reward

This model is a fine-tuned version of meta-llama/Llama-3.2-1B-Instruct on the gsm8k_llama3.2-1B_128_1ep dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6323
  • Accuracy: 0.5876

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7961 0.0855 5 0.5987 0.6209
0.5229 0.1709 10 0.6532 0.5292
0.4513 0.2564 15 0.6738 0.4716
0.5194 0.3419 20 0.6736 0.4769
0.4323 0.4274 25 0.6592 0.5277
0.4733 0.5128 30 0.6529 0.5504
0.3579 0.5983 35 0.6559 0.5299
0.2933 0.6838 40 0.6503 0.5322
0.3119 0.7692 45 0.6438 0.5504
0.3451 0.8547 50 0.6330 0.5883
0.3238 0.9402 55 0.6331 0.5845

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.5.1
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for graf/Llama-3.2-1B-RM-GSM8k

Finetuned
(999)
this model