|
--- |
|
pipeline_tag: object-detection |
|
--- |
|
# Counter Strike 2 Weapon Detector |
|
|
|
#### Supported Labels |
|
nc: 19 |
|
['AK47', 'M4A1-S', 'M4A1', 'GALIL', 'FAMAS', 'TEC-9', 'FIVE-SEVEN', 'GLOCK-18', 'USP-S', 'EAGLE', 'BERETTAS', 'P2000', 'MAC10', 'MP5', 'MP9', 'P90', 'P250', 'SSG08', 'AWP'] |
|
|
|
#### How to use |
|
``` |
|
from ultralytics import YOLO |
|
|
|
# Load a pretrained YOLO model |
|
model = YOLO(r'weights\cs2-yolo12-weapon-detection.pt') |
|
|
|
# Run inference on 'image.png' with arguments |
|
model.predict( |
|
'image.png', |
|
save=True, |
|
device=0 |
|
) |
|
``` |
|
|
|
#### Labels |
|
 |
|
#### Results |
|
 |
|
#### Predict |
|
 |
|
 |
|
 |
|
``` |
|
YOLOv12m summary (fused): 169 layers, 20,119,561 parameters, 0 gradients, 67.2 GFLOPs |
|
Class Images Instances Box(P R mAP50 mAP50-95): 100%|ββββββββββ| 3/3 [00:01<00:00, 2.61it/s] |
|
all 87 158 0.963 1 0.993 0.871 |
|
AK47 11 14 0.979 1 0.995 0.853 |
|
M4A1-S 8 12 0.987 1 0.995 0.849 |
|
M4A1 9 13 0.978 1 0.995 0.844 |
|
GALIL 8 11 0.974 1 0.995 0.859 |
|
FAMAS 7 7 0.963 1 0.995 0.926 |
|
TEC-9 4 4 0.985 1 0.995 0.917 |
|
FIVE-SEVEN 5 5 0.96 1 0.995 0.903 |
|
GLOCK-18 4 4 0.932 1 0.995 0.905 |
|
USP-S 10 10 0.966 1 0.995 0.9 |
|
EAGLE 4 4 0.933 1 0.995 0.847 |
|
BERETTAS 4 4 0.929 1 0.995 0.948 |
|
MAC10 6 6 0.953 1 0.995 0.891 |
|
MP5 7 11 0.978 1 0.995 0.852 |
|
MP9 7 11 0.978 1 0.995 0.888 |
|
P90 9 13 0.978 1 0.995 0.842 |
|
P250 6 6 0.977 1 0.995 0.861 |
|
SSG08 8 11 0.9 1 0.95 0.785 |
|
AWP 8 12 0.99 1 0.995 0.805 |
|
Speed: 0.2ms preprocess, 9.3ms inference, 0.0ms loss, 1.2ms postprocess per image |
|
``` |
|
|
|
#### Others models Counter Strike 2 |
|
https://huggingface.co/jparedesDS/ |