 0.8643
0.97 0.4786 5600 0.8657
0.9454 0.4872 5700 0.8697
0.946 0.4957 5800 0.8585
0.9617 0.5043 5900 0.8570
0.9469 0.5128 6000 0.8540
0.9455 0.5214 6100 0.8465
0.9516 0.5299 6200 0.8444
0.9383 0.5385 6300 0.8491
0.9211 0.5470 6400 0.8485
0.9347 0.5556 6500 0.8425
0.938 0.5641 6600 0.8475
0.9274 0.5726 6700 0.8405
0.9257 0.5812 6800 0.8435
0.9161 0.5897 6900 0.8314
0.9268 0.5983 7000 0.8335
0.9321 0.6068 7100 0.8310
0.9168 0.6154 7200 0.8340
0.9141 0.6239 7300 0.8271
0.9077 0.6325 7400 0.8236
0.9189 0.6410 7500 0.8210
0.8914 0.6496 7600 0.8214
0.9012 0.6581 7700 0.8241
0.8942 0.6667 7800 0.8180
0.8981 0.6752 7900 0.8211
0.8997 0.6838 8000 0.8163
0.909 0.6923 8100 0.8156
0.8908 0.7009 8200 0.8193
0.8938 0.7094 8300 0.8198
0.912 0.7179 8400 0.8087
0.8627 0.7265 8500 0.8064
0.8917 0.7350 8600 0.8048
0.8924 0.7436 8700 0.8077
0.9046 0.7521 8800 0.8110
0.8906 0.7607 8900 0.8074
0.8838 0.7692 9000 0.7980
0.8928 0.7778 9100 0.8033
0.8911 0.7863 9200 0.8047
0.9032 0.7949 9300 0.8000
0.8749 0.8034 9400 0.8011
0.8782 0.8120 9500 0.7997
0.8711 0.8205 9600 0.7930
0.8996 0.8291 9700 0.7918
0.8957 0.8376 9800 0.7973
0.893 0.8462 9900 0.7901
0.861 0.8547 10000 0.7907
0.8679 0.8632 10100 0.7889
0.8671 0.8718 10200 0.7882
0.8719 0.8803 10300 0.7876
0.8798 0.8889 10400 0.7817
0.8753 0.8974 10500 0.7832
0.8583 0.9060 10600 0.7863
0.8586 0.9145 10700 0.7856
0.8585 0.9231 10800 0.7836
0.8626 0.9316 10900 0.7839
0.8549 0.9402 11000 0.7844
0.8791 0.9487 11100 0.7825
0.86 0.9573 11200 0.7777
0.85 0.9658 11300 0.7744
0.8609 0.9744 11400 0.7832
0.8424 0.9829 11500 0.7813
0.8628 0.9915 11600 0.7712
0.8572 1.0 11700 0.7776
0.8584 1.0085 11800 0.7719
0.828 1.0171 11900 0.7729
0.8605 1.0256 12000 0.7716
0.8294 1.0342 12100 0.7733
0.8371 1.0427 12200 0.7654
0.8464 1.0513 12300 0.7690
0.8388 1.0598 12400 0.7672
0.8545 1.0684 12500 0.7696
0.8369 1.0769 12600 0.7625
0.853 1.0855 12700 0.7625
0.839 1.0940 12800 0.7638
0.8383 1.1026 12900 0.7604
0.8434 1.1111 13000 0.7689
0.8449 1.1197 13100 0.7633
0.8581 1.1282 13200 0.7584
0.8313 1.1368 13300 0.7590
0.8475 1.1453 13400 0.7600
0.8231 1.1538 13500 0.7591
0.8294 1.1624 13600 0.7565
0.8068 1.1709 13700 0.7579
0.8467 1.1795 13800 0.7592
0.8329 1.1880 13900 0.7581
0.8255 1.1966 14000 0.7539
0.8353 1.2051 14100 0.7614
0.8233 1.2137 14200 0.7548
0.8551 1.2222 14300 0.7493
0.8267 1.2308 14400 0.7533
0.8366 1.2393 14500 0.7512
0.8242 1.2479 14600 0.7453
0.8414 1.2564 14700 0.7496
0.8375 1.2650 14800 0.7490
0.8544 1.2735 14900 0.7522
0.8444 1.2821 15000 0.7476
0.82 1.2906 15100 0.7489
0.8174 1.2991 15200 0.7499
0.8187 1.3077 15300 0.7476
0.8277 1.3162 15400 0.7426
0.8227 1.3248 15500 0.7454
0.8222 1.3333 15600 0.7457
0.8147 1.3419 15700 0.7402
0.8165 1.3504 15800 0.7399
0.8203 1.3590 15900 0.7423
0.8223 1.3675 16000 0.7436
0.8227 1.3761 16100 0.7437
0.8149 1.3846 16200 0.7405
0.8035 1.3932 16300 0.7397
0.8217 1.4017 16400 0.7378
0.8057 1.4103 16500 0.7418
0.8091 1.4188 16600 0.7479
0.811 1.4274 16700 0.7361
0.8214 1.4359 16800 0.7368
0.8231 1.4444 16900 0.7370
0.8024 1.4530 17000 0.7351
0.8205 1.4615 17100 0.7391
0.8006 1.4701 17200 0.7382
0.8047 1.4786 17300 0.7344
0.7927 1.4872 17400 0.7337
0.8115 1.4957 17500 0.7330
0.8108 1.5043 17600 0.7351
0.7982 1.5128 17700 0.7364
0.821 1.5214 17800 0.7326
0.7849 1.5299 17900 0.7277
0.8058 1.5385 18000 0.7284
0.8154 1.5470 18100 0.7303
0.8199 1.5556 18200 0.7342
0.8146 1.5641 18300 0.7274
0.8004 1.5726 18400 0.7294
0.8061 1.5812 18500 0.7308
0.8081 1.5897 18600 0.7254
0.7907 1.5983 18700 0.7293
0.8093 1.6068 18800 0.7304
0.7959 1.6154 18900 0.7257
0.7905 1.6239 19000 0.7249
0.8009 1.6325 19100 0.7228
0.7964 1.6410 19200 0.7268
0.7851 1.6496 19300 0.7275
0.7882 1.6581 19400 0.7231
0.8029 1.6667 19500 0.7241
0.7821 1.6752 19600 0.7206
0.7779 1.6838 19700 0.7244
0.8038 1.6923 19800 0.7229
0.7965 1.7009 19900 0.7234
0.8075 1.7094 20000 0.7244
0.7901 1.7179 20100 0.7223
0.7817 1.7265 20200 0.7212
0.8065 1.7350 20300 0.7240
0.791 1.7436 20400 0.7190
0.8007 1.7521 20500 0.7173
0.7936 1.7607 20600 0.7195
0.7983 1.7692 20700 0.7192
0.802 1.7778 20800 0.7177
0.8083 1.7863 20900 0.7195
0.7753 1.7949 21000 0.7179
0.8003 1.8034 21100 0.7188
0.7912 1.8120 21200 0.7194
0.7641 1.8205 21300 0.7190
0.7941 1.8291 21400 0.7192
0.8073 1.8376 21500 0.7174
0.789 1.8462 21600 0.7177
0.7816 1.8547 21700 0.7156
0.784 1.8632 21800 0.7182
0.7758 1.8718 21900 0.7152
0.7668 1.8803 22000 0.7179
0.7873 1.8889 22100 0.7155
0.7835 1.8974 22200 0.7151
0.7857 1.9060 22300 0.7131
0.7847 1.9145 22400 0.7128
0.7866 1.9231 22500 0.7118
0.8015 1.9316 22600 0.7104
0.7802 1.9402 22700 0.7139
0.788 1.9487 22800 0.7113
0.7813 1.9573 22900 0.7134
0.768 1.9658 23000 0.7117
0.7963 1.9744 23100 0.7113
0.7598 1.9829 23200 0.7117
0.7892 1.9915 23300 0.7104
0.769 2.0 23400 0.7138
0.7943 2.0085 23500 0.7099
0.7883 2.0171 23600 0.7092
0.77 2.0256 23700 0.7122
0.7731 2.0342 23800 0.7102
0.7842 2.0427 23900 0.7072
0.7737 2.0513 24000 0.7097
0.7776 2.0598 24100 0.7121
0.763 2.0684 24200 0.7107
0.7835 2.0769 24300 0.7074
0.7834 2.0855 24400 0.7081
0.7823 2.0940 24500 0.7064
0.7809 2.1026 24600 0.7089
0.7764 2.1111 24700 0.7073
0.7756 2.1197 24800 0.7094
0.7605 2.1282 24900 0.7064
0.7649 2.1368 25000 0.7051
0.7724 2.1453 25100 0.7058
0.7506 2.1538 25200 0.7060
0.7682 2.1624 25300 0.7061
0.7797 2.1709 25400 0.7086
0.7712 2.1795 25500 0.7051
0.7538 2.1880 25600 0.7073
0.7748 2.1966 25700 0.7043
0.7687 2.2051 25800 0.7061
0.7813 2.2137 25900 0.7049
0.7553 2.2222 26000 0.7043
0.7655 2.2308 26100 0.7059
0.7795 2.2393 26200 0.7048
0.7788 2.2479 26300 0.7069
0.7999 2.2564 26400 0.7034
0.7841 2.2650 26500 0.7034
0.7777 2.2735 26600 0.7007
0.7755 2.2821 26700 0.7021
0.7761 2.2906 26800 0.7048
0.7844 2.2991 26900 0.7043
0.7724 2.3077 27000 0.7041
0.7784 2.3162 27100 0.7045
0.769 2.3248 27200 0.7013
0.7606 2.3333 27300 0.7028
0.7801 2.3419 27400 0.7015
0.7731 2.3504 27500 0.7023
0.7534 2.3590 27600 0.7009
0.7628 2.3675 27700 0.7006
0.7614 2.3761 27800 0.7002
0.7508 2.3846 27900 0.7017
0.7667 2.3932 28000 0.7021
0.7782 2.4017 28100 0.7016
0.7637 2.4103 28200 0.7003
0.7508 2.4188 28300 0.6993
0.7764 2.4274 28400 0.6995
0.7614 2.4359 28500 0.7035
0.7724 2.4444 28600 0.6979
0.7631 2.4530 28700 0.6992
0.778 2.4615 28800 0.6996
0.7612 2.4701 28900 0.6993
0.7767 2.4786 29000 0.6965
0.7543 2.4872 29100 0.6993
0.7781 2.4957 29200 0.6974
0.7747 2.5043 29300 0.6978
0.7715 2.5128 29400 0.6973
0.7719 2.5214 29500 0.6996
0.7493 2.5299 29600 0.6984
0.7718 2.5385 29700 0.7002
0.7701 2.5470 29800 0.6993
0.7747 2.5556 29900 0.6965
0.778 2.5641 30000 0.7004
0.7506 2.5726 30100 0.6994
0.7429 2.5812 30200 0.6987
0.7605 2.5897 30300 0.6978
0.7632 2.5983 30400 0.7002
0.7532 2.6068 30500 0.6996
0.7725 2.6154 30600 0.6970
0.7528 2.6239 30700 0.6969
0.7692 2.6325 30800 0.6967
0.7806 2.6410 30900 0.6961
0.7779 2.6496 31000 0.6964
0.7606 2.6581 31100 0.6972
0.7438 2.6667 31200 0.6958
0.7687 2.6752 31300 0.6952
0.7429 2.6838 31400 0.6964
0.7737 2.6923 31500 0.6968
0.7559 2.7009 31600 0.6953
0.764 2.7094 31700 0.6955
0.7669 2.7179 31800 0.6959
0.7793 2.7265 31900 0.6949
0.7676 2.7350 32000 0.6958
0.7611 2.7436 32100 0.6951
0.7945 2.7521 32200 0.6935
0.7597 2.7607 32300 0.6942
0.7653 2.7692 32400 0.6951
0.7427 2.7778 32500 0.6952
0.7886 2.7863 32600 0.6937
0.7571 2.7949 32700 0.6954
0.7546 2.8034 32800 0.6961
0.7696 2.8120 32900 0.6944
0.7579 2.8205 33000 0.6943
0.7723 2.8291 33100 0.6943
0.7667 2.8376 33200 0.6945
0.7665 2.8462 33300 0.6941
0.7537 2.8547 33400 0.6944
0.7446 2.8632 33500 0.6952
0.7619 2.8718 33600 0.6942
0.7628 2.8803 33700 0.6946
0.7692 2.8889 33800 0.6946
0.7517 2.8974 33900 0.6946
0.747 2.9060 34000 0.6947
0.7682 2.9145 34100 0.6945
0.7541 2.9231 34200 0.6942
0.7539 2.9316 34300 0.6947
0.7733 2.9402 34400 0.6945
0.77 2.9487 34500 0.6942
0.7589 2.9573 34600 0.6943
0.7552 2.9658 34700 0.6944
0.7587 2.9744 34800 0.6943
0.7687 2.9829 34900 0.6943
0.7518 2.9915 35000 0.6944
0.7695 3.0 35100 0.6943

Framework versions

  • Transformers 4.52.3
  • Pytorch 2.7.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
448
Safetensors
Model size
77M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for kienhoang123/t5-vi-instruct-hf

Finetuned
(388)
this model