Flux latentpop

flux-latentpop features vibrant backgrounds with grungy limited screenprinting color goodness.

It does great with t-shirt designs, general illustrations, and character portraits.

Prompt
screenprint tshirt design, a happy cat holding a sign that says "I LOVE VE REPLICATE", LNTP illustration style
Prompt
a t-shirt, LNTP illustration style
Prompt
a young girl playing piano, yellow background, LNTP illustration style
Prompt
a book with the words 'Don't Panic!' written on cover, an homage to the hitchhikers guide to the galaxy, LNTP cartoon style
Prompt
a robot, blue background, LNTP illustration style
Prompt
girl, orange background, LNTP illustration style

It was trained on Replicate, here: https://replicate.com/ostris/flux-dev-lora-trainer/train

The training set is comprised of 23 images generated on MidJourney using the --sref 3102110963 and --personalize 3xdy3qw flags. You can find the entire training set here in this repo: ./2024-08-24-latentpop.zip

Below are the training parameters I used, which seem to work fairly well for illustration/cartoony Flux LoRAs:

{
  "steps": 1300,
  "lora_rank": 24,
  "optimizer": "adamw8bit",
  "batch_size": 4,
  "resolution": "512,768,1024",
  "autocaption": true,
  "input_images": "https://replicate.delivery/pbxt/Lg3C1KUPfrRZZvJFaaSTmQ9qtAyXSonLvLSuTuj4Nop9vcSu/2024-08-24-latentpop.zip",
  "trigger_word": "LNTP",
  "learning_rate": 0.0002,
  "autocaption_suffix": "LNTP style",
  "caption_dropout_rate": 0.05,
}

Shoutout to @ciguleva on x who originally shared this sref on x: https://x.com/ciguleva/status/1827398343779098720

Usage

You should use LNTP to trigger the image generation. The output images look more stylistically interesting with a guidance_scale of ~`2.5`.

Use it with the 🧨 diffusers library

from diffusers import AutoPipelineForText2Image
import torch

pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('jakedahn/flux-latentpop', weight_name='lora.safetensors')
image = pipeline('your prompt').images[0]

For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers

Downloads last month
89
Inference Examples
Examples
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for jakedahn/flux-latentpop

Adapter
(26867)
this model

Spaces using jakedahn/flux-latentpop 20