|
--- |
|
model-index: |
|
- name: jiazhengli/Llama-3.1-8B-RoleMRC-sft |
|
results: [] |
|
datasets: |
|
- Junrulu/RoleMRC |
|
language: |
|
- en |
|
base_model: meta-llama/Meta-Llama-3.1-8B |
|
license: llama3 |
|
--- |
|
|
|
# Model Card for Llama-3.1-8B-RoleMRC-sft |
|
|
|
This repository provides a fine-tuned version of Llama-3.1-8B, using our proposed [RoleMRC dataset](https://huggingface.co/datasets/Junrulu/RoleMRC). We obey all licenses mentioned in llama3's work. |
|
|
|
## Performance |
|
|
|
Reference-based Evaluation Result |
|
|
|
| Model | BLEU | ROUGE-1 | ROUGE-2 | ROUGE-L | ROUGE-Lsum | METEOR | BERTScore F1 | |
|
|--------------------------------|--------|---------|---------|---------|------------|--------|-----------| |
|
| LLaMA3.1-8B-Instruct | 0.0226 | 0.2277 | 0.0615 | 0.1509 | 0.1650 | 0.2594 | 0.8478 | |
|
| LLaMA3.1-70B-Instruct | 0.0232 | 0.2258 | 0.0646 | 0.1500 | 0.1661 | 0.2632 | 0.8480 | |
|
| **LLaMA3.1-8B-RoleMRC-SFT** | 0.1782 | 0.4628 | 0.2676 | 0.3843 | 0.3853 | 0.3975 | 0.8831 | |
|
| LLaMA3.1-8B-RoleMRC-DPO | 0.1056 | 0.3989 | 0.1785 | 0.2988 | 0.3001 | 0.4051 | 0.8805 | |
|
|
|
General Benchmark |
|
|
|
| Model | GSM8K 8-shot | Math 4-shot | GPQA 0-shot | IFEval 3-shot | MMLU-Pro 5-shot | MMLU 0-shot | PiQA 3-shot | MUSR 0-shot | TruthfulQA 3-shot| / Avg. | |
|
|----------------------------------------|-------------|------------|-------------|--------------|---------------|-----------|-----------|-----------|------------------------|------| |
|
| LLAMA3.1-8B | 48.98 | 17.78 | 12.5 | 16.67 | 35.21 | 63.27 | 81.77 | 38.1 | 28.52 | 38.09 | |
|
| LLAMA3.1-8B-INSTRUCT | 77.41 | 34.1 | 12.72 | 57.67 | 40.77 | 68.1 | 82.1 | 39.81 | 36.47 | 49.91 | |
|
| **LLaMA3.1-8B-RoleMRC-SFT** | 56.18 | 12.78 | 19.64 | 42.09 | 31.58 | 59.3 | 82.64 | 40.34 | 35.01 | 42.17 | |
|
| LLaMA3.1-8B-RoleMRC-DPO | 58.53 | 13.5 | 20.09 | 46.64 | 31.8 | 59.96 | 82.7 | 39.42 | 37.33 | 43.33 | |
|
|
|
## Evaluation Details |
|
Five conditional benchmarks, using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness): |
|
- GSM8K: 8-shot, report strict match |
|
- IFEval: 3-shot, report instruction-level strict accuracy |
|
- PiQA: 3-shot, report accuracy |
|
- MMLU: 0-shot, report normalized accuracy |
|
- TruthfulQA: 3-shot, report accuracy of single-true mc1 setting |
|
|
|
## Input Format |
|
|
|
The model is trained to use the following format: |
|
``` |
|
<|start_header_id|>user<|end_header_id|> |
|
|
|
{PROMPT}<|eot_id|> |
|
<|start_header_id|>assistant<|end_header_id|> |
|
|
|
{Response} |
|
``` |
|
|
|
## Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-5 |
|
- total_train_batch_size: 16 |
|
- optimizer: AdamW with beta1 0.9, beta2 0.999 and epsilon 1e-8 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.04 |
|
- num_epochs: 1.0 |