File size: 18,099 Bytes
43e08ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
import re
from typing import List, Optional, Union, Tuple
from math import ceil

import numpy as np
import torch
import scipy
from torch.nn.utils.rnn import pad_sequence

from enum import Enum

from transformers import AutoFeatureExtractor
from transformers.feature_extraction_utils import BatchFeature
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
from transformers.image_utils import ImageInput, make_nested_list_of_images
from transformers.processing_utils import ImagesKwargs, ProcessingKwargs, ProcessorMixin, Unpack, AudioKwargs
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
from transformers.utils import to_py_obj, TensorType
from transformers.audio_utils import AudioInput

class InputMode(Enum):
    LANGUAGE = 0
    VISION = 1
    SPEECH = 2
    VISION_SPEECH = 3

class Gemma3ImagesKwargs(ImagesKwargs):
    do_pan_and_scan: Optional[bool]
    pan_and_scan_min_crop_size: Optional[int]
    pan_and_scan_max_num_crops: Optional[int]
    pan_and_scan_min_ratio_to_activate: Optional[float]
    do_convert_rgb: Optional[bool]


class Gemma3ProcessorKwargs(ProcessingKwargs, total=False):
    images_kwargs: Gemma3ImagesKwargs
    _defaults = {
        "text_kwargs": {
            "padding": False,
        },
        "images_kwargs": {
            "do_pan_and_scan": False,
            "pan_and_scan_min_crop_size": 256,
            "pan_and_scan_max_num_crops": 4,
            "pan_and_scan_min_ratio_to_activate": 1.2,
        },
    }

def speechlib_mel(sample_rate, n_fft, n_mels, fmin=None, fmax=None):
    """Create a Mel filter-bank the same as SpeechLib FbankFC.
    Args:
        sample_rate (int): Sample rate in Hz. number > 0 [scalar]
        n_fft (int): FFT size. int > 0 [scalar]
        n_mel (int): Mel filter size. int > 0 [scalar]
        fmin (float): lowest frequency (in Hz). If None use 0.0.
            float >= 0 [scalar]
        fmax: highest frequency (in Hz). If None use sample_rate / 2.
            float >= 0 [scalar]
    Returns
        out (numpy.ndarray): Mel transform matrix
            [shape=(n_mels, 1 + n_fft/2)]
    """

    bank_width = int(n_fft // 2 + 1)
    if fmax is None:
        fmax = sample_rate / 2
    if fmin is None:
        fmin = 0
    assert fmin >= 0, "fmin cannot be negtive"
    assert fmin < fmax <= sample_rate / 2, "fmax must be between (fmin, samplerate / 2]"

    def mel(f):
        return 1127.0 * np.log(1.0 + f / 700.0)

    def bin2mel(fft_bin):
        return 1127.0 * np.log(1.0 + fft_bin * sample_rate / (n_fft * 700.0))

    def f2bin(f):
        return int((f * n_fft / sample_rate) + 0.5)

    # Spec 1: FFT bin range [f2bin(fmin) + 1, f2bin(fmax) - 1]
    klo = f2bin(fmin) + 1
    khi = f2bin(fmax)

    khi = max(khi, klo)

    # Spec 2: SpeechLib uses trianges in Mel space
    mlo = mel(fmin)
    mhi = mel(fmax)
    m_centers = np.linspace(mlo, mhi, n_mels + 2)
    ms = (mhi - mlo) / (n_mels + 1)

    matrix = np.zeros((n_mels, bank_width), dtype=np.float32)
    for m in range(0, n_mels):
        left = m_centers[m]
        center = m_centers[m + 1]
        right = m_centers[m + 2]
        for fft_bin in range(klo, khi):
            mbin = bin2mel(fft_bin)
            if left < mbin < right:
                matrix[m, fft_bin] = 1.0 - abs(center - mbin) / ms

    return matrix


class Gemma3AudioFeatureExtractor(SequenceFeatureExtractor):
    model_input_names = ["input_audio_embeds", "audio_embed_sizes", "audio_attention_mask"]
    feature_extractor_type = "Gemma3AudioFeatureExtractor"
    def __init__(self, **kwargs):
        self.sampling_rate = kwargs.pop("sampling_rate", 16000)
        self.feature_size = kwargs.pop("feature_size", 80)
        self.padding_value = kwargs.pop("padding_value", 0.0)
        super().__init__(sampling_rate=self.sampling_rate, feature_size=self.feature_size, padding_value=self.padding_value, **kwargs)

        self.compression_rate = kwargs.get("audio_compression_rate", 8)
        self.qformer_compression_rate = kwargs.get("audio_downsample_rate", 1)
        self.feat_stride = kwargs.get("audio_feat_stride", 1)

        self._eightk_method = "fillzero"
        self._mel = speechlib_mel(self.sampling_rate, 512, self.feature_size, fmin=None, fmax=self.sampling_rate//2-self.feature_size-230).T

        self._hamming400 = np.hamming(400)  # for 16k audio
        self._hamming200 = np.hamming(200)  # for 8k audio

    def duration_to_frames(self, duration):
        """duration in s, estimated frames"""
        frame_rate = 10

        num_frames = duration * 1000 // frame_rate
        return num_frames

    def __call__(
        self,
        audios: List[AudioInput],
        return_tensors: Optional[Union[str, TensorType]] = None,
    ):
        # Ref: https://github.com/huggingface/transformers/blob/v4.47.0/src/transformers/models/audio_spectrogram_transformer/feature_extraction_audio_spectrogram_transformer.py#L161
        returned_input_audio_embeds = []
        returned_audio_embed_sizes = []
        audio_frames_list = []

        for audio_data, sample_rate in audios:
            audio_embeds = self._extract_features(audio_data, sample_rate)
            audio_frames = len(audio_embeds) * self.audio_feat_stride
            audio_embed_size = self._compute_audio_embed_size(audio_frames)
            returned_input_audio_embeds.append(torch.tensor(audio_embeds))
            returned_audio_embed_sizes.append(torch.tensor(audio_embed_size).long())
            audio_frames_list.append(audio_frames)

        returned_input_audio_embeds = pad_sequence(
            returned_input_audio_embeds, batch_first=True
        )
        returned_audio_embed_sizes = torch.stack(returned_audio_embed_sizes, dim=0)
        audio_frames = torch.tensor(audio_frames_list)
        returned_audio_attention_mask = torch.arange(0, audio_frames.max()).unsqueeze(0) < audio_frames.unsqueeze(1) if len(audios) > 1 else None

        data = {
            "input_audio_embeds": returned_input_audio_embeds,
            "audio_embed_sizes": returned_audio_embed_sizes,
        }
        if returned_audio_attention_mask is not None:
            data["audio_attention_mask"] = returned_audio_attention_mask

        return BatchFeature(data=data, tensor_type=return_tensors)

    def _extract_spectrogram(self, wav, fs):
        """Extract spectrogram features from waveform.
        Args:
            wav (1D array): waveform of the input
            fs (int): sampling rate of the waveform, 16000 or 8000.
                If fs=8000, the waveform will be resampled to 16000Hz.
        Output:
            log_fbank (2D array): a TxD matrix of log Mel filterbank features.
                D=80, and T is the number of frames.
        """
        if wav.ndim > 1:
            wav = np.squeeze(wav)

        # by default, we extract the mean if stereo
        if len(wav.shape) == 2:
            wav = wav.mean(1)

        # Resample to 16000 or 8000 if needed
        if fs > 16000:
            wav = scipy.signal.resample_poly(wav, 1, fs // 16000)
            fs = 16000
        elif 8000 < fs < 16000:
            wav = scipy.signal.resample_poly(wav, 1, fs // 8000)
            fs = 8000
        elif fs < 8000:
            raise RuntimeError(f"Unsupported sample rate {fs}")

        if fs == 8000:
            if self._eightk_method == "resample":
                # Input audio is 8 kHz. Convert to 16 kHz before feature
                # extraction
                wav = scipy.signal.resample_poly(wav, 2, 1)
                fs = 16000
            # Do nothing here for fillzero method
        elif fs != 16000:
            # Input audio is not a supported sample rate.
            raise RuntimeError(f"Input data using an unsupported sample rate: {fs}")

        preemphasis = 0.97

        if fs == 8000:
            n_fft = 256
            win_length = 200
            hop_length = 80
            fft_window = self._hamming200
        elif fs == 16000:
            n_fft = 512
            win_length = 400
            hop_length = 160
            fft_window = self._hamming400

        # Spec 1: SpeechLib cut remaining sample insufficient for a hop
        n_batch = (wav.shape[0] - win_length) // hop_length + 1
        # Here we don't use stride_tricks since the input array may not satisfy
        # memory layout requirement and we need writeable output
        # Here we only use list of views before copy to desination
        # so it is more efficient than broadcasting
        y_frames = np.array(
            [wav[_stride : _stride + win_length] for _stride in range(0, hop_length * n_batch, hop_length)],
            dtype=np.float32,
        )

        # Spec 2: SpeechLib applies preemphasis within each batch
        y_frames_prev = np.roll(y_frames, 1, axis=1)
        y_frames_prev[:, 0] = y_frames_prev[:, 1]
        y_frames = (y_frames - preemphasis * y_frames_prev) * 32768

        S = np.fft.rfft(fft_window * y_frames, n=n_fft, axis=1).astype(np.complex64)

        if fs == 8000:
            # Need to pad the output to look like 16 kHz data but with zeros in
            # the 4 to 8 kHz bins.
            frames, bins = S.shape
            padarray = np.zeros((frames, bins))
            S = np.concatenate((S[:, 0:-1], padarray), axis=1)  # Nyquist bin gets set to zero

        spec = np.abs(S).astype(np.float32)
        return spec

    def _extract_features(self, wav, fs):
        """Extract log filterbank features from waveform.
        Args:
            wav (1D array): waveform of the input
            fs (int): sampling rate of the waveform, 16000 or 8000.
                If fs=8000, the waveform will be resampled to 16000Hz.
        Output:
            log_fbank (2D array): a TxD matrix of log Mel filterbank features.
                D=80, and T is the number of frames.
        """
        spec = self._extract_spectrogram(wav, fs)
        spec_power = spec**2

        fbank_power = np.clip(spec_power.dot(self._mel), 1.0, None)
        log_fbank = np.log(fbank_power).astype(np.float32)

        return log_fbank

    def _compute_audio_embed_size(self, audio_frames):
        integer = audio_frames // self.audio_compression_rate
        remainder = audio_frames % self.audio_compression_rate

        result = integer if remainder == 0 else integer + 1

        integer = result // self.audio_downsample_rate
        remainder = result % self.audio_downsample_rate
        result = integer if remainder == 0 else integer + 1  # qformer compression

        return result

class Gemma3MMProcessor(ProcessorMixin):
    attributes = ["image_processor", "feature_extractor", "tokenizer"]
    valid_kwargs = ["chat_template", "image_seq_length"]
    image_processor_class = "AutoImageProcessor"
    feature_extractor_class = "Gemma3AudioFeatureExtractor"
    tokenizer_class = "AutoTokenizer"

    def __init__(
        self,
        image_processor,
        feature_extractor,
        tokenizer,
        chat_template=None,
        image_seq_length: int = 256,
        **kwargs,
    ):
        self.image_seq_length = image_seq_length
        self.image_token_id = tokenizer.image_token_id
        self.boi_token = tokenizer.boi_token
        image_tokens_expanded = "".join([tokenizer.image_token] * image_seq_length)
        self.full_image_sequence = f"\n\n{tokenizer.boi_token}{image_tokens_expanded}{tokenizer.eoi_token}\n\n"

        self.audio_token_id = tokenizer.audio_token_id
        self.boa_token = tokenizer.boa_token
        self.eoa_token = tokenizer.eoa_token
        self.audio_token = tokenizer.audio_token
        
        super().__init__(
            image_processor=image_processor,
            feature_extractor=feature_extractor,
            tokenizer=tokenizer,
            chat_template=chat_template,
            **kwargs,
        )

    def __call__(
        self,
        images: ImageInput = None,
        text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
        videos=None,
        audios: List[AudioInput] = None,
        **kwargs: Unpack[Gemma3ProcessorKwargs],
    ) -> BatchFeature:
        if text is None and images is None:
            raise ValueError("Provide at least one of `text` or `images`.")

        output_kwargs = self._merge_kwargs(
            Gemma3ProcessorKwargs,
            tokenizer_init_kwargs=self.tokenizer.init_kwargs,
            **kwargs,
        )

        if isinstance(text, str):
            text = [text]
        elif not isinstance(text, list) and not isinstance(text[0], str):
            raise ValueError("Invalid input text. Please provide a string, or a list of strings")

        image_inputs = {}
        if images is not None:
            batched_images = make_nested_list_of_images(images)
            image_inputs = self.image_processor(batched_images, **output_kwargs["images_kwargs"])

            # Create empty text to be replaced with placeholders
            if not text:
                text = [" ".join([self.boi_token] * len(images)) for images in batched_images]

            if len(batched_images) != len(text):
                raise ValueError(
                    f"Received inconsistently sized batches of images ({len(batched_images)}) and text ({len(text)})."
                )

            # Replace image tokens by the full expanded sequence
            batch_num_crops = to_py_obj(image_inputs.pop("num_crops"))
            text_with_crops = text
            for batch_idx, (prompt, images, num_crops) in enumerate(zip(text, batched_images, batch_num_crops)):
                image_indexes = [m.start() for m in re.finditer(self.boi_token, prompt)]

                if len(images) != len(image_indexes):
                    raise ValueError(
                        f"Prompt contained {len(image_indexes)} image tokens but received {len(images)} images."
                    )

                # Insert additional image tokens for Pan-and-Scan crops
                for num, idx in reversed(list(zip(num_crops, image_indexes))):
                    if num:
                        formatted_image_text = (
                            f"Here is the original image {self.boi_token} and here are some crops to help you see better "
                            + " ".join([self.boi_token] * num)
                        )
                        prompt = prompt[:idx] + formatted_image_text + prompt[idx + len(self.boi_token) :]
                        text_with_crops[batch_idx] = prompt

            # Expand placeholder image tokens to the full image token sequence
            text = [prompt.replace(self.boi_token, self.full_image_sequence) for prompt in text]
        return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
    
        audio_inputs = {}
        if audios is not None:
            def replace_tokens_sequentially(prompt, boa_token, audio_sequences):
                parts = prompt.split(boa_token)
                result = ""
                for i in range(len(parts) - 1):
                    result += parts[i]
                    if i < len(audio_sequences):
                        result += audio_sequences[i]
                    else:
                        result += boa_token
                result += parts[-1]
                return result

            full_audio_sequences = []
            audio_inputs = self.feature_extractor(audios)
            
            for i, embed_size in enumerate(audio_inputs.audio_embed_sizes):
                audio_tokens_expanded = "".join([self.audio_token] * embed_size)
                full_audio_sequence = f"\n\n{self.boa_token}{audio_tokens_expanded}{self.eoa_token}\n\n"
                full_audio_sequences.append(full_audio_sequence)
            
            text = [replace_tokens_sequentially(prompt, self.boa_token, [audio_sequences]) for (prompt, audio_sequences) in zip(text, full_audio_sequences)]

        text_inputs = self.tokenizer(text=text, **output_kwargs["text_kwargs"], return_tensors="np")

        # Add token type ids manually, as tokenizer can't do arbitrary position token types
        array_ids = np.array(text_inputs["input_ids"])
        mm_token_type_ids = np.zeros_like(text_inputs["input_ids"])
        mm_token_type_ids[array_ids == self.image_token_id] = 1
        mm_token_type_ids[array_ids == self.audio_token_id] = 2

        has_vision_ids = np.any(mm_token_type_ids == 1, axis=1)
        has_audio_ids = np.any(mm_token_type_ids == 2, axis=1)

        input_modes = (has_audio_ids << 1) | has_vision_ids

        text_inputs = {k: v.tolist() for k, v in text_inputs.items()}  # in case user requested list inputs
        text_inputs["token_type_ids"] = mm_token_type_ids.tolist()
        text_inputs["input_modes"] = input_modes.tolist()
        
        return BatchFeature(data={**text_inputs, **image_inputs, **audio_inputs, }, tensor_type=return_tensors)

    # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Gemma
    def batch_decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        """
        return self.tokenizer.batch_decode(*args, **kwargs)

    # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Gemma
    def decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        """
        return self.tokenizer.decode(*args, **kwargs)

    @property
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names + ["token_type_ids"]
        image_processor_input_names = self.image_processor.model_input_names
        return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))

AutoFeatureExtractor.register("Gemma3AudioFeatureExtractor", Gemma3AudioFeatureExtractor)