test auto modeling files
Browse files- configuration_gemma3mm.py +206 -0
- modeling_gemma3mm.py +640 -0
- processing_gemma3mm.py +436 -0
- speech_conformer_encoder.py +0 -0
configuration_gemma3mm.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
|
3 |
+
from transformers import Gemma3TextConfig
|
4 |
+
from transformers.configuration_utils import PretrainedConfig
|
5 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
6 |
+
from transformers.utils import logging
|
7 |
+
from transformers.models.siglip import SiglipVisionConfig
|
8 |
+
|
9 |
+
|
10 |
+
logger = logging.get_logger(__name__)
|
11 |
+
|
12 |
+
class AudioConfig(PretrainedConfig):
|
13 |
+
model_type = "gemma3_audio"
|
14 |
+
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
input_size=80,
|
18 |
+
attention_dim=1024,
|
19 |
+
attention_heads=16,
|
20 |
+
num_blocks=24,
|
21 |
+
linear_units=1536,
|
22 |
+
dropout_rate=0.0,
|
23 |
+
kernel_size=3,
|
24 |
+
ext_pw_kernel_size=1,
|
25 |
+
ext_pw_out_channel=1024,
|
26 |
+
depthwise_seperable_out_channel=1024,
|
27 |
+
depthwise_multiplier=1,
|
28 |
+
activation="swish",
|
29 |
+
conv_activation="swish",
|
30 |
+
conv_glu_type="swish",
|
31 |
+
bias_in_glu=True,
|
32 |
+
causal=True,
|
33 |
+
batch_norm=False,
|
34 |
+
cnn_layer_norm=True,
|
35 |
+
time_reduction=8,
|
36 |
+
input_layer="nemo_conv",
|
37 |
+
nemo_conv_settings=None,
|
38 |
+
chunk_size=-1,
|
39 |
+
left_chunk=18,
|
40 |
+
relative_attention_bias_args=None,
|
41 |
+
activation_checkpointing=None,
|
42 |
+
encoder_embedding_config=None,
|
43 |
+
**kwargs
|
44 |
+
):
|
45 |
+
super().__init__(**kwargs)
|
46 |
+
|
47 |
+
self.input_size = input_size
|
48 |
+
self.attention_dim = attention_dim
|
49 |
+
self.attention_heads = attention_heads
|
50 |
+
self.num_blocks = num_blocks
|
51 |
+
self.linear_units = linear_units
|
52 |
+
self.dropout_rate = dropout_rate
|
53 |
+
self.kernel_size = kernel_size
|
54 |
+
self.ext_pw_kernel_size = ext_pw_kernel_size
|
55 |
+
self.ext_pw_out_channel = ext_pw_out_channel
|
56 |
+
self.depthwise_seperable_out_channel = depthwise_seperable_out_channel
|
57 |
+
self.depthwise_multiplier = depthwise_multiplier
|
58 |
+
self.activation = activation
|
59 |
+
self.conv_activation = conv_activation
|
60 |
+
self.conv_glu_type = conv_glu_type
|
61 |
+
self.bias_in_glu = bias_in_glu
|
62 |
+
self.causal = causal
|
63 |
+
self.batch_norm = batch_norm
|
64 |
+
self.cnn_layer_norm = cnn_layer_norm
|
65 |
+
self.time_reduction = time_reduction
|
66 |
+
self.input_layer = input_layer
|
67 |
+
|
68 |
+
if nemo_conv_settings is None:
|
69 |
+
self.nemo_conv_settings = {"conv_channels": 1024}
|
70 |
+
else:
|
71 |
+
self.nemo_conv_settings = nemo_conv_settings
|
72 |
+
|
73 |
+
self.chunk_size = chunk_size
|
74 |
+
self.left_chunk = left_chunk
|
75 |
+
|
76 |
+
if relative_attention_bias_args is None:
|
77 |
+
self.relative_attention_bias_args = {"type": "t5", "t5_bias_max_distance": 500}
|
78 |
+
else:
|
79 |
+
self.relative_attention_bias_args = relative_attention_bias_args
|
80 |
+
|
81 |
+
if activation_checkpointing is None:
|
82 |
+
self.activation_checkpointing = {"interval": 1, "module": "transformer", "offload": False}
|
83 |
+
else:
|
84 |
+
self.activation_checkpointing = activation_checkpointing
|
85 |
+
|
86 |
+
if encoder_embedding_config is None:
|
87 |
+
self.encoder_embedding_config = {"input_size": input_size}
|
88 |
+
else:
|
89 |
+
self.encoder_embedding_config = encoder_embedding_config
|
90 |
+
|
91 |
+
|
92 |
+
class Gemma3MMConfig(PretrainedConfig):
|
93 |
+
r"""
|
94 |
+
This is the configuration class to store the configuration of a [`Gemma3ForConditionalGeneration`]. It is used to instantiate an
|
95 |
+
Gemma3ForConditionalGeneration according to the specified arguments, defining the model architecture. Instantiating a configuration
|
96 |
+
with the defaults will yield a similar configuration to that of the PaliGemma-2B.
|
97 |
+
|
98 |
+
e.g. [google/gemma-3-4b](https://huggingface.co/google/gemma-3-4b)
|
99 |
+
|
100 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
101 |
+
documentation from [`PretrainedConfig`] for more information.
|
102 |
+
|
103 |
+
Args:
|
104 |
+
text_config (`Union[Gemma3TextConfig, dict]`, *optional*):
|
105 |
+
The config object of the text backbone.
|
106 |
+
vision_config (`Union[AutoConfig, dict]`, *optional*):
|
107 |
+
Custom vision config or dict.
|
108 |
+
audio_config (`Union[AutoConfig, dict]`, *optional*):
|
109 |
+
Custom audio config or dict.
|
110 |
+
mm_tokens_per_image (`int`, *optional*, defaults to 256):
|
111 |
+
The number of tokens per image embedding.
|
112 |
+
boi_token_index (`int`, *optional*, defaults to 255999):
|
113 |
+
The begin-of-image token index to wrap the image prompt.
|
114 |
+
eoi_token_index (`int`, *optional*, defaults to 256000):
|
115 |
+
The end-of-image token index to wrap the image prompt.
|
116 |
+
image_token_index (`int`, *optional*, defaults to 262144):
|
117 |
+
The image token index to encode the image prompt.
|
118 |
+
audio_token_index (`int`, *optional*, defaults to 262145):
|
119 |
+
The audio token index to encode the audio prompt.
|
120 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
121 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
122 |
+
|
123 |
+
|
124 |
+
Example:
|
125 |
+
|
126 |
+
```python
|
127 |
+
>>> from transformers import Gemma3ForConditionalGeneration, Gemma3Config, SiglipVisionConfig, Gemma3TextConfig
|
128 |
+
|
129 |
+
>>> # Initializing a Siglip-like vision config
|
130 |
+
>>> vision_config = SiglipVisionConfig()
|
131 |
+
|
132 |
+
>>> # Initializing a Siglip-like vision config
|
133 |
+
>>> audio_config = AudioConfig()
|
134 |
+
|
135 |
+
>>> # Initializing a Gemma3 Text config
|
136 |
+
>>> text_config = Gemma3TextConfig()
|
137 |
+
|
138 |
+
>>> # Initializing a Gemma3 gemma-3-4b style configuration
|
139 |
+
>>> configuration = Gemma3Config(vision_config, text_config)
|
140 |
+
|
141 |
+
>>> # Initializing a model from the gemma-3-4b style configuration
|
142 |
+
>>> model = Gemma3TextConfig(configuration)
|
143 |
+
|
144 |
+
>>> # Accessing the model configuration
|
145 |
+
>>> configuration = model.config
|
146 |
+
```"""
|
147 |
+
|
148 |
+
model_type = "gemma3mm"
|
149 |
+
sub_configs = {
|
150 |
+
"text_config": Gemma3TextConfig,
|
151 |
+
"vision_config": SiglipVisionConfig,
|
152 |
+
"audio_config": AudioConfig,
|
153 |
+
}
|
154 |
+
|
155 |
+
def __init__(
|
156 |
+
self,
|
157 |
+
text_config: Optional[Gemma3TextConfig] = None,
|
158 |
+
vision_config: Optional[SiglipVisionConfig] = None,
|
159 |
+
audio_config: Optional[AudioConfig] = None,
|
160 |
+
mm_tokens_per_image: int = 256,
|
161 |
+
boi_token_index: int = 255_999,
|
162 |
+
eoi_token_index: int = 256_000,
|
163 |
+
boa_token_index: int = 256_001,
|
164 |
+
eoa_token_index: int = 256_002,
|
165 |
+
image_token_index: int = 262_144,
|
166 |
+
audio_token_index: int = 262_143,
|
167 |
+
initializer_range: float = 0.02,
|
168 |
+
**kwargs,
|
169 |
+
):
|
170 |
+
if text_config is None:
|
171 |
+
text_config = Gemma3TextConfig()
|
172 |
+
logger.info("text_config is None, using default Gemma3TextConfig vision config.")
|
173 |
+
elif isinstance(text_config, dict):
|
174 |
+
text_config = Gemma3TextConfig(**text_config)
|
175 |
+
|
176 |
+
if isinstance(vision_config, dict):
|
177 |
+
vision_config = SiglipVisionConfig(**vision_config)
|
178 |
+
else:
|
179 |
+
vision_config = SiglipVisionConfig()
|
180 |
+
logger.info(
|
181 |
+
"vision_config is None or incompatible with Gemma3VisionConfig intialization. Gemma3 will be limited "
|
182 |
+
"to text tasks."
|
183 |
+
)
|
184 |
+
|
185 |
+
if isinstance(audio_config, dict):
|
186 |
+
audio_config = AudioConfig(**audio_config)
|
187 |
+
else:
|
188 |
+
audio_config = AudioConfig()
|
189 |
+
logger.info(
|
190 |
+
"audio_config is None or incompatible with Gemma3AudioConfig intialization. Gemma3 will be limited "
|
191 |
+
"to text tasks."
|
192 |
+
)
|
193 |
+
|
194 |
+
self.text_config = text_config
|
195 |
+
self.vision_config = vision_config
|
196 |
+
self.audio_config = audio_config
|
197 |
+
self.mm_tokens_per_image = mm_tokens_per_image
|
198 |
+
self.boi_token_index = boi_token_index
|
199 |
+
self.eoi_token_index = eoi_token_index
|
200 |
+
self.boa_token_index = boa_token_index
|
201 |
+
self.eoa_token_index = eoa_token_index
|
202 |
+
self.image_token_index = image_token_index
|
203 |
+
self.audio_token_index = audio_token_index
|
204 |
+
self.initializer_range = initializer_range
|
205 |
+
|
206 |
+
super().__init__(**kwargs)
|
modeling_gemma3mm.py
ADDED
@@ -0,0 +1,640 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
2 |
+
# This file was automatically generated from src/transformers/models/gemma3/modular_gemma3.py.
|
3 |
+
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
4 |
+
# the file from the modular. If any change should be done, please apply the change to the
|
5 |
+
# modular_gemma3.py file directly. One of our CI enforces this.
|
6 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
7 |
+
# coding=utf-8
|
8 |
+
# Copyright 2025 Google Inc. HuggingFace Inc. team. All rights reserved.
|
9 |
+
#
|
10 |
+
#
|
11 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
12 |
+
# you may not use this file except in compliance with the License.
|
13 |
+
# You may obtain a copy of the License at
|
14 |
+
#
|
15 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
16 |
+
#
|
17 |
+
# Unless required by applicable law or agreed to in writing, software
|
18 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
19 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
20 |
+
# See the License for the specific language governing permissions and
|
21 |
+
# limitations under the License.
|
22 |
+
import copy
|
23 |
+
from collections.abc import Callable
|
24 |
+
from dataclasses import dataclass
|
25 |
+
from typing import List, Optional, Tuple, Union
|
26 |
+
|
27 |
+
import torch
|
28 |
+
import torch.nn as nn
|
29 |
+
|
30 |
+
from transformers.activations import ACT2FN
|
31 |
+
from transformers.cache_utils import Cache, HybridCache, StaticCache
|
32 |
+
from transformers.generation import GenerationMixin
|
33 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
34 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, ModelOutput
|
35 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
36 |
+
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
37 |
+
from transformers.processing_utils import Unpack
|
38 |
+
from transformers.utils import (
|
39 |
+
add_start_docstrings,
|
40 |
+
add_start_docstrings_to_model_forward,
|
41 |
+
is_torchdynamo_compiling,
|
42 |
+
logging,
|
43 |
+
replace_return_docstrings,
|
44 |
+
)
|
45 |
+
from transformers.utils.deprecation import deprecate_kwarg
|
46 |
+
from transformers import AutoModel, AutoModelForCausalLM
|
47 |
+
|
48 |
+
from transformers.models.gemma3.modeling_gemma3 import Gemma3CausalLMOutputWithPast, Gemma3PreTrainedModel, Gemma3MultiModalProjector
|
49 |
+
|
50 |
+
from transformers import AutoConfig, AutoModelForCausalLM
|
51 |
+
|
52 |
+
from .configuration_gemma3mm import Gemma3MMConfig
|
53 |
+
from .processing_gemma3mm import InputMode
|
54 |
+
from .speech_conformer_encoder import ConformerEncoder
|
55 |
+
|
56 |
+
logger = logging.get_logger(__name__)
|
57 |
+
_CONFIG_FOR_DOC = "Gemma3MMConfig"
|
58 |
+
|
59 |
+
@dataclass
|
60 |
+
class Gemma3MMCausalLMOutputWithPast(Gemma3CausalLMOutputWithPast): # ← 부모 클래스 변경
|
61 |
+
"""
|
62 |
+
Multimodal version of `Gemma3CausalLMOutputWithPast`.
|
63 |
+
Adds audio-specific hidden states.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
audio_hidden_states (`torch.FloatTensor`, *optional*):
|
67 |
+
A `torch.FloatTensor` of size `(batch_size, sequence_length, hidden_size)`.
|
68 |
+
Audio hidden states produced by the audio encoder.
|
69 |
+
"""
|
70 |
+
audio_hidden_states: Optional[torch.FloatTensor] = None
|
71 |
+
|
72 |
+
|
73 |
+
GEMMA3_START_DOCSTRING = r"""
|
74 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
75 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
76 |
+
etc.)
|
77 |
+
|
78 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
79 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
80 |
+
and behavior.
|
81 |
+
|
82 |
+
Parameters:
|
83 |
+
config ([`Gemma3Config`]):
|
84 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
85 |
+
load the weights associated with the model, only the configuration. Check out the
|
86 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
87 |
+
"""
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
GEMMA3_INPUTS_DOCSTRING = r"""
|
92 |
+
Args:
|
93 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
94 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
95 |
+
it.
|
96 |
+
|
97 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
98 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
99 |
+
|
100 |
+
[What are input IDs?](../glossary#input-ids)
|
101 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
102 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
103 |
+
|
104 |
+
- 1 for tokens that are **not masked**,
|
105 |
+
- 0 for tokens that are **masked**.
|
106 |
+
|
107 |
+
[What are attention masks?](../glossary#attention-mask)
|
108 |
+
|
109 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
110 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
111 |
+
|
112 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
113 |
+
`past_key_values`).
|
114 |
+
|
115 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
116 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
117 |
+
information on the default strategy.
|
118 |
+
|
119 |
+
- 1 indicates the head is **not masked**,
|
120 |
+
- 0 indicates the head is **masked**.
|
121 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
122 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
123 |
+
config.n_positions - 1]`.
|
124 |
+
|
125 |
+
[What are position IDs?](../glossary#position-ids)
|
126 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
127 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
128 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
129 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
130 |
+
|
131 |
+
Two formats are allowed:
|
132 |
+
- a [`~cache_utils.Cache`] instance, see our
|
133 |
+
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
134 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
135 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
136 |
+
cache format.
|
137 |
+
|
138 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
139 |
+
legacy cache format will be returned.
|
140 |
+
|
141 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
142 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
143 |
+
of shape `(batch_size, sequence_length)`.
|
144 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
145 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
146 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
147 |
+
model's internal embedding lookup matrix.
|
148 |
+
use_cache (`bool`, *optional*):
|
149 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
150 |
+
`past_key_values`).
|
151 |
+
output_attentions (`bool`, *optional*):
|
152 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
153 |
+
tensors for more detail.
|
154 |
+
output_hidden_states (`bool`, *optional*):
|
155 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
156 |
+
more detail.
|
157 |
+
return_dict (`bool`, *optional*):
|
158 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
159 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
160 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
161 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
162 |
+
the complete sequence length.
|
163 |
+
"""
|
164 |
+
|
165 |
+
@add_start_docstrings(
|
166 |
+
"""The GEMMA3 model which consists of a vision backbone and a language model.""",
|
167 |
+
GEMMA3_START_DOCSTRING,
|
168 |
+
)
|
169 |
+
class Gemma3MMForConditionalGeneration(Gemma3PreTrainedModel, GenerationMixin):
|
170 |
+
def __init__(self, config: Gemma3MMConfig):
|
171 |
+
super().__init__(config)
|
172 |
+
self.vision_tower = AutoModel.from_config(config=config.vision_config)
|
173 |
+
audio_config = config.audio_config.to_diff_dict()
|
174 |
+
for item in ['transformers_version', 'model_type', 'torch_dtype']:
|
175 |
+
if item in audio_config:
|
176 |
+
audio_config.pop(item)
|
177 |
+
self.audio_tower = ConformerEncoder(**audio_config)
|
178 |
+
self.audio_tower.post_init({})
|
179 |
+
self.audio_projector = nn.Sequential(
|
180 |
+
nn.Linear(in_features=config.audio_config.attention_dim, out_features=config.text_config.hidden_size, bias=True),
|
181 |
+
nn.GELU(approximate='none'),
|
182 |
+
nn.Linear(in_features=config.text_config.hidden_size, out_features=config.text_config.hidden_size, bias=True)
|
183 |
+
).to(dtype=self.dtype)
|
184 |
+
|
185 |
+
self.multi_modal_projector = Gemma3MultiModalProjector(config)
|
186 |
+
self.vocab_size = config.text_config.vocab_size
|
187 |
+
|
188 |
+
language_model = AutoModelForCausalLM.from_config(config=config.text_config)
|
189 |
+
|
190 |
+
if language_model._tied_weights_keys is not None:
|
191 |
+
self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys]
|
192 |
+
self.language_model = language_model
|
193 |
+
|
194 |
+
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
|
195 |
+
|
196 |
+
# LoRA 어댑터 설정 추가
|
197 |
+
if hasattr(config, "speech_lora") and config.speech_lora is not None:
|
198 |
+
from peft import LoraConfig, get_peft_model
|
199 |
+
import warnings
|
200 |
+
|
201 |
+
speech_lora_config = LoraConfig(
|
202 |
+
r=config.speech_lora['r'],
|
203 |
+
lora_alpha=config.speech_lora['lora_alpha'],
|
204 |
+
target_modules=config.speech_lora['layer'],
|
205 |
+
use_rslora=config.speech_lora['use_rslora'],
|
206 |
+
lora_dropout=config.speech_lora['dp'],
|
207 |
+
task_type="CAUSAL_LM",
|
208 |
+
)
|
209 |
+
self.language_model.model = get_peft_model(self.language_model.model, speech_lora_config, adapter_name="speech")
|
210 |
+
|
211 |
+
self.post_init()
|
212 |
+
|
213 |
+
def set_lora_adapter(self, adapter_name) -> None:
|
214 |
+
from peft.tuners.lora.layer import LoraLayer
|
215 |
+
for module in self.modules():
|
216 |
+
if isinstance(module, LoraLayer):
|
217 |
+
if module.merged:
|
218 |
+
warnings.warn("Adapter cannot be set when the model is merged. Unmerging the model first.")
|
219 |
+
module.unmerge()
|
220 |
+
module.set_adapter(adapter_name)
|
221 |
+
module._disable_adapters = False
|
222 |
+
|
223 |
+
def unset_lora_adapter(self) -> None:
|
224 |
+
# Ref: peft/tuners/tuners_utils.py - enable_adapters()
|
225 |
+
# Ref: peft/tuners/lora/layer.py
|
226 |
+
from peft.tuners.lora.layer import LoraLayer
|
227 |
+
for module in self.modules():
|
228 |
+
if isinstance(module, LoraLayer):
|
229 |
+
# disable grads on all adapter layers
|
230 |
+
# TODO weijian: may use enable_adapters() instead
|
231 |
+
for layer_name in module.adapter_layer_names:
|
232 |
+
layer = getattr(module, layer_name)
|
233 |
+
layer.requires_grad_(False)
|
234 |
+
module._disable_adapters = True
|
235 |
+
|
236 |
+
def get_input_embeddings(self):
|
237 |
+
return self.language_model.get_input_embeddings()
|
238 |
+
|
239 |
+
def set_input_embeddings(self, value):
|
240 |
+
self.language_model.set_input_embeddings(value)
|
241 |
+
|
242 |
+
def get_output_embeddings(self):
|
243 |
+
return self.language_model.get_output_embeddings()
|
244 |
+
|
245 |
+
def set_output_embeddings(self, new_embeddings):
|
246 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
247 |
+
|
248 |
+
def set_decoder(self, decoder):
|
249 |
+
self.language_model.set_decoder(decoder)
|
250 |
+
|
251 |
+
def get_decoder(self):
|
252 |
+
return self.language_model.get_decoder()
|
253 |
+
|
254 |
+
def _update_causal_mask(
|
255 |
+
self,
|
256 |
+
attention_mask,
|
257 |
+
token_type_ids,
|
258 |
+
past_key_values,
|
259 |
+
cache_position,
|
260 |
+
input_tensor,
|
261 |
+
is_training: bool = False,
|
262 |
+
):
|
263 |
+
if self.config.text_config._attn_implementation == "flash_attention_2":
|
264 |
+
return attention_mask
|
265 |
+
|
266 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
267 |
+
# In this case we assume that the mask comes already in inverted
|
268 |
+
# form and requires no inversion or slicing.
|
269 |
+
return attention_mask
|
270 |
+
|
271 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
272 |
+
min_dtype = torch.finfo(self.dtype).min
|
273 |
+
inputs_lead_dim, sequence_length = input_tensor.shape[:2]
|
274 |
+
if using_static_cache:
|
275 |
+
target_length = past_key_values.get_max_cache_shape()
|
276 |
+
elif isinstance(past_key_values, HybridCache):
|
277 |
+
target_length = past_key_values.get_max_cache_shape()
|
278 |
+
else:
|
279 |
+
target_length = (
|
280 |
+
attention_mask.shape[-1]
|
281 |
+
if isinstance(attention_mask, torch.Tensor)
|
282 |
+
else cache_position[0] + sequence_length + 1
|
283 |
+
)
|
284 |
+
|
285 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
286 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
287 |
+
return attention_mask
|
288 |
+
|
289 |
+
causal_mask = torch.full(
|
290 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=self.dtype, device=cache_position.device
|
291 |
+
)
|
292 |
+
|
293 |
+
# Causal diagonal mask only if training, otherwise attend to the whole prefix. Training-specific attn for prefix is handled below
|
294 |
+
if sequence_length != 1:
|
295 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
296 |
+
|
297 |
+
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
|
298 |
+
causal_mask = causal_mask[None, None, :, :].expand(inputs_lead_dim, 1, -1, -1)
|
299 |
+
|
300 |
+
# Apply bidirectional mask on images if token type ids are provided
|
301 |
+
if token_type_ids is not None and sequence_length != 1:
|
302 |
+
token_type_mask = token_type_ids.unsqueeze(1) == token_type_ids.unsqueeze(2)
|
303 |
+
token_type_mask[token_type_ids == 0] = False # if text token do not change anything
|
304 |
+
token_type_mask = token_type_mask.unsqueeze(1).to(causal_mask.device, dtype=torch.bool)
|
305 |
+
causal_mask = causal_mask.clone()
|
306 |
+
causal_mask[:, :, :, :sequence_length] = causal_mask[:, :, :, :sequence_length].masked_fill(
|
307 |
+
token_type_mask, 0.0
|
308 |
+
)
|
309 |
+
|
310 |
+
if attention_mask is not None:
|
311 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
312 |
+
mask_length = attention_mask.shape[-1]
|
313 |
+
|
314 |
+
# Then apply padding mask (will mask pad tokens)
|
315 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(causal_mask.device)
|
316 |
+
padding_mask = padding_mask == 0
|
317 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
318 |
+
padding_mask, min_dtype
|
319 |
+
)
|
320 |
+
|
321 |
+
return causal_mask
|
322 |
+
|
323 |
+
def get_image_features(self, pixel_values: torch.Tensor):
|
324 |
+
"""
|
325 |
+
Projects the last hidden state from the vision model into language model space.
|
326 |
+
|
327 |
+
Args:
|
328 |
+
pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`)
|
329 |
+
The tensors corresponding to the input images.
|
330 |
+
Returns:
|
331 |
+
image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`).
|
332 |
+
"""
|
333 |
+
vision_outputs = self.vision_tower(pixel_values=pixel_values).last_hidden_state
|
334 |
+
image_features = self.multi_modal_projector(vision_outputs)
|
335 |
+
return image_features
|
336 |
+
|
337 |
+
def get_audio_features(self, input_audio_embeds: torch.FloatTensor, audio_attention_mask: torch.FloatTensor, audio_embed_sizes: torch.FloatTensor):
|
338 |
+
"""
|
339 |
+
Projects the last hidden state from the audio model into language model space.
|
340 |
+
|
341 |
+
Args:
|
342 |
+
audio_inputs (`torch.FloatTensor]` of shape `(batch_size, sequence_length, feature_dim)`)
|
343 |
+
The tensors corresponding to the input audio features.
|
344 |
+
|
345 |
+
Returns:
|
346 |
+
audio_features (`torch.Tensor`): Audio feature tensor of shape `(batch_size, audio_length, embed_dim)`).
|
347 |
+
"""
|
348 |
+
audio_features, masks = self.audio_tower(input_audio_embeds, audio_attention_mask)
|
349 |
+
audio_outputs = self.audio_projector(audio_features)
|
350 |
+
return audio_outputs
|
351 |
+
|
352 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
353 |
+
@add_start_docstrings_to_model_forward(GEMMA3_INPUTS_DOCSTRING)
|
354 |
+
@replace_return_docstrings(output_type=Gemma3CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
355 |
+
def forward(
|
356 |
+
self,
|
357 |
+
input_ids: torch.LongTensor = None,
|
358 |
+
pixel_values: torch.FloatTensor = None,
|
359 |
+
input_audio_embeds: torch.FloatTensor = None,
|
360 |
+
audio_embed_sizes: torch.FloatTensor = None,
|
361 |
+
audio_attention_mask: torch.FloatTensor = None,
|
362 |
+
attention_mask: Optional[torch.Tensor] = None,
|
363 |
+
input_modes: torch.LongTensor = None,
|
364 |
+
position_ids: Optional[torch.LongTensor] = None,
|
365 |
+
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None,
|
366 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
367 |
+
cache_position: Optional[torch.LongTensor] = None,
|
368 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
369 |
+
labels: Optional[torch.LongTensor] = None,
|
370 |
+
use_cache: Optional[bool] = None,
|
371 |
+
output_attentions: Optional[bool] = None,
|
372 |
+
output_hidden_states: Optional[bool] = None,
|
373 |
+
return_dict: Optional[bool] = None,
|
374 |
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
375 |
+
**lm_kwargs,
|
376 |
+
) -> Union[Tuple, Gemma3CausalLMOutputWithPast]:
|
377 |
+
r"""
|
378 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
379 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
380 |
+
config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
381 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.text_config.vocab_size]`.
|
382 |
+
|
383 |
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
384 |
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
385 |
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
386 |
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
387 |
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
388 |
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
389 |
+
|
390 |
+
Returns:
|
391 |
+
|
392 |
+
Example:
|
393 |
+
|
394 |
+
```python
|
395 |
+
>>> from PIL import Image
|
396 |
+
>>> import requests
|
397 |
+
>>> from transformers import AutoProcessor, Gemma3MMForConditionalGeneration
|
398 |
+
|
399 |
+
>>> model = Gemma3MMForConditionalGeneration.from_pretrained("google/Gemma3-test-224px-hf")
|
400 |
+
>>> processor = AutoProcessor.from_pretrained("google/Gemma3-test-224px-hf")
|
401 |
+
|
402 |
+
>>> prompt = "answer en Where is the cow standing?"
|
403 |
+
>>> url = "https://huggingface.co/gv-hf/Gemma3-test-224px-hf/resolve/main/cow_beach_1.png"
|
404 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
405 |
+
|
406 |
+
>>> inputs = processor(images=image, text=prompt, return_tensors="pt")
|
407 |
+
|
408 |
+
>>> # Generate
|
409 |
+
>>> generate_ids = model.generate(**inputs, max_length=30)
|
410 |
+
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
411 |
+
"answer en Where is the cow standing?\nbeach"
|
412 |
+
```"""
|
413 |
+
|
414 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
415 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
416 |
+
|
417 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
418 |
+
output_hidden_states = (
|
419 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
420 |
+
)
|
421 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
422 |
+
|
423 |
+
if isinstance(input_modes, torch.Tensor):
|
424 |
+
# len(input_mode) == num_beams in beam search, and all elements of input_mode should have the same value
|
425 |
+
input_modes = input_modes.unique()
|
426 |
+
if len(input_modes) != 1:
|
427 |
+
raise ValueError("Elements of input_modes should have the same value")
|
428 |
+
|
429 |
+
input_mode = InputMode(input_modes.item())
|
430 |
+
|
431 |
+
if input_mode in [InputMode.VISION_SPEECH, InputMode.VISION]:
|
432 |
+
self.unset_lora_adapter()
|
433 |
+
#self.set_lora_adapter('vision')
|
434 |
+
#audio_projection_mode = 'vision'
|
435 |
+
elif input_mode == InputMode.SPEECH:
|
436 |
+
self.set_lora_adapter('speech')
|
437 |
+
#audio_projection_mode = 'speech'
|
438 |
+
elif input_mode == InputMode.LANGUAGE:
|
439 |
+
self.unset_lora_adapter()
|
440 |
+
#audio_projection_mode = 'speech'
|
441 |
+
else:
|
442 |
+
raise ValueError(f"Invalid input_mode: {input_mode}")
|
443 |
+
|
444 |
+
is_training = token_type_ids is not None and labels is not None
|
445 |
+
|
446 |
+
# Replace image id woth PAD if the image token if OOV, to avoid index-errors
|
447 |
+
if input_ids is not None and self.config.image_token_index >= self.vocab_size or self.config.audio_token_index >= self.vocab_size:
|
448 |
+
special_image_mask = input_ids == self.config.image_token_index
|
449 |
+
special_audio_mask = input_ids == self.config.audio_token_index
|
450 |
+
llm_input_ids = input_ids.clone()
|
451 |
+
llm_input_ids[special_image_mask] = 0
|
452 |
+
llm_input_ids[special_audio_mask] = 0
|
453 |
+
else:
|
454 |
+
llm_input_ids = input_ids
|
455 |
+
|
456 |
+
if inputs_embeds is None:
|
457 |
+
inputs_embeds = self.get_input_embeddings()(llm_input_ids)
|
458 |
+
|
459 |
+
if cache_position is None:
|
460 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
461 |
+
cache_position = torch.arange(
|
462 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
463 |
+
)
|
464 |
+
|
465 |
+
if position_ids is None:
|
466 |
+
position_ids = cache_position.unsqueeze(0) + 1 # Gemma3 positions are 1-indexed
|
467 |
+
|
468 |
+
# Merge text and images
|
469 |
+
if pixel_values is not None:
|
470 |
+
image_features = self.get_image_features(pixel_values)
|
471 |
+
|
472 |
+
if input_ids is None:
|
473 |
+
special_image_mask = inputs_embeds == self.get_input_embeddings()(
|
474 |
+
torch.tensor(self.config.image_token_index, dtype=torch.long, device=inputs_embeds.device)
|
475 |
+
)
|
476 |
+
else:
|
477 |
+
special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1)
|
478 |
+
special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
|
479 |
+
|
480 |
+
if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel():
|
481 |
+
image_tokens_in_text = (special_image_mask).sum(dim=1).sum(dim=0)[0]
|
482 |
+
raise ValueError(
|
483 |
+
f"Number of images does not match number of special image tokens in the input text. "
|
484 |
+
f"Got {image_tokens_in_text} image tokens in the text but {image_features.shape[0] * image_features.shape[1]} "
|
485 |
+
"tokens from image embeddings."
|
486 |
+
)
|
487 |
+
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
|
488 |
+
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
|
489 |
+
|
490 |
+
# Merge text and audios
|
491 |
+
if input_audio_embeds is not None:
|
492 |
+
audio_features = self.get_audio_features(input_audio_embeds, audio_attention_mask, audio_embed_sizes)
|
493 |
+
if input_ids is None:
|
494 |
+
special_audio_mask = inputs_embeds == self.get_input_embeddings()(
|
495 |
+
torch.tensor(self.config.audio_token_index, dtype=torch.long, device=inputs_embeds.device)
|
496 |
+
)
|
497 |
+
else:
|
498 |
+
special_audio_mask = (input_ids == self.config.audio_token_index).unsqueeze(-1)
|
499 |
+
special_audio_mask = special_audio_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
|
500 |
+
|
501 |
+
masked_audio_features = []
|
502 |
+
for i, size in enumerate(audio_embed_sizes):
|
503 |
+
masked_audio_features.append(audio_features[i, :size, :])
|
504 |
+
masked_audio_features = torch.cat(masked_audio_features, dim=0)
|
505 |
+
|
506 |
+
if not is_torchdynamo_compiling() and inputs_embeds[special_audio_mask].numel() != masked_audio_features.numel():
|
507 |
+
audio_tokens_in_text = (special_audio_mask).sum(dim=1).sum(dim=0)[0]
|
508 |
+
masked_audio_size = audio_embed_sizes.sum()[0]
|
509 |
+
raise ValueError(
|
510 |
+
f"Number of images does not match number of special image tokens in the input text. "
|
511 |
+
f"Got {audio_tokens_in_text} image tokens in the text but {masked_audio_size} "
|
512 |
+
"tokens from image embeddings."
|
513 |
+
)
|
514 |
+
masked_audio_features = masked_audio_features.to(inputs_embeds.device, inputs_embeds.dtype)
|
515 |
+
inputs_embeds = inputs_embeds.masked_scatter(special_audio_mask, masked_audio_features)
|
516 |
+
|
517 |
+
# mask out pad-token-ids in labels for BC
|
518 |
+
if labels is not None and self.pad_token_id in labels:
|
519 |
+
logger.warning_once(
|
520 |
+
"`labels` contains `pad_token_id` which will be masked with `config.ignore_index`. "
|
521 |
+
"You have to mask out `pad_token_id` when preparing `labels`, this behavior will be removed in v.4.46.",
|
522 |
+
)
|
523 |
+
labels = torch.where(input_ids == self.pad_token_id, self.config.ignore_index, labels)
|
524 |
+
|
525 |
+
causal_mask = self._update_causal_mask(
|
526 |
+
attention_mask, token_type_ids, past_key_values, cache_position, inputs_embeds, is_training
|
527 |
+
)
|
528 |
+
outputs = self.language_model(
|
529 |
+
attention_mask=causal_mask,
|
530 |
+
position_ids=position_ids,
|
531 |
+
past_key_values=past_key_values,
|
532 |
+
inputs_embeds=inputs_embeds,
|
533 |
+
use_cache=use_cache,
|
534 |
+
output_attentions=output_attentions,
|
535 |
+
output_hidden_states=output_hidden_states,
|
536 |
+
return_dict=return_dict,
|
537 |
+
cache_position=cache_position,
|
538 |
+
logits_to_keep=logits_to_keep,
|
539 |
+
**lm_kwargs,
|
540 |
+
)
|
541 |
+
|
542 |
+
logits = outputs.logits
|
543 |
+
loss = None
|
544 |
+
if labels is not None:
|
545 |
+
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
546 |
+
logits = logits.float()
|
547 |
+
shift_logits = logits[..., :-1, :]
|
548 |
+
shift_labels = labels[..., 1:]
|
549 |
+
if attention_mask is not None:
|
550 |
+
# we use the input attention mask to shift the logits and labels, because it is 2D.
|
551 |
+
# we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
|
552 |
+
shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device)
|
553 |
+
shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
|
554 |
+
shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
|
555 |
+
else:
|
556 |
+
shift_logits = shift_logits.contiguous()
|
557 |
+
shift_labels = shift_labels.contiguous()
|
558 |
+
# Flatten the tokens
|
559 |
+
loss_fct = nn.CrossEntropyLoss()
|
560 |
+
|
561 |
+
flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
|
562 |
+
flat_labels = shift_labels.view(-1).to(shift_logits.device)
|
563 |
+
loss = loss_fct(flat_logits, flat_labels)
|
564 |
+
if not return_dict:
|
565 |
+
output = (logits,) + outputs[1:]
|
566 |
+
return (loss,) + output if loss is not None else output
|
567 |
+
|
568 |
+
return Gemma3CausalLMOutputWithPast(
|
569 |
+
loss=loss,
|
570 |
+
logits=logits,
|
571 |
+
past_key_values=outputs.past_key_values,
|
572 |
+
hidden_states=outputs.hidden_states,
|
573 |
+
attentions=outputs.attentions,
|
574 |
+
image_hidden_states=image_features if pixel_values is not None else None,
|
575 |
+
audio_hidden_states=audio_features if input_audio_embeds is not None else None,
|
576 |
+
)
|
577 |
+
|
578 |
+
def prepare_inputs_for_generation(
|
579 |
+
self,
|
580 |
+
input_ids,
|
581 |
+
past_key_values=None,
|
582 |
+
input_modes=None,
|
583 |
+
inputs_embeds=None,
|
584 |
+
cache_position=None,
|
585 |
+
position_ids=None,
|
586 |
+
pixel_values=None,
|
587 |
+
input_audio_embeds=None,
|
588 |
+
audio_embed_sizes=None,
|
589 |
+
audio_attention_mask=None,
|
590 |
+
attention_mask=None,
|
591 |
+
token_type_ids=None,
|
592 |
+
use_cache=True,
|
593 |
+
logits_to_keep=None,
|
594 |
+
labels=None,
|
595 |
+
**kwargs,
|
596 |
+
):
|
597 |
+
# Overwritten -- custom `position_ids` and `pixel_values` handling
|
598 |
+
model_inputs = self.language_model.prepare_inputs_for_generation(
|
599 |
+
input_ids,
|
600 |
+
past_key_values=past_key_values,
|
601 |
+
input_modes=input_modes,
|
602 |
+
inputs_embeds=inputs_embeds,
|
603 |
+
attention_mask=attention_mask,
|
604 |
+
position_ids=position_ids,
|
605 |
+
cache_position=cache_position,
|
606 |
+
use_cache=use_cache,
|
607 |
+
logits_to_keep=logits_to_keep,
|
608 |
+
token_type_ids=token_type_ids,
|
609 |
+
**kwargs,
|
610 |
+
)
|
611 |
+
|
612 |
+
# position_ids in Gemma3 are 1-indexed
|
613 |
+
if model_inputs.get("position_ids") is not None:
|
614 |
+
model_inputs["position_ids"] += 1
|
615 |
+
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
|
616 |
+
# Otherwise we need pixel values to be passed to model. NOTE: use_cache=False needs pixel_values always
|
617 |
+
if cache_position[0] == 0:
|
618 |
+
model_inputs["pixel_values"] = pixel_values
|
619 |
+
model_inputs["input_audio_embeds"] = input_audio_embeds
|
620 |
+
model_inputs["audio_embed_sizes"] = audio_embed_sizes
|
621 |
+
model_inputs["audio_attention_mask"] = audio_attention_mask
|
622 |
+
model_inputs["input_modes"] = input_modes
|
623 |
+
is_training = token_type_ids is not None and labels is not None
|
624 |
+
if cache_position[0] == 0 and isinstance(past_key_values, HybridCache):
|
625 |
+
input_tensor = inputs_embeds if inputs_embeds is not None else input_ids
|
626 |
+
causal_mask = self._update_causal_mask(
|
627 |
+
attention_mask, token_type_ids, past_key_values, cache_position, input_tensor, is_training
|
628 |
+
)
|
629 |
+
model_inputs["attention_mask"] = causal_mask
|
630 |
+
|
631 |
+
return model_inputs
|
632 |
+
|
633 |
+
def tie_weights(self):
|
634 |
+
return self.language_model.tie_weights()
|
635 |
+
|
636 |
+
|
637 |
+
AutoConfig.register("gemma3mm", Gemma3MMConfig)
|
638 |
+
AutoModel.register("gemma3mm", Gemma3MMForConditionalGeneration)
|
639 |
+
Gemma3MMConfig.register_for_auto_class()
|
640 |
+
Gemma3MMForConditionalGeneration.register_for_auto_class()
|
processing_gemma3mm.py
ADDED
@@ -0,0 +1,436 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from typing import List, Optional, Union, Tuple
|
3 |
+
from math import ceil
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import scipy
|
8 |
+
from torch.nn.utils.rnn import pad_sequence
|
9 |
+
|
10 |
+
from enum import Enum
|
11 |
+
|
12 |
+
from transformers import AutoFeatureExtractor
|
13 |
+
from transformers.feature_extraction_utils import BatchFeature
|
14 |
+
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
|
15 |
+
from transformers.image_utils import ImageInput, make_nested_list_of_images
|
16 |
+
from transformers.processing_utils import ImagesKwargs, ProcessingKwargs, ProcessorMixin, Unpack, AudioKwargs
|
17 |
+
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
|
18 |
+
from transformers.utils import to_py_obj, TensorType
|
19 |
+
from transformers.audio_utils import AudioInput
|
20 |
+
|
21 |
+
class InputMode(Enum):
|
22 |
+
LANGUAGE = 0
|
23 |
+
VISION = 1
|
24 |
+
SPEECH = 2
|
25 |
+
VISION_SPEECH = 3
|
26 |
+
|
27 |
+
class Gemma3ImagesKwargs(ImagesKwargs):
|
28 |
+
do_pan_and_scan: Optional[bool]
|
29 |
+
pan_and_scan_min_crop_size: Optional[int]
|
30 |
+
pan_and_scan_max_num_crops: Optional[int]
|
31 |
+
pan_and_scan_min_ratio_to_activate: Optional[float]
|
32 |
+
do_convert_rgb: Optional[bool]
|
33 |
+
|
34 |
+
|
35 |
+
class Gemma3ProcessorKwargs(ProcessingKwargs, total=False):
|
36 |
+
images_kwargs: Gemma3ImagesKwargs
|
37 |
+
_defaults = {
|
38 |
+
"text_kwargs": {
|
39 |
+
"padding": False,
|
40 |
+
},
|
41 |
+
"images_kwargs": {
|
42 |
+
"do_pan_and_scan": False,
|
43 |
+
"pan_and_scan_min_crop_size": 256,
|
44 |
+
"pan_and_scan_max_num_crops": 4,
|
45 |
+
"pan_and_scan_min_ratio_to_activate": 1.2,
|
46 |
+
},
|
47 |
+
}
|
48 |
+
|
49 |
+
def speechlib_mel(sample_rate, n_fft, n_mels, fmin=None, fmax=None):
|
50 |
+
"""Create a Mel filter-bank the same as SpeechLib FbankFC.
|
51 |
+
Args:
|
52 |
+
sample_rate (int): Sample rate in Hz. number > 0 [scalar]
|
53 |
+
n_fft (int): FFT size. int > 0 [scalar]
|
54 |
+
n_mel (int): Mel filter size. int > 0 [scalar]
|
55 |
+
fmin (float): lowest frequency (in Hz). If None use 0.0.
|
56 |
+
float >= 0 [scalar]
|
57 |
+
fmax: highest frequency (in Hz). If None use sample_rate / 2.
|
58 |
+
float >= 0 [scalar]
|
59 |
+
Returns
|
60 |
+
out (numpy.ndarray): Mel transform matrix
|
61 |
+
[shape=(n_mels, 1 + n_fft/2)]
|
62 |
+
"""
|
63 |
+
|
64 |
+
bank_width = int(n_fft // 2 + 1)
|
65 |
+
if fmax is None:
|
66 |
+
fmax = sample_rate / 2
|
67 |
+
if fmin is None:
|
68 |
+
fmin = 0
|
69 |
+
assert fmin >= 0, "fmin cannot be negtive"
|
70 |
+
assert fmin < fmax <= sample_rate / 2, "fmax must be between (fmin, samplerate / 2]"
|
71 |
+
|
72 |
+
def mel(f):
|
73 |
+
return 1127.0 * np.log(1.0 + f / 700.0)
|
74 |
+
|
75 |
+
def bin2mel(fft_bin):
|
76 |
+
return 1127.0 * np.log(1.0 + fft_bin * sample_rate / (n_fft * 700.0))
|
77 |
+
|
78 |
+
def f2bin(f):
|
79 |
+
return int((f * n_fft / sample_rate) + 0.5)
|
80 |
+
|
81 |
+
# Spec 1: FFT bin range [f2bin(fmin) + 1, f2bin(fmax) - 1]
|
82 |
+
klo = f2bin(fmin) + 1
|
83 |
+
khi = f2bin(fmax)
|
84 |
+
|
85 |
+
khi = max(khi, klo)
|
86 |
+
|
87 |
+
# Spec 2: SpeechLib uses trianges in Mel space
|
88 |
+
mlo = mel(fmin)
|
89 |
+
mhi = mel(fmax)
|
90 |
+
m_centers = np.linspace(mlo, mhi, n_mels + 2)
|
91 |
+
ms = (mhi - mlo) / (n_mels + 1)
|
92 |
+
|
93 |
+
matrix = np.zeros((n_mels, bank_width), dtype=np.float32)
|
94 |
+
for m in range(0, n_mels):
|
95 |
+
left = m_centers[m]
|
96 |
+
center = m_centers[m + 1]
|
97 |
+
right = m_centers[m + 2]
|
98 |
+
for fft_bin in range(klo, khi):
|
99 |
+
mbin = bin2mel(fft_bin)
|
100 |
+
if left < mbin < right:
|
101 |
+
matrix[m, fft_bin] = 1.0 - abs(center - mbin) / ms
|
102 |
+
|
103 |
+
return matrix
|
104 |
+
|
105 |
+
|
106 |
+
class Gemma3AudioFeatureExtractor(SequenceFeatureExtractor):
|
107 |
+
model_input_names = ["input_audio_embeds", "audio_embed_sizes", "audio_attention_mask"]
|
108 |
+
feature_extractor_type = "Gemma3AudioFeatureExtractor"
|
109 |
+
def __init__(self, **kwargs):
|
110 |
+
self.sampling_rate = kwargs.pop("sampling_rate", 16000)
|
111 |
+
self.feature_size = kwargs.pop("feature_size", 80)
|
112 |
+
self.padding_value = kwargs.pop("padding_value", 0.0)
|
113 |
+
super().__init__(sampling_rate=self.sampling_rate, feature_size=self.feature_size, padding_value=self.padding_value, **kwargs)
|
114 |
+
|
115 |
+
self.compression_rate = kwargs.get("audio_compression_rate", 8)
|
116 |
+
self.qformer_compression_rate = kwargs.get("audio_downsample_rate", 1)
|
117 |
+
self.feat_stride = kwargs.get("audio_feat_stride", 1)
|
118 |
+
|
119 |
+
self._eightk_method = "fillzero"
|
120 |
+
self._mel = speechlib_mel(self.sampling_rate, 512, self.feature_size, fmin=None, fmax=self.sampling_rate//2-self.feature_size-230).T
|
121 |
+
|
122 |
+
self._hamming400 = np.hamming(400) # for 16k audio
|
123 |
+
self._hamming200 = np.hamming(200) # for 8k audio
|
124 |
+
|
125 |
+
def duration_to_frames(self, duration):
|
126 |
+
"""duration in s, estimated frames"""
|
127 |
+
frame_rate = 10
|
128 |
+
|
129 |
+
num_frames = duration * 1000 // frame_rate
|
130 |
+
return num_frames
|
131 |
+
|
132 |
+
def __call__(
|
133 |
+
self,
|
134 |
+
audios: List[AudioInput],
|
135 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
136 |
+
):
|
137 |
+
# Ref: https://github.com/huggingface/transformers/blob/v4.47.0/src/transformers/models/audio_spectrogram_transformer/feature_extraction_audio_spectrogram_transformer.py#L161
|
138 |
+
returned_input_audio_embeds = []
|
139 |
+
returned_audio_embed_sizes = []
|
140 |
+
audio_frames_list = []
|
141 |
+
|
142 |
+
for audio_data, sample_rate in audios:
|
143 |
+
audio_embeds = self._extract_features(audio_data, sample_rate)
|
144 |
+
audio_frames = len(audio_embeds) * self.audio_feat_stride
|
145 |
+
audio_embed_size = self._compute_audio_embed_size(audio_frames)
|
146 |
+
returned_input_audio_embeds.append(torch.tensor(audio_embeds))
|
147 |
+
returned_audio_embed_sizes.append(torch.tensor(audio_embed_size).long())
|
148 |
+
audio_frames_list.append(audio_frames)
|
149 |
+
|
150 |
+
returned_input_audio_embeds = pad_sequence(
|
151 |
+
returned_input_audio_embeds, batch_first=True
|
152 |
+
)
|
153 |
+
returned_audio_embed_sizes = torch.stack(returned_audio_embed_sizes, dim=0)
|
154 |
+
audio_frames = torch.tensor(audio_frames_list)
|
155 |
+
returned_audio_attention_mask = torch.arange(0, audio_frames.max()).unsqueeze(0) < audio_frames.unsqueeze(1) if len(audios) > 1 else None
|
156 |
+
|
157 |
+
data = {
|
158 |
+
"input_audio_embeds": returned_input_audio_embeds,
|
159 |
+
"audio_embed_sizes": returned_audio_embed_sizes,
|
160 |
+
}
|
161 |
+
if returned_audio_attention_mask is not None:
|
162 |
+
data["audio_attention_mask"] = returned_audio_attention_mask
|
163 |
+
|
164 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
165 |
+
|
166 |
+
def _extract_spectrogram(self, wav, fs):
|
167 |
+
"""Extract spectrogram features from waveform.
|
168 |
+
Args:
|
169 |
+
wav (1D array): waveform of the input
|
170 |
+
fs (int): sampling rate of the waveform, 16000 or 8000.
|
171 |
+
If fs=8000, the waveform will be resampled to 16000Hz.
|
172 |
+
Output:
|
173 |
+
log_fbank (2D array): a TxD matrix of log Mel filterbank features.
|
174 |
+
D=80, and T is the number of frames.
|
175 |
+
"""
|
176 |
+
if wav.ndim > 1:
|
177 |
+
wav = np.squeeze(wav)
|
178 |
+
|
179 |
+
# by default, we extract the mean if stereo
|
180 |
+
if len(wav.shape) == 2:
|
181 |
+
wav = wav.mean(1)
|
182 |
+
|
183 |
+
# Resample to 16000 or 8000 if needed
|
184 |
+
if fs > 16000:
|
185 |
+
wav = scipy.signal.resample_poly(wav, 1, fs // 16000)
|
186 |
+
fs = 16000
|
187 |
+
elif 8000 < fs < 16000:
|
188 |
+
wav = scipy.signal.resample_poly(wav, 1, fs // 8000)
|
189 |
+
fs = 8000
|
190 |
+
elif fs < 8000:
|
191 |
+
raise RuntimeError(f"Unsupported sample rate {fs}")
|
192 |
+
|
193 |
+
if fs == 8000:
|
194 |
+
if self._eightk_method == "resample":
|
195 |
+
# Input audio is 8 kHz. Convert to 16 kHz before feature
|
196 |
+
# extraction
|
197 |
+
wav = scipy.signal.resample_poly(wav, 2, 1)
|
198 |
+
fs = 16000
|
199 |
+
# Do nothing here for fillzero method
|
200 |
+
elif fs != 16000:
|
201 |
+
# Input audio is not a supported sample rate.
|
202 |
+
raise RuntimeError(f"Input data using an unsupported sample rate: {fs}")
|
203 |
+
|
204 |
+
preemphasis = 0.97
|
205 |
+
|
206 |
+
if fs == 8000:
|
207 |
+
n_fft = 256
|
208 |
+
win_length = 200
|
209 |
+
hop_length = 80
|
210 |
+
fft_window = self._hamming200
|
211 |
+
elif fs == 16000:
|
212 |
+
n_fft = 512
|
213 |
+
win_length = 400
|
214 |
+
hop_length = 160
|
215 |
+
fft_window = self._hamming400
|
216 |
+
|
217 |
+
# Spec 1: SpeechLib cut remaining sample insufficient for a hop
|
218 |
+
n_batch = (wav.shape[0] - win_length) // hop_length + 1
|
219 |
+
# Here we don't use stride_tricks since the input array may not satisfy
|
220 |
+
# memory layout requirement and we need writeable output
|
221 |
+
# Here we only use list of views before copy to desination
|
222 |
+
# so it is more efficient than broadcasting
|
223 |
+
y_frames = np.array(
|
224 |
+
[wav[_stride : _stride + win_length] for _stride in range(0, hop_length * n_batch, hop_length)],
|
225 |
+
dtype=np.float32,
|
226 |
+
)
|
227 |
+
|
228 |
+
# Spec 2: SpeechLib applies preemphasis within each batch
|
229 |
+
y_frames_prev = np.roll(y_frames, 1, axis=1)
|
230 |
+
y_frames_prev[:, 0] = y_frames_prev[:, 1]
|
231 |
+
y_frames = (y_frames - preemphasis * y_frames_prev) * 32768
|
232 |
+
|
233 |
+
S = np.fft.rfft(fft_window * y_frames, n=n_fft, axis=1).astype(np.complex64)
|
234 |
+
|
235 |
+
if fs == 8000:
|
236 |
+
# Need to pad the output to look like 16 kHz data but with zeros in
|
237 |
+
# the 4 to 8 kHz bins.
|
238 |
+
frames, bins = S.shape
|
239 |
+
padarray = np.zeros((frames, bins))
|
240 |
+
S = np.concatenate((S[:, 0:-1], padarray), axis=1) # Nyquist bin gets set to zero
|
241 |
+
|
242 |
+
spec = np.abs(S).astype(np.float32)
|
243 |
+
return spec
|
244 |
+
|
245 |
+
def _extract_features(self, wav, fs):
|
246 |
+
"""Extract log filterbank features from waveform.
|
247 |
+
Args:
|
248 |
+
wav (1D array): waveform of the input
|
249 |
+
fs (int): sampling rate of the waveform, 16000 or 8000.
|
250 |
+
If fs=8000, the waveform will be resampled to 16000Hz.
|
251 |
+
Output:
|
252 |
+
log_fbank (2D array): a TxD matrix of log Mel filterbank features.
|
253 |
+
D=80, and T is the number of frames.
|
254 |
+
"""
|
255 |
+
spec = self._extract_spectrogram(wav, fs)
|
256 |
+
spec_power = spec**2
|
257 |
+
|
258 |
+
fbank_power = np.clip(spec_power.dot(self._mel), 1.0, None)
|
259 |
+
log_fbank = np.log(fbank_power).astype(np.float32)
|
260 |
+
|
261 |
+
return log_fbank
|
262 |
+
|
263 |
+
def _compute_audio_embed_size(self, audio_frames):
|
264 |
+
integer = audio_frames // self.audio_compression_rate
|
265 |
+
remainder = audio_frames % self.audio_compression_rate
|
266 |
+
|
267 |
+
result = integer if remainder == 0 else integer + 1
|
268 |
+
|
269 |
+
integer = result // self.audio_downsample_rate
|
270 |
+
remainder = result % self.audio_downsample_rate
|
271 |
+
result = integer if remainder == 0 else integer + 1 # qformer compression
|
272 |
+
|
273 |
+
return result
|
274 |
+
|
275 |
+
class Gemma3MMProcessor(ProcessorMixin):
|
276 |
+
attributes = ["image_processor", "feature_extractor", "tokenizer"]
|
277 |
+
valid_kwargs = ["chat_template", "image_seq_length"]
|
278 |
+
image_processor_class = "AutoImageProcessor"
|
279 |
+
feature_extractor_class = "Gemma3AudioFeatureExtractor"
|
280 |
+
tokenizer_class = "AutoTokenizer"
|
281 |
+
|
282 |
+
def __init__(
|
283 |
+
self,
|
284 |
+
image_processor,
|
285 |
+
feature_extractor,
|
286 |
+
tokenizer,
|
287 |
+
chat_template=None,
|
288 |
+
image_seq_length: int = 256,
|
289 |
+
**kwargs,
|
290 |
+
):
|
291 |
+
self.image_seq_length = image_seq_length
|
292 |
+
self.image_token_id = tokenizer.image_token_id
|
293 |
+
self.boi_token = tokenizer.boi_token
|
294 |
+
image_tokens_expanded = "".join([tokenizer.image_token] * image_seq_length)
|
295 |
+
self.full_image_sequence = f"\n\n{tokenizer.boi_token}{image_tokens_expanded}{tokenizer.eoi_token}\n\n"
|
296 |
+
|
297 |
+
self.audio_token_id = tokenizer.audio_token_id
|
298 |
+
self.boa_token = tokenizer.boa_token
|
299 |
+
self.eoa_token = tokenizer.eoa_token
|
300 |
+
self.audio_token = tokenizer.audio_token
|
301 |
+
|
302 |
+
super().__init__(
|
303 |
+
image_processor=image_processor,
|
304 |
+
feature_extractor=feature_extractor,
|
305 |
+
tokenizer=tokenizer,
|
306 |
+
chat_template=chat_template,
|
307 |
+
**kwargs,
|
308 |
+
)
|
309 |
+
|
310 |
+
def __call__(
|
311 |
+
self,
|
312 |
+
images: ImageInput = None,
|
313 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
314 |
+
videos=None,
|
315 |
+
audios: List[AudioInput] = None,
|
316 |
+
**kwargs: Unpack[Gemma3ProcessorKwargs],
|
317 |
+
) -> BatchFeature:
|
318 |
+
if text is None and images is None:
|
319 |
+
raise ValueError("Provide at least one of `text` or `images`.")
|
320 |
+
|
321 |
+
output_kwargs = self._merge_kwargs(
|
322 |
+
Gemma3ProcessorKwargs,
|
323 |
+
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
324 |
+
**kwargs,
|
325 |
+
)
|
326 |
+
|
327 |
+
if isinstance(text, str):
|
328 |
+
text = [text]
|
329 |
+
elif not isinstance(text, list) and not isinstance(text[0], str):
|
330 |
+
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
|
331 |
+
|
332 |
+
image_inputs = {}
|
333 |
+
if images is not None:
|
334 |
+
batched_images = make_nested_list_of_images(images)
|
335 |
+
image_inputs = self.image_processor(batched_images, **output_kwargs["images_kwargs"])
|
336 |
+
|
337 |
+
# Create empty text to be replaced with placeholders
|
338 |
+
if not text:
|
339 |
+
text = [" ".join([self.boi_token] * len(images)) for images in batched_images]
|
340 |
+
|
341 |
+
if len(batched_images) != len(text):
|
342 |
+
raise ValueError(
|
343 |
+
f"Received inconsistently sized batches of images ({len(batched_images)}) and text ({len(text)})."
|
344 |
+
)
|
345 |
+
|
346 |
+
# Replace image tokens by the full expanded sequence
|
347 |
+
batch_num_crops = to_py_obj(image_inputs.pop("num_crops"))
|
348 |
+
text_with_crops = text
|
349 |
+
for batch_idx, (prompt, images, num_crops) in enumerate(zip(text, batched_images, batch_num_crops)):
|
350 |
+
image_indexes = [m.start() for m in re.finditer(self.boi_token, prompt)]
|
351 |
+
|
352 |
+
if len(images) != len(image_indexes):
|
353 |
+
raise ValueError(
|
354 |
+
f"Prompt contained {len(image_indexes)} image tokens but received {len(images)} images."
|
355 |
+
)
|
356 |
+
|
357 |
+
# Insert additional image tokens for Pan-and-Scan crops
|
358 |
+
for num, idx in reversed(list(zip(num_crops, image_indexes))):
|
359 |
+
if num:
|
360 |
+
formatted_image_text = (
|
361 |
+
f"Here is the original image {self.boi_token} and here are some crops to help you see better "
|
362 |
+
+ " ".join([self.boi_token] * num)
|
363 |
+
)
|
364 |
+
prompt = prompt[:idx] + formatted_image_text + prompt[idx + len(self.boi_token) :]
|
365 |
+
text_with_crops[batch_idx] = prompt
|
366 |
+
|
367 |
+
# Expand placeholder image tokens to the full image token sequence
|
368 |
+
text = [prompt.replace(self.boi_token, self.full_image_sequence) for prompt in text]
|
369 |
+
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
|
370 |
+
|
371 |
+
audio_inputs = {}
|
372 |
+
if audios is not None:
|
373 |
+
def replace_tokens_sequentially(prompt, boa_token, audio_sequences):
|
374 |
+
parts = prompt.split(boa_token)
|
375 |
+
result = ""
|
376 |
+
for i in range(len(parts) - 1):
|
377 |
+
result += parts[i]
|
378 |
+
if i < len(audio_sequences):
|
379 |
+
result += audio_sequences[i]
|
380 |
+
else:
|
381 |
+
result += boa_token
|
382 |
+
result += parts[-1]
|
383 |
+
return result
|
384 |
+
|
385 |
+
full_audio_sequences = []
|
386 |
+
audio_inputs = self.feature_extractor(audios)
|
387 |
+
|
388 |
+
for i, embed_size in enumerate(audio_inputs.audio_embed_sizes):
|
389 |
+
audio_tokens_expanded = "".join([self.audio_token] * embed_size)
|
390 |
+
full_audio_sequence = f"\n\n{self.boa_token}{audio_tokens_expanded}{self.eoa_token}\n\n"
|
391 |
+
full_audio_sequences.append(full_audio_sequence)
|
392 |
+
|
393 |
+
text = [replace_tokens_sequentially(prompt, self.boa_token, [audio_sequences]) for (prompt, audio_sequences) in zip(text, full_audio_sequences)]
|
394 |
+
|
395 |
+
text_inputs = self.tokenizer(text=text, **output_kwargs["text_kwargs"], return_tensors="np")
|
396 |
+
|
397 |
+
# Add token type ids manually, as tokenizer can't do arbitrary position token types
|
398 |
+
array_ids = np.array(text_inputs["input_ids"])
|
399 |
+
mm_token_type_ids = np.zeros_like(text_inputs["input_ids"])
|
400 |
+
mm_token_type_ids[array_ids == self.image_token_id] = 1
|
401 |
+
mm_token_type_ids[array_ids == self.audio_token_id] = 2
|
402 |
+
|
403 |
+
has_vision_ids = np.any(mm_token_type_ids == 1, axis=1)
|
404 |
+
has_audio_ids = np.any(mm_token_type_ids == 2, axis=1)
|
405 |
+
|
406 |
+
input_modes = (has_audio_ids << 1) | has_vision_ids
|
407 |
+
|
408 |
+
text_inputs = {k: v.tolist() for k, v in text_inputs.items()} # in case user requested list inputs
|
409 |
+
text_inputs["token_type_ids"] = mm_token_type_ids.tolist()
|
410 |
+
text_inputs["input_modes"] = input_modes.tolist()
|
411 |
+
|
412 |
+
return BatchFeature(data={**text_inputs, **image_inputs, **audio_inputs, }, tensor_type=return_tensors)
|
413 |
+
|
414 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Gemma
|
415 |
+
def batch_decode(self, *args, **kwargs):
|
416 |
+
"""
|
417 |
+
This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
418 |
+
refer to the docstring of this method for more information.
|
419 |
+
"""
|
420 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
421 |
+
|
422 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Gemma
|
423 |
+
def decode(self, *args, **kwargs):
|
424 |
+
"""
|
425 |
+
This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
426 |
+
the docstring of this method for more information.
|
427 |
+
"""
|
428 |
+
return self.tokenizer.decode(*args, **kwargs)
|
429 |
+
|
430 |
+
@property
|
431 |
+
def model_input_names(self):
|
432 |
+
tokenizer_input_names = self.tokenizer.model_input_names + ["token_type_ids"]
|
433 |
+
image_processor_input_names = self.image_processor.model_input_names
|
434 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
435 |
+
|
436 |
+
AutoFeatureExtractor.register("Gemma3AudioFeatureExtractor", Gemma3AudioFeatureExtractor)
|
speech_conformer_encoder.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|