ProtLM
Collection
finetuning on protein sequences
•
13 items
•
Updated
First we define a class T5ClassificationModel:
from transformers import (
T5Config,
T5EncoderModel,
T5Tokenizer,
PreTrainedModel,
TrainingArguments,
Trainer,
DataCollatorWithPadding,
)
class T5ClassificationModel(PreTrainedModel):
config_class = T5Config
def __init__(self, config, d_model=None, num_classes=1195):
super().__init__(config)
self.num_classes = num_classes
self.encoder = T5EncoderModel.from_pretrained("Rostlab/prot_t5_xl_uniref50")
hidden_dim = d_model if d_model is not None else config.d_model
self.classification_head = nn.Linear(hidden_dim, num_classes)
def forward(
self,
input_ids=None,
attention_mask=None,
labels=None,
**kwargs
):
encoder_outputs = self.encoder(input_ids=input_ids, attention_mask=attention_mask)
hidden_states = encoder_outputs.last_hidden_state
mask = attention_mask.unsqueeze(-1)
pooled_output = (hidden_states * mask).sum(dim=1) / mask.sum(dim=1)
logits = self.classification_head(pooled_output) # [batch_size, num_classes]
loss = None
if labels is not None:
labels = labels.to(torch.bfloat16)
loss = nn.CrossEntropyLoss()(logits, labels)
return {
"loss": loss,
"logits": logits
}
Then we load our pretrained model
tokenizer = T5Tokenizer.from_pretrained("jiaxie/DeepProtT5-Fold", do_lower_case=False)
model = T5ClassificationModel.from_pretrained("jiaxie/DeepProtT5-Fold", torch_dtype=torch.bfloat16).to("cuda")