File size: 1,939 Bytes
53883b4 e45188a 53883b4 f122193 53883b4 f122193 53883b4 636884e e45188a 53883b4 f122193 53883b4 e45188a 53883b4 f122193 53883b4 e45188a 53883b4 f122193 53883b4 e45188a 53883b4 e45188a 53883b4 e45188a 53883b4 e45188a 53883b4 e45188a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: apache-2.0
base_model: albert/albert-base-v2
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: classify-clickbait-titll
results: []
---
# Identify Clickbait Articles
This model is a fine-tuned version of [albert/albert-base-v2](https://huggingface.co/albert/albert-base-v2) on a synthetic dataset with 65% factual article titles and 35% clickbait articles.
Built to demonstrate the use of synthetic data following, see the article [here](https://towardsdatascience.com/fine-tune-smaller-transformer-models-text-classification-77cbbd3bf02b).
## Model description
Built to identify factual vs clickbait titles.
## Intended uses & limitations
Use it on any title to understand how the model is interpreting the title, whether it is factual or clickbait.
Go ahead and try a few of your own.
Here are a few examples:
**Title:** A Comprehensive Guide for Getting Started with Hugging Face
**Output:** Factual
**Title:** OpenAI GPT-4o: The New Best AI Model in the World. Like in the Movies. For Free
**Output:** Clickbait
**Title:** GPT4 Omni — So much more than just a voice assistant
**Output:** Clickbait
**Title:** Building Vector Databases with FastAPI and ChromaDB
**Output:** Factual
## Training and evaluation data
It achieves the following results on the evaluation set:
- Loss: 0.0173
- Accuracy: 0.9951
- F1: 0.9951
- Precision: 0.9951
- Recall: 0.9951
- Accuracy Label Clickbait: 0.9866
- Accuracy Label Factual: 1.0
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
### Framework versions
- Transformers 4.41.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|