|
from typing import Callable, List, Optional, Tuple, Union |
|
import math |
|
from transformers.cache_utils import Cache |
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
from transformers.models.llama.modeling_llama import LlamaForCausalLM, LlamaConfig |
|
from transformers.utils import logging |
|
|
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS |
|
logger = logging.get_logger(__name__) |
|
|
|
def lambda_init_fn(layer_idx, num_layers=32): |
|
"""Initialize lambda value based on layer index.""" |
|
|
|
|
|
return 0.8 - 0.6 * math.exp(-0.3 * layer_idx) |
|
|
|
def lambda_init_fn_const(layer_idx, num_layers=32): |
|
"""Initialize lambda value based on layer index.""" |
|
|
|
return 0.5 |
|
|
|
class LlamaForCausalLMj24(LlamaForCausalLM): |
|
|
|
def __init__(self, config: LlamaConfig): |
|
config._attn_implementation = "sdpa" |
|
super().__init__(config) |
|
|
|
for _ in range(10): |
|
print(f"** LLAMA Adapt j24 **") |
|
|
|
for layer_i, layer in enumerate(self.model.layers): |
|
|
|
hidden_dim = config.hidden_size |
|
n_heads = config.num_attention_heads |
|
depth = layer_i |
|
|
|
layer.self_attn = LlamaAttention( |
|
config, layer_idx=layer_i |
|
) |
|
|
|
|
|
def freeze_original_unfreeze_adapters(self): |
|
""" |
|
Freeze original weights and unfreeze newly initialized values |
|
containing "lambda" and "lora" in their parameter names. |
|
""" |
|
|
|
params_to_unfreeze = [ |
|
"lambda", |
|
"lora", |
|
] |
|
|
|
|
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
|
|
|
|
for name, param in self.named_parameters(): |
|
for p in params_to_unfreeze: |
|
if p in name: |
|
param.requires_grad = True |
|
print(f"Unfreezing parameter: {name}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class LlamaAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config: LlamaConfig, layer_idx: int): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) |
|
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads |
|
self.scaling = self.head_dim**-0.5 |
|
self.attention_dropout = config.attention_dropout |
|
self.is_causal = True |
|
config.lambda_std_dev = 0.1 |
|
|
|
self.q_proj = nn.Linear( |
|
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias |
|
) |
|
self.k_proj = nn.Linear( |
|
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias |
|
) |
|
self.v_proj = nn.Linear( |
|
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias |
|
) |
|
self.d_lora_proj = nn.Linear( |
|
config.num_attention_heads * self.head_dim // 2, config.hidden_size // 2, bias=config.attention_bias |
|
) |
|
self.o_proj = nn.Linear( |
|
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias |
|
) |
|
|
|
self.lambda_init = lambda_init_fn(layer_idx) |
|
print(f"* Initializing lambda: {self.lambda_init}") |
|
self.i_step = 0 |
|
self.lambda_schedule = torch.linspace(0, self.lambda_init, 3386) |
|
padding = torch.ones(5000) * self.lambda_init |
|
padding = padding.to(self.lambda_schedule.device) |
|
self.lambda_schedule = torch.cat((self.lambda_schedule, padding)) |
|
self.lambda_q1 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,))) |
|
self.lambda_k1 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,))) |
|
self.lambda_q2 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,))) |
|
self.lambda_k2 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,))) |
|
self._init_lora() |
|
|
|
path = "/root/pegasus-llama-factory/scripts/analysis/head_importance_llama_1B/head_importance_indices.txt" |
|
with open(path, "r") as f: |
|
self.head_importance_indices = [line.strip() for line in f] |
|
self.head_importance_indices = self.head_importance_indices[self.layer_idx].split(",") |
|
self.head_importance_indices = [int(idx) for idx in self.head_importance_indices] |
|
|
|
def _init_lora(self): |
|
"""Initialize LoRA for query, key, and value projection layers.""" |
|
|
|
self.lora_rank = 8 |
|
self.lora_alpha = 16 |
|
self.lora_dropout = 0.0 |
|
self.scaling_factor = self.lora_alpha / self.lora_rank |
|
|
|
self.k_lora_full = nn.Parameter(torch.zeros(self.config.hidden_size, self.config.num_key_value_heads * self.head_dim)) |
|
self.k_lora_A = nn.Parameter(torch.zeros(self.config.hidden_size, self.lora_rank)) |
|
self.k_lora_B = nn.Parameter(torch.zeros(self.lora_rank, self.config.num_key_value_heads * self.head_dim)) |
|
self.k_lora_scaling = nn.Parameter(torch.ones(self.config.num_key_value_heads * self.head_dim)) |
|
nn.init.kaiming_uniform_(self.k_lora_A, a=math.sqrt(5)) |
|
nn.init.zeros_(self.k_lora_B) |
|
nn.init.ones_(self.k_lora_scaling) |
|
|
|
self.v_lora_full = nn.Parameter(torch.zeros(self.config.hidden_size, self.config.num_key_value_heads * self.head_dim)) |
|
self.v_lora_A = nn.Parameter(torch.zeros(self.config.hidden_size, self.lora_rank)) |
|
self.v_lora_B = nn.Parameter(torch.zeros(self.lora_rank, self.config.num_key_value_heads * self.head_dim)) |
|
self.v_lora_scaling = nn.Parameter(torch.ones(self.config.num_key_value_heads * self.head_dim)) |
|
nn.init.kaiming_uniform_(self.v_lora_A, a=math.sqrt(5)) |
|
nn.init.zeros_(self.v_lora_B) |
|
nn.init.ones_(self.v_lora_scaling) |
|
|
|
|
|
self.o_lora_A = nn.Parameter(torch.zeros(self.config.hidden_size, self.lora_rank)) |
|
self.o_lora_B = nn.Parameter(torch.zeros(self.lora_rank, self.config.hidden_size)) |
|
self.o_lora_scaling = nn.Parameter(torch.ones(self.config.hidden_size)) |
|
nn.init.kaiming_uniform_(self.o_lora_A, a=math.sqrt(5)) |
|
nn.init.zeros_(self.o_lora_B) |
|
nn.init.ones_(self.o_lora_scaling) |
|
|
|
|
|
self.lora_dropout = nn.Dropout(self.lora_dropout) |
|
|
|
self.k_proj_forward_original = self.k_proj.forward |
|
self.v_proj_forward_original = self.v_proj.forward |
|
self.o_proj_forward_original = self.o_proj.forward |
|
|
|
self.k_proj.forward = self._k_proj_forward |
|
self.v_proj.forward = self._v_proj_forward |
|
self.o_proj.forward = self._o_proj_forward |
|
|
|
def _k_proj_forward(self, x): |
|
base_output = self.k_proj_forward_original(x) |
|
full_output = x @ self.k_lora_full |
|
lora_output = self.lora_dropout(x) @ self.k_lora_A @ self.k_lora_B * self.scaling_factor |
|
|
|
offset = lora_output + full_output |
|
return (base_output + offset) * self.k_lora_scaling |
|
|
|
def _v_proj_forward(self, x): |
|
"""LoRA-enabled forward for value projection.""" |
|
base_output = self.v_proj_forward_original(x) |
|
full_output = x @ self.v_lora_full |
|
lora_output = self.lora_dropout(x) @ self.v_lora_A @ self.v_lora_B * self.scaling_factor |
|
|
|
offset = lora_output + full_output |
|
return (base_output + offset ) * self.v_lora_scaling |
|
|
|
def _o_proj_forward(self, x): |
|
"""LoRA-enabled forward for output projection.""" |
|
base_output = self.o_proj_forward_original(x) |
|
lora_output = self.lora_dropout(x) @ self.o_lora_A @ self.o_lora_B |
|
return (base_output + lora_output * self.scaling_factor) * self.o_lora_scaling |
|
|
|
def __post_init__(self): |
|
"""Initialize LoRA after the module is fully initialized.""" |
|
self._init_lora() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
position_embeddings: Tuple[torch.Tensor, torch.Tensor], |
|
attention_mask: Optional[torch.Tensor], |
|
past_key_value: Optional[Cache] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
input_shape = hidden_states.shape[:-1] |
|
hidden_shape = (*input_shape, -1, self.head_dim) |
|
|
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.view(hidden_shape).transpose(1, 2) |
|
key_states = key_states.view(hidden_shape).transpose(1, 2) |
|
value_states = value_states.view(hidden_shape).transpose(1, 2) |
|
|
|
cos, sin = position_embeddings |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
if past_key_value is not None: |
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
attention_interface: Callable = eager_attention_forward |
|
if self.config._attn_implementation != "eager": |
|
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): |
|
logger.warning_once( |
|
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " |
|
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' |
|
) |
|
else: |
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] |
|
|
|
attn_output, attn_weights = attention_interface( |
|
self, |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
scaling=self.scaling, |
|
**kwargs, |
|
) |
|
|
|
lambda_1 = torch.exp(torch.sum(self.lambda_q1 * self.lambda_k1, dim=-1, dtype=torch.float32).to(query_states.dtype)) |
|
lambda_2 = torch.exp(torch.sum(self.lambda_q2 * self.lambda_k2, dim=-1, dtype=torch.float32).to(query_states.dtype)) |
|
|
|
alpha = (self.i_step / 3386) |
|
alpha = min(1, alpha) |
|
lambda_full = self.lambda_schedule[self.i_step] * (1 - alpha) + (lambda_1 - lambda_2 + self.lambda_init) * alpha |
|
|
|
self.i_step += 1 |
|
|
|
modify_heads = self.head_importance_indices[:len(self.head_importance_indices)//2] |
|
main_heads = self.head_importance_indices[len(self.head_importance_indices)//2:] |
|
|
|
modify_attn_output = attn_output[:, :, modify_heads] |
|
main_attn_output = attn_output[:, :, main_heads] |
|
|
|
|
|
modify_attn_output = modify_attn_output.reshape(*input_shape, -1).contiguous() |
|
main_attn_output = main_attn_output.reshape(*input_shape, -1).contiguous() |
|
|
|
modify_attn_output = modify_attn_output - lambda_full * self.d_lora_proj(modify_attn_output) |
|
|
|
batch_size, seq_len, dim = modify_attn_output.shape |
|
restored_attn_output = torch.zeros(batch_size, seq_len, 2 * dim, |
|
device=attn_output.device, dtype=attn_output.dtype) |
|
|
|
for i, idx in enumerate(main_heads): |
|
restored_attn_output[:, :, idx*self.head_dim:(idx+1)*self.head_dim] = main_attn_output[:, :, i*self.head_dim:(i+1)*self.head_dim] |
|
for i, idx in enumerate(modify_heads): |
|
restored_attn_output[:, :, idx*self.head_dim:(idx+1)*self.head_dim] = modify_attn_output[:, :, i*self.head_dim:(i+1)*self.head_dim] |
|
|
|
attn_output = restored_attn_output |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
attn_weights = None |
|
|
|
return attn_output, attn_weights |
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
def eager_attention_forward( |
|
module: nn.Module, |
|
query: torch.Tensor, |
|
key: torch.Tensor, |
|
value: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor], |
|
scaling: float, |
|
dropout: float = 0.0, |
|
**kwargs, |
|
): |
|
key_states = repeat_kv(key, module.num_key_value_groups) |
|
value_states = repeat_kv(value, module.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling |
|
if attention_mask is not None: |
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
attn_weights = attn_weights + causal_mask |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
return attn_output, attn_weights |
|
|
|
class LlamaRMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
LlamaRMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
def extra_repr(self): |
|
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" |
|
|
|
|
|
|
|
class LlamaRotaryEmbedding(nn.Module): |
|
def __init__(self, config: LlamaConfig, device=None): |
|
super().__init__() |
|
|
|
if hasattr(config, "rope_scaling") and config.rope_scaling is not None: |
|
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) |
|
else: |
|
self.rope_type = "default" |
|
self.max_seq_len_cached = config.max_position_embeddings |
|
self.original_max_seq_len = config.max_position_embeddings |
|
|
|
self.config = config |
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
self.original_inv_freq = self.inv_freq |
|
|
|
def _dynamic_frequency_update(self, position_ids, device): |
|
""" |
|
dynamic RoPE layers should recompute `inv_freq` in the following situations: |
|
1 - growing beyond the cached sequence length (allow scaling) |
|
2 - the current sequence length is in the original scale (avoid losing precision with small sequences) |
|
""" |
|
seq_len = torch.max(position_ids) + 1 |
|
if seq_len > self.max_seq_len_cached: |
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
self.max_seq_len_cached = seq_len |
|
|
|
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: |
|
|
|
|
|
self.original_inv_freq = self.original_inv_freq.to(device) |
|
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) |
|
self.max_seq_len_cached = self.original_max_seq_len |
|
|
|
@torch.no_grad() |
|
def forward(self, x, position_ids): |
|
if "dynamic" in self.rope_type: |
|
self._dynamic_frequency_update(position_ids, device=x.device) |
|
|
|
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) |
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
device_type = x.device.type |
|
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" |
|
with torch.autocast(device_type=device_type, enabled=False): |
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
cos = emb.cos() |
|
sin = emb.sin() |
|
|
|
|
|
cos = cos * self.attention_scaling |
|
sin = sin * self.attention_scaling |
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
Args: |
|
q (`torch.Tensor`): The query tensor. |
|
k (`torch.Tensor`): The key tensor. |
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
position_ids (`torch.Tensor`, *optional*): |
|
Deprecated and unused. |
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
Returns: |
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
""" |
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
|
|
class LlamaMLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) |
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) |
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias) |
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, x): |
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
return down_proj |