File size: 21,193 Bytes
941bfe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
from typing import Callable, List, Optional, Tuple, Union
import math
from transformers.cache_utils import Cache


import torch
import torch.nn as nn
from transformers.models.llama.modeling_llama import LlamaForCausalLM, LlamaConfig
from transformers.utils import logging

from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS
logger = logging.get_logger(__name__)

def lambda_init_fn(layer_idx, num_layers=32):
    """Initialize lambda value based on layer index."""
    # Scale lambda_init from 0.1 to 0.9 based on layer depth
    # return 0.1 + 0.8 * (layer_idx / (num_layers - 1))
    return 0.8 - 0.6 * math.exp(-0.3 * layer_idx)

def lambda_init_fn_const(layer_idx, num_layers=32):
    """Initialize lambda value based on layer index."""
    # Scale lambda_init from 0.1 to 0.9 based on layer depth
    return 0.5

class LlamaForCausalLMj24(LlamaForCausalLM):
    
    def __init__(self, config: LlamaConfig):
        config._attn_implementation = "sdpa"
        super().__init__(config)

        for _ in range(10):
            print(f"** LLAMA Adapt j24 **")

        for layer_i, layer in enumerate(self.model.layers):

            hidden_dim = config.hidden_size
            n_heads = config.num_attention_heads
            depth = layer_i  # or pass 0

            layer.self_attn = LlamaAttention(
                config, layer_idx=layer_i
            )


    def freeze_original_unfreeze_adapters(self):
        """
        Freeze original weights and unfreeze newly initialized values 
        containing "lambda" and "lora" in their parameter names.
        """

        params_to_unfreeze = [
            "lambda",
            "lora",
        ]

        # First freeze all parameters
        for param in self.parameters():
            param.requires_grad = False
        
        # Then unfreeze parameters containing "lambda" or "lora"
        for name, param in self.named_parameters():
            for p in params_to_unfreeze:
                if p in name:
                    param.requires_grad = True
                    print(f"Unfreezing parameter: {name}")
        
        # Count trainable parameters
        # trainable_params = sum(p.numel() for p in self.parameters() if p.requires_grad)
        # total_params = sum(p.numel() for p in self.parameters())
        # print(f"Trainable parameters: {trainable_params:,} ({trainable_params/total_params:.2%} of total)")


class LlamaAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(self, config: LlamaConfig, layer_idx: int):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
        self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
        self.scaling = self.head_dim**-0.5
        self.attention_dropout = config.attention_dropout
        self.is_causal = True
        config.lambda_std_dev = 0.1 # just use default value

        self.q_proj = nn.Linear(
            config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
        )
        self.k_proj = nn.Linear(
            config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
        )
        self.v_proj = nn.Linear(
            config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
        )
        self.d_lora_proj = nn.Linear(
            config.num_attention_heads * self.head_dim // 2, config.hidden_size // 2, bias=config.attention_bias
        )
        self.o_proj = nn.Linear(
            config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
        )

        self.lambda_init = lambda_init_fn(layer_idx)
        print(f"* Initializing lambda: {self.lambda_init}")
        self.i_step = 0 
        self.lambda_schedule = torch.linspace(0, self.lambda_init, 3386) # FIXME: hard-coded n_steps
        padding = torch.ones(5000) * self.lambda_init
        padding = padding.to(self.lambda_schedule.device)
        self.lambda_schedule = torch.cat((self.lambda_schedule, padding))
        self.lambda_q1 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,)))
        self.lambda_k1 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,)))
        self.lambda_q2 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,)))
        self.lambda_k2 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,)))
        self._init_lora()

        path = "/root/pegasus-llama-factory/scripts/analysis/head_importance_llama_1B/head_importance_indices.txt"
        with open(path, "r") as f:
            self.head_importance_indices = [line.strip() for line in f]
            self.head_importance_indices = self.head_importance_indices[self.layer_idx].split(",")
            self.head_importance_indices = [int(idx) for idx in self.head_importance_indices]

    def _init_lora(self):
        """Initialize LoRA for query, key, and value projection layers."""
        # Define LoRA rank and scaling factor
        self.lora_rank = 8
        self.lora_alpha = 16
        self.lora_dropout = 0.0
        self.scaling_factor = self.lora_alpha / self.lora_rank

        self.k_lora_full = nn.Parameter(torch.zeros(self.config.hidden_size, self.config.num_key_value_heads * self.head_dim))
        self.k_lora_A = nn.Parameter(torch.zeros(self.config.hidden_size, self.lora_rank))
        self.k_lora_B = nn.Parameter(torch.zeros(self.lora_rank, self.config.num_key_value_heads * self.head_dim))
        self.k_lora_scaling = nn.Parameter(torch.ones(self.config.num_key_value_heads * self.head_dim))
        nn.init.kaiming_uniform_(self.k_lora_A, a=math.sqrt(5))
        nn.init.zeros_(self.k_lora_B)
        nn.init.ones_(self.k_lora_scaling)  # Initialize scaling vector with ones

        self.v_lora_full = nn.Parameter(torch.zeros(self.config.hidden_size, self.config.num_key_value_heads * self.head_dim))
        self.v_lora_A = nn.Parameter(torch.zeros(self.config.hidden_size, self.lora_rank))
        self.v_lora_B = nn.Parameter(torch.zeros(self.lora_rank, self.config.num_key_value_heads * self.head_dim))
        self.v_lora_scaling = nn.Parameter(torch.ones(self.config.num_key_value_heads * self.head_dim))
        nn.init.kaiming_uniform_(self.v_lora_A, a=math.sqrt(5))
        nn.init.zeros_(self.v_lora_B)
        nn.init.ones_(self.v_lora_scaling)  # Initialize scaling vector with ones
        
        # Initialize LoRA weights for output projection
        self.o_lora_A = nn.Parameter(torch.zeros(self.config.hidden_size, self.lora_rank))
        self.o_lora_B = nn.Parameter(torch.zeros(self.lora_rank, self.config.hidden_size))
        self.o_lora_scaling = nn.Parameter(torch.ones(self.config.hidden_size))
        nn.init.kaiming_uniform_(self.o_lora_A, a=math.sqrt(5))
        nn.init.zeros_(self.o_lora_B)
        nn.init.ones_(self.o_lora_scaling)  # Initialize scaling vector with ones

        # LoRA dropout layer
        self.lora_dropout = nn.Dropout(self.lora_dropout)
        
        self.k_proj_forward_original = self.k_proj.forward
        self.v_proj_forward_original = self.v_proj.forward
        self.o_proj_forward_original = self.o_proj.forward

        self.k_proj.forward = self._k_proj_forward
        self.v_proj.forward = self._v_proj_forward
        self.o_proj.forward = self._o_proj_forward

    def _k_proj_forward(self, x):
        base_output = self.k_proj_forward_original(x)
        full_output = x @ self.k_lora_full
        lora_output = self.lora_dropout(x) @ self.k_lora_A @ self.k_lora_B * self.scaling_factor
        # offset = torch.cat((lora_output, full_output), dim=-1)
        offset = lora_output + full_output
        return (base_output + offset) * self.k_lora_scaling

    def _v_proj_forward(self, x):
        """LoRA-enabled forward for value projection."""
        base_output = self.v_proj_forward_original(x)
        full_output = x @ self.v_lora_full
        lora_output = self.lora_dropout(x) @ self.v_lora_A @ self.v_lora_B * self.scaling_factor
        # offset = torch.cat((lora_output, full_output), dim=-1)
        offset = lora_output + full_output
        return (base_output + offset ) * self.v_lora_scaling
    
    def _o_proj_forward(self, x):
        """LoRA-enabled forward for output projection."""
        base_output = self.o_proj_forward_original(x)
        lora_output = self.lora_dropout(x) @ self.o_lora_A @ self.o_lora_B
        return (base_output + lora_output * self.scaling_factor) * self.o_lora_scaling

    def __post_init__(self):
        """Initialize LoRA after the module is fully initialized."""
        self._init_lora()

    def forward(
        self,
        hidden_states: torch.Tensor,
        position_embeddings: Tuple[torch.Tensor, torch.Tensor],
        attention_mask: Optional[torch.Tensor],
        past_key_value: Optional[Cache] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        input_shape = hidden_states.shape[:-1]
        hidden_shape = (*input_shape, -1, self.head_dim)

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        query_states = query_states.view(hidden_shape).transpose(1, 2)
        key_states = key_states.view(hidden_shape).transpose(1, 2)
        value_states = value_states.view(hidden_shape).transpose(1, 2)

        cos, sin = position_embeddings
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

        if past_key_value is not None:
            # sin and cos are specific to RoPE models; cache_position needed for the static cache
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        attention_interface: Callable = eager_attention_forward
        if self.config._attn_implementation != "eager":
            if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
                logger.warning_once(
                    "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
                    'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
                )
            else:
                attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]

        attn_output, attn_weights = attention_interface(
                self,
                query_states,
                key_states,
                value_states,
                attention_mask,
                dropout=0.0 if not self.training else self.attention_dropout,
                scaling=self.scaling,
                **kwargs,
            ) # b, n, h, d

        lambda_1 = torch.exp(torch.sum(self.lambda_q1 * self.lambda_k1, dim=-1, dtype=torch.float32).to(query_states.dtype))
        lambda_2 = torch.exp(torch.sum(self.lambda_q2 * self.lambda_k2, dim=-1, dtype=torch.float32).to(query_states.dtype))

        alpha = (self.i_step / 3386)
        alpha = min(1, alpha)
        lambda_full = self.lambda_schedule[self.i_step] * (1 - alpha) + (lambda_1 - lambda_2 + self.lambda_init) * alpha

        self.i_step += 1

        modify_heads = self.head_importance_indices[:len(self.head_importance_indices)//2]
        main_heads = self.head_importance_indices[len(self.head_importance_indices)//2:]

        modify_attn_output = attn_output[:, :, modify_heads]
        main_attn_output = attn_output[:, :, main_heads]

        # attn_output = attn_output.reshape(*input_shape, -1).contiguous() # b, n, h * d
        modify_attn_output = modify_attn_output.reshape(*input_shape, -1).contiguous() # b, n, h // 2 * d
        main_attn_output = main_attn_output.reshape(*input_shape, -1).contiguous() # b, n, h // 2 * d

        modify_attn_output = modify_attn_output - lambda_full * self.d_lora_proj(modify_attn_output)
        # Restore the original head order while preserving the computation graph
        batch_size, seq_len, dim = modify_attn_output.shape
        restored_attn_output = torch.zeros(batch_size, seq_len, 2 * dim,
                                          device=attn_output.device, dtype=attn_output.dtype)
        
        for i, idx in enumerate(main_heads):
            restored_attn_output[:, :, idx*self.head_dim:(idx+1)*self.head_dim] = main_attn_output[:, :, i*self.head_dim:(i+1)*self.head_dim]
        for i, idx in enumerate(modify_heads):
            restored_attn_output[:, :, idx*self.head_dim:(idx+1)*self.head_dim] = modify_attn_output[:, :, i*self.head_dim:(i+1)*self.head_dim]
            
        attn_output = restored_attn_output

        attn_output = self.o_proj(attn_output)

        attn_weights = None  # No attention weights returned when using SDPA
        
        return attn_output, attn_weights

def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


def eager_attention_forward(
    module: nn.Module,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attention_mask: Optional[torch.Tensor],
    scaling: float,
    dropout: float = 0.0,
    **kwargs,
):
    key_states = repeat_kv(key, module.num_key_value_groups)
    value_states = repeat_kv(value, module.num_key_value_groups)

    attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
    if attention_mask is not None:
        causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
        attn_weights = attn_weights + causal_mask

    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
    attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
    attn_output = torch.matmul(attn_weights, value_states)
    attn_output = attn_output.transpose(1, 2).contiguous()

    return attn_output, attn_weights

class LlamaRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        LlamaRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)

    def extra_repr(self):
        return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"



class LlamaRotaryEmbedding(nn.Module):
    def __init__(self, config: LlamaConfig, device=None):
        super().__init__()
        # BC: "rope_type" was originally "type"
        if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
            self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
        else:
            self.rope_type = "default"
        self.max_seq_len_cached = config.max_position_embeddings
        self.original_max_seq_len = config.max_position_embeddings

        self.config = config
        self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]

        inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
        self.register_buffer("inv_freq", inv_freq, persistent=False)
        self.original_inv_freq = self.inv_freq

    def _dynamic_frequency_update(self, position_ids, device):
        """
        dynamic RoPE layers should recompute `inv_freq` in the following situations:
        1 - growing beyond the cached sequence length (allow scaling)
        2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
        """
        seq_len = torch.max(position_ids) + 1
        if seq_len > self.max_seq_len_cached:  # growth
            inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
            self.register_buffer("inv_freq", inv_freq, persistent=False)  # TODO joao: may break with compilation
            self.max_seq_len_cached = seq_len

        if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len:  # reset
            # This .to() is needed if the model has been moved to a device after being initialized (because
            # the buffer is automatically moved, but not the original copy)
            self.original_inv_freq = self.original_inv_freq.to(device)
            self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
            self.max_seq_len_cached = self.original_max_seq_len

    @torch.no_grad()
    def forward(self, x, position_ids):
        if "dynamic" in self.rope_type:
            self._dynamic_frequency_update(position_ids, device=x.device)

        # Core RoPE block
        inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
        position_ids_expanded = position_ids[:, None, :].float()
        # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
        device_type = x.device.type
        device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
        with torch.autocast(device_type=device_type, enabled=False):
            freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
            emb = torch.cat((freqs, freqs), dim=-1)
            cos = emb.cos()
            sin = emb.sin()

        # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
        cos = cos * self.attention_scaling
        sin = sin * self.attention_scaling

        return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)


def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
    """Applies Rotary Position Embedding to the query and key tensors.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        position_ids (`torch.Tensor`, *optional*):
            Deprecated and unused.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    cos = cos.unsqueeze(unsqueeze_dim)
    sin = sin.unsqueeze(unsqueeze_dim)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed


class LlamaMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
        self.act_fn = ACT2FN[config.hidden_act]

    def forward(self, x):
        down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
        return down_proj