|
--- |
|
license: mit |
|
library_name: transformers |
|
pipeline_tag: image-text-to-text |
|
--- |
|
# mmMamba-hybrid Model Card |
|
|
|
## Introduction |
|
We propose mmMamba, the first decoder-only multimodal state space model achieved through quadratic to linear distillation using moderate academic computing resources. Unlike existing linear-complexity encoder-based multimodal large language models (MLLMs), mmMamba eliminates the need for separate vision encoders and underperforming pre-trained RNN-based LLMs. Through our seeding strategy and three-stage progressive distillation recipe, mmMamba effectively transfers knowledge from quadratic-complexity decoder-only pre-trained MLLMs while preserving multimodal capabilities. Additionally, mmMamba introduces flexible hybrid architectures that strategically combine Transformer and Mamba layers, enabling customizable trade-offs between computational efficiency and model performance. |
|
|
|
Distilled from the decoder-only HoVLE-2.6B, our pure Mamba-2-based mmMamba-linear achieves performance competitive with existing linear and quadratic-complexity VLMs, including those with 2x larger parameter size like EVE-7B. The hybrid variant, mmMamba-hybrid, further enhances performance across all benchmarks, approaching the capabilities of the teacher model HoVLE. In long-context scenarios with 103K tokens, mmMamba-linear demonstrates remarkable efficiency gains with a 20.6× speedup and 75.8% GPU memory reduction compared to HoVLE, while mmMamba-hybrid achieves a 13.5× speedup and 60.2% memory savings. |
|
|
|
<div align="center"> |
|
<img src="teaser.png" /> |
|
|
|
|
|
<b>Seeding strategy and three-stage distillation pipeline of mmMamba.</b> |
|
<img src="pipeline.png" /> |
|
</div> |
|
|
|
Paper: [https://hf.co/papers/2502.13145](https://hf.co/papers/2502.13145) |
|
|
|
Code: [https://github.com/hustvl/mmMamba](https://github.com/hustvl/mmMamba) |
|
|
|
## Quick Start Guide for mmMamba Inference |
|
|
|
We provide example code to run mmMamba inference using the Transformers library. |
|
|
|
### Main Dependencies for Model Inference |
|
|
|
Below are the primary dependencies required for model inference: |
|
- torch==2.1.0 |
|
- torchvision==0.16.0 |
|
- torchaudio==2.1.0 |
|
- transformers==4.37.2 |
|
- peft==0.10.0 |
|
- triton==3.2.0 |
|
- [mamba_ssm](https://github.com/state-spaces/mamba/releases/download/v2.2.4/mamba_ssm-2.2.4%2Bcu12torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl) |
|
- [causal_conv1d](https://github.com/Dao-AILab/causal-conv1d/releases/download/v1.5.0.post8/causal_conv1d-1.5.0.post8%2Bcu12torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl) |
|
- [flash_attn](https://github.com/Dao-AILab/flash-attention/releases/download/v2.6.0/flash_attn-2.6.0%2Bcu122torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl) |
|
(Please note that you need to select and download the corresponding .whl file based on your environment.) |
|
- peft |
|
- omegaconf |
|
- rich |
|
- accelerate |
|
- sentencepiece |
|
- decord |
|
- seaborn |
|
|
|
|
|
### Inference with Transformers |
|
|
|
```python |
|
import numpy as np |
|
import torch |
|
import torchvision.transforms as T |
|
from decord import VideoReader, cpu |
|
from PIL import Image |
|
from torchvision.transforms.functional import InterpolationMode |
|
from transformers import AutoModel, AutoTokenizer |
|
IMAGENET_MEAN = (0.485, 0.456, 0.406) |
|
IMAGENET_STD = (0.229, 0.224, 0.225) |
|
def build_transform(input_size): |
|
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD |
|
transform = T.Compose([ |
|
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), |
|
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), |
|
T.ToTensor(), |
|
T.Normalize(mean=MEAN, std=STD) |
|
]) |
|
return transform |
|
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): |
|
best_ratio_diff = float('inf') |
|
best_ratio = (1, 1) |
|
area = width * height |
|
for ratio in target_ratios: |
|
target_aspect_ratio = ratio[0] / ratio[1] |
|
ratio_diff = abs(aspect_ratio - target_aspect_ratio) |
|
if ratio_diff < best_ratio_diff: |
|
best_ratio_diff = ratio_diff |
|
best_ratio = ratio |
|
elif ratio_diff == best_ratio_diff: |
|
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: |
|
best_ratio = ratio |
|
return best_ratio |
|
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): |
|
orig_width, orig_height = image.size |
|
aspect_ratio = orig_width / orig_height |
|
# calculate the existing image aspect ratio |
|
target_ratios = set( |
|
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if |
|
i * j <= max_num and i * j >= min_num) |
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
# find the closest aspect ratio to the target |
|
target_aspect_ratio = find_closest_aspect_ratio( |
|
aspect_ratio, target_ratios, orig_width, orig_height, image_size) |
|
# calculate the target width and height |
|
target_width = image_size * target_aspect_ratio[0] |
|
target_height = image_size * target_aspect_ratio[1] |
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
# resize the image |
|
resized_img = image.resize((target_width, target_height)) |
|
processed_images = [] |
|
for i in range(blocks): |
|
box = ( |
|
(i % (target_width // image_size)) * image_size, |
|
(i // (target_width // image_size)) * image_size, |
|
((i % (target_width // image_size)) + 1) * image_size, |
|
((i // (target_width // image_size)) + 1) * image_size |
|
) |
|
# split the image |
|
split_img = resized_img.crop(box) |
|
processed_images.append(split_img) |
|
assert len(processed_images) == blocks |
|
if use_thumbnail and len(processed_images) != 1: |
|
thumbnail_img = image.resize((image_size, image_size)) |
|
processed_images.append(thumbnail_img) |
|
return processed_images |
|
def load_image(image_file, input_size=448, max_num=12): |
|
image = Image.open(image_file).convert('RGB') |
|
transform = build_transform(input_size=input_size) |
|
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) |
|
pixel_values = [transform(image) for image in images] |
|
pixel_values = torch.stack(pixel_values) |
|
return pixel_values |
|
path = 'hustvl/mmMamba-hybrid' |
|
model = AutoModel.from_pretrained( |
|
path, |
|
torch_dtype=torch.bfloat16, |
|
low_cpu_mem_usage=False, |
|
trust_remote_code=True).eval().cuda() |
|
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False) |
|
# set the max number of tiles in `max_num` |
|
pixel_values = load_image('/path/to/image', max_num=12).to(torch.bfloat16).cuda() |
|
generation_config = dict(max_new_tokens=1024, do_sample=True) |
|
# pure-text conversation (纯文本对话) |
|
question = 'Hello, who are you?' |
|
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True) |
|
print(f'User: {question}\nAssistant: {response}') |
|
# single-image single-round conversation (图文对话) |
|
question = '<image>\nPlease describe the image shortly.' |
|
response = model.chat(tokenizer, pixel_values, question, generation_config) |
|
print(f'User: {question}\nAssistant: {response}') |
|
``` |