---
language: en
license: mit
library_name: transformers
tags:
- text-generation
- code-assistant
- a3on
- kaiiddo
- 1b-parameter
datasets: []
model-index: []
---
A3ON-1B - Enhanced AI Assistant ๐ค
Model Overview
Welcome to A3ON-1B, the enhanced version of the A3ON AI assistant! With 1.1 billion parameters, this model is designed to provide significantly improved capabilities over the original 124M parameter model. Whether you need help with conversational tasks or code generation, A3ON-1B is here to assist you!
Key Features
- Enhanced Intelligence: With 1.1B parameters, A3ON-1B offers more sophisticated understanding and responses. ๐ง
- Code Generation: Get advanced programming assistance and code completion. ๐ป
- Conversational Intelligence: Engage in natural dialogue with seamless understanding and response generation. ๐ฃ๏ธ
- Context Awareness: Maintains context across multi-turn conversations for a more coherent interaction. ๐
- Smart Response Detection: Automatically distinguishes between coding and general knowledge requests. ๐
Technical Specifications
Specification |
Details |
Architecture |
Transformer-based neural network |
Model Type |
Causal language model |
Parameters |
1.1 Billion (1,137,207,296) |
Vocabulary Size |
49,152 tokens |
Context Length |
Up to 32,768 tokens |
Precision |
FP32/FP16 support |
Developer Information
- AI Name: A3ON-1B
- Developer: Kaiiddo
- Founder: Aryan Rathod
- Organization: Kaiiddo
- Location: Gujarat, India ๐ฎ๐ณ
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("kaiiddo/A3ON-1B")
model = AutoModelForCausalLM.from_pretrained("kaiiddo/A3ON-1B")
model.config.pad_token_id = model.config.eos_token_id
inputs = tokenizer("Hello, how can I help you today?", return_tensors="pt")
outputs = model.generate(
**inputs,
max_length=500,
do_sample=True,
temperature=0.7,
top_k=50
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
response_lines = response.split('\n')
for line in response_lines:
print(line)
Model Parameter Count
Parameter Type |
Count |
Total Parameters |
1.1B (1,137,207,296) |
Trainable Parameters |
1.1B (1,137,207,296) |
Non-Trainable Parameters |
0 |
Model Architecture
Architecture Detail |
Value |
Model Type |
GPTBigCodeForCausalLM |
Context Length |
8192 tokens |
Vocabulary Size |
49,152 tokens |
Embedding Dimension |
2048 |
Number of Layers |
24 |
Number of Attention Heads |
16 |
Memory Information
Memory Detail |
Value |
Device |
cuda:0 |
Estimated Memory Usage |
4.24 GB (FP32) |
GPU |
Tesla T4 |
GPU Memory |
14.7 GB |
Model Category
- Category: Massive Model (1B+)
A3ON-1B is proudly developed in India, tailored to excel in coding assistance and beyond. ๐