File size: 8,009 Bytes
43e08ee
 
eb143e4
43e08ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aef5652
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from typing import Optional

from transformers import AutoConfig, Gemma3TextConfig
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_rope_utils import rope_config_validation
from transformers.utils import logging
from transformers.models.siglip import SiglipVisionConfig


logger = logging.get_logger(__name__)

class AudioConfig(PretrainedConfig):
    model_type = "gemma3_audio"
    
    def __init__(
        self,
        input_size=80,
        attention_dim=1024,
        attention_heads=16,
        num_blocks=24,
        linear_units=1536,
        dropout_rate=0.0,
        kernel_size=3,
        ext_pw_kernel_size=1,
        ext_pw_out_channel=1024,
        depthwise_seperable_out_channel=1024,
        depthwise_multiplier=1,
        activation="swish",
        conv_activation="swish",
        conv_glu_type="swish",
        bias_in_glu=True,
        causal=True,
        batch_norm=False,
        cnn_layer_norm=True,
        time_reduction=8,
        input_layer="nemo_conv",
        nemo_conv_settings=None,
        chunk_size=-1,
        left_chunk=18,
        relative_attention_bias_args=None,
        activation_checkpointing=None,
        encoder_embedding_config=None,
        **kwargs
    ):
        super().__init__(**kwargs)
        
        self.input_size = input_size
        self.attention_dim = attention_dim
        self.attention_heads = attention_heads
        self.num_blocks = num_blocks
        self.linear_units = linear_units
        self.dropout_rate = dropout_rate
        self.kernel_size = kernel_size
        self.ext_pw_kernel_size = ext_pw_kernel_size
        self.ext_pw_out_channel = ext_pw_out_channel
        self.depthwise_seperable_out_channel = depthwise_seperable_out_channel
        self.depthwise_multiplier = depthwise_multiplier
        self.activation = activation
        self.conv_activation = conv_activation
        self.conv_glu_type = conv_glu_type
        self.bias_in_glu = bias_in_glu
        self.causal = causal
        self.batch_norm = batch_norm
        self.cnn_layer_norm = cnn_layer_norm
        self.time_reduction = time_reduction
        self.input_layer = input_layer
        
        if nemo_conv_settings is None:
            self.nemo_conv_settings = {"conv_channels": 1024}
        else:
            self.nemo_conv_settings = nemo_conv_settings
            
        self.chunk_size = chunk_size
        self.left_chunk = left_chunk
        
        if relative_attention_bias_args is None:
            self.relative_attention_bias_args = {"type": "t5", "t5_bias_max_distance": 500}
        else:
            self.relative_attention_bias_args = relative_attention_bias_args
            
        if activation_checkpointing is None:
            self.activation_checkpointing = {"interval": 1, "module": "transformer", "offload": False}
        else:
            self.activation_checkpointing = activation_checkpointing
            
        if encoder_embedding_config is None:
            self.encoder_embedding_config = {"input_size": input_size}
        else:
            self.encoder_embedding_config = encoder_embedding_config
    

class Gemma3MMConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`Gemma3ForConditionalGeneration`]. It is used to instantiate an
    Gemma3ForConditionalGeneration according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the PaliGemma-2B.

    e.g. [google/gemma-3-4b](https://huggingface.co/google/gemma-3-4b)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        text_config (`Union[Gemma3TextConfig, dict]`, *optional*):
            The config object of the text backbone.
        vision_config (`Union[AutoConfig, dict]`,  *optional*):
            Custom vision config or dict.
        audio_config (`Union[AutoConfig, dict]`,  *optional*):
            Custom audio config or dict.
        mm_tokens_per_image (`int`, *optional*, defaults to 256):
            The number of tokens per image embedding.
        boi_token_index (`int`, *optional*, defaults to 255999):
            The begin-of-image token index to wrap the image prompt.
        eoi_token_index (`int`, *optional*, defaults to 256000):
            The end-of-image token index to wrap the image prompt.
        image_token_index (`int`, *optional*, defaults to 262144):
            The image token index to encode the image prompt.
        audio_token_index (`int`, *optional*, defaults to 262145):
            The audio token index to encode the audio prompt.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.


    Example:

    ```python
    >>> from transformers import Gemma3ForConditionalGeneration, Gemma3Config, SiglipVisionConfig, Gemma3TextConfig

    >>> # Initializing a Siglip-like vision config
    >>> vision_config = SiglipVisionConfig()

    >>> # Initializing a Siglip-like vision config
    >>> audio_config = AudioConfig()

    >>> # Initializing a Gemma3 Text config
    >>> text_config = Gemma3TextConfig()

    >>> # Initializing a Gemma3 gemma-3-4b style configuration
    >>> configuration = Gemma3Config(vision_config, text_config)

    >>> # Initializing a model from the gemma-3-4b style configuration
    >>> model = Gemma3TextConfig(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "gemma3mm"
    sub_configs = {
        "text_config": Gemma3TextConfig,
        "vision_config": SiglipVisionConfig,
        "audio_config": AudioConfig,
    }

    def __init__(
        self,
        text_config: Optional[Gemma3TextConfig] = None,
        vision_config: Optional[SiglipVisionConfig] = None,
        audio_config: Optional[AudioConfig] = None,
        mm_tokens_per_image: int = 256,
        boi_token_index: int = 255_999,
        eoi_token_index: int = 256_000,
        boa_token_index: int = 256_001,
        eoa_token_index: int = 256_002,
        image_token_index: int = 262_144,
        audio_token_index: int = 262_143,
        initializer_range: float = 0.02,
        **kwargs,
    ):
        if text_config is None:
            text_config = Gemma3TextConfig()
            logger.info("text_config is None, using default Gemma3TextConfig vision config.")
        elif isinstance(text_config, dict):
            text_config = Gemma3TextConfig(**text_config)

        if isinstance(vision_config, dict):
            vision_config = SiglipVisionConfig(**vision_config)
        else:
            vision_config = SiglipVisionConfig()
            logger.info(
                "vision_config is None or incompatible with Gemma3VisionConfig intialization. Gemma3 will be limited "
                "to text tasks."
            )
            
        if isinstance(audio_config, dict):
            audio_config = AudioConfig(**audio_config)
        else:
            audio_config = AudioConfig()
            logger.info(
                "audio_config is None or incompatible with Gemma3AudioConfig intialization. Gemma3 will be limited "
                "to text tasks."
            )

        self.text_config = text_config
        self.vision_config = vision_config
        self.audio_config = audio_config
        self.mm_tokens_per_image = mm_tokens_per_image
        self.boi_token_index = boi_token_index
        self.eoi_token_index = eoi_token_index
        self.boa_token_index = boa_token_index
        self.eoa_token_index = eoa_token_index
        self.image_token_index = image_token_index
        self.audio_token_index = audio_token_index
        self.initializer_range = initializer_range

        super().__init__(**kwargs)