Update README.md
Browse files
README.md
CHANGED
@@ -13,32 +13,44 @@ model-index:
|
|
13 |
results: []
|
14 |
---
|
15 |
|
16 |
-
|
17 |
-
should probably proofread and complete it, then remove this comment. -->
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
This model is a fine-tuned version of [albert/albert-base-v2](https://huggingface.co/albert/albert-base-v2) on an unknown dataset.
|
22 |
-
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.0173
|
24 |
-
- Accuracy: 0.9951
|
25 |
-
- F1: 0.9951
|
26 |
-
- Precision: 0.9951
|
27 |
-
- Recall: 0.9951
|
28 |
-
- Accuracy Label Clickbait: 0.9866
|
29 |
-
- Accuracy Label Factual: 1.0
|
30 |
|
31 |
## Model description
|
32 |
|
33 |
-
|
34 |
|
35 |
## Intended uses & limitations
|
36 |
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
## Training and evaluation data
|
40 |
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
## Training procedure
|
44 |
|
@@ -56,18 +68,6 @@ The following hyperparameters were used during training:
|
|
56 |
- lr_scheduler_warmup_steps: 500
|
57 |
- num_epochs: 3
|
58 |
|
59 |
-
### Training results
|
60 |
-
|
61 |
-
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Accuracy Label Clickbait | Accuracy Label Factual |
|
62 |
-
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:------------------------:|:----------------------:|
|
63 |
-
| 0.0561 | 0.4831 | 100 | 0.0488 | 0.9927 | 0.9927 | 0.9927 | 0.9927 | 0.9933 | 0.9923 |
|
64 |
-
| 0.0037 | 0.9662 | 200 | 0.0097 | 0.9988 | 0.9988 | 0.9988 | 0.9988 | 0.9967 | 1.0 |
|
65 |
-
| 0.0012 | 1.4493 | 300 | 0.0016 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
|
66 |
-
| 0.0012 | 1.9324 | 400 | 0.0016 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
|
67 |
-
| 0.0433 | 2.4155 | 500 | 0.0020 | 0.9988 | 0.9988 | 0.9988 | 0.9988 | 0.9967 | 1.0 |
|
68 |
-
| 0.0003 | 2.8986 | 600 | 0.0167 | 0.9951 | 0.9951 | 0.9951 | 0.9951 | 0.9866 | 1.0 |
|
69 |
-
|
70 |
-
|
71 |
### Framework versions
|
72 |
|
73 |
- Transformers 4.41.0
|
|
|
13 |
results: []
|
14 |
---
|
15 |
|
16 |
+
# Identify Clickbait Articles
|
|
|
17 |
|
18 |
+
This model is a fine-tuned version of [albert/albert-base-v2](https://huggingface.co/albert/albert-base-v2) on a synthetic dataset with 65% factual article titles and 35% clickbait articles.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
## Model description
|
21 |
|
22 |
+
Built to identify factual vs clickbait titles.
|
23 |
|
24 |
## Intended uses & limitations
|
25 |
|
26 |
+
Use it on any title to understand how the model is interpreting the title, whether it is factual or clickbait.
|
27 |
+
|
28 |
+
Go ahead and try a few of your own.
|
29 |
+
|
30 |
+
Here are a few examples:
|
31 |
+
|
32 |
+
**Title:** A Comprehensive Guide for Getting Started with Hugging Face
|
33 |
+
**Output:** Factual
|
34 |
+
|
35 |
+
**Title:** OpenAI GPT-4o: The New Best AI Model in the World. Like in the Movies. For Free
|
36 |
+
**Output:** Clickbait
|
37 |
+
|
38 |
+
**Title:** GPT4 Omni — So much more than just a voice assistant
|
39 |
+
**Output:** Clickbait
|
40 |
+
|
41 |
+
**Title:** Building Vector Databases with FastAPI and ChromaDB
|
42 |
+
**Output:** Factual
|
43 |
|
44 |
## Training and evaluation data
|
45 |
|
46 |
+
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.0173
|
48 |
+
- Accuracy: 0.9951
|
49 |
+
- F1: 0.9951
|
50 |
+
- Precision: 0.9951
|
51 |
+
- Recall: 0.9951
|
52 |
+
- Accuracy Label Clickbait: 0.9866
|
53 |
+
- Accuracy Label Factual: 1.0
|
54 |
|
55 |
## Training procedure
|
56 |
|
|
|
68 |
- lr_scheduler_warmup_steps: 500
|
69 |
- num_epochs: 3
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
### Framework versions
|
72 |
|
73 |
- Transformers 4.41.0
|