---
language: en
license: mit
library_name: transformers
tags:
- text-generation
- code-assistant
- a3on
- kaiiddo
- 1b-parameter
datasets: []
model-index: []
---

A3ON-1B - Enhanced AI Assistant ๐Ÿค–

Model Overview

Welcome to A3ON-1B, the enhanced version of the A3ON AI assistant! With 1.1 billion parameters, this model is designed to provide significantly improved capabilities over the original 124M parameter model. Whether you need help with conversational tasks or code generation, A3ON-1B is here to assist you!

Key Features

  • Enhanced Intelligence: With 1.1B parameters, A3ON-1B offers more sophisticated understanding and responses. ๐Ÿง 
  • Code Generation: Get advanced programming assistance and code completion. ๐Ÿ’ป
  • Conversational Intelligence: Engage in natural dialogue with seamless understanding and response generation. ๐Ÿ—ฃ๏ธ
  • Context Awareness: Maintains context across multi-turn conversations for a more coherent interaction. ๐Ÿ”„
  • Smart Response Detection: Automatically distinguishes between coding and general knowledge requests. ๐Ÿ”

Technical Specifications

Specification Details
Architecture Transformer-based neural network
Model Type Causal language model
Parameters 1.1 Billion (1,137,207,296)
Vocabulary Size 49,152 tokens
Context Length Up to 32,768 tokens
Precision FP32/FP16 support

Developer Information

  • AI Name: A3ON-1B
  • Developer: Kaiiddo
  • Founder: Aryan Rathod
  • Organization: Kaiiddo
  • Location: Gujarat, India ๐Ÿ‡ฎ๐Ÿ‡ณ

Usage

from transformers import AutoTokenizer, AutoModelForCausalLM

# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("kaiiddo/A3ON-1B")
model = AutoModelForCausalLM.from_pretrained("kaiiddo/A3ON-1B")

# Set pad_token_id to eos_token_id to avoid warnings
model.config.pad_token_id = model.config.eos_token_id

# Generate text with adjusted parameters
inputs = tokenizer("Hello, how can I help you today?", return_tensors="pt")
outputs = model.generate(
    **inputs,
    max_length=500,
    do_sample=True,
    temperature=0.7,
    top_k=50
)

# Decode the output and split into lines
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
response_lines = response.split('\n')

# Print each line of the response
for line in response_lines:
    print(line)

Model Parameter Count

Parameter Type Count
Total Parameters 1.1B (1,137,207,296)
Trainable Parameters 1.1B (1,137,207,296)
Non-Trainable Parameters 0

Model Architecture

Architecture Detail Value
Model Type GPTBigCodeForCausalLM
Context Length 8192 tokens
Vocabulary Size 49,152 tokens
Embedding Dimension 2048
Number of Layers 24
Number of Attention Heads 16

Memory Information

Memory Detail Value
Device cuda:0
Estimated Memory Usage 4.24 GB (FP32)
GPU Tesla T4
GPU Memory 14.7 GB

Model Category

  • Category: Massive Model (1B+)

A3ON-1B is proudly developed in India, tailored to excel in coding assistance and beyond. ๐ŸŒŸ

Downloads last month
27
Safetensors
Model size
1.14B params
Tensor type
F16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for kaiiddo/A3ON-1B

Quantizations
2 models