reward
This model is a fine-tuned version of meta-llama/Llama-3.2-1B-Instruct on the gsm8k_llama3.2-1B_128_1ep dataset. It achieves the following results on the evaluation set:
- Loss: 0.6323
- Accuracy: 0.5876
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.7961 | 0.0855 | 5 | 0.5987 | 0.6209 |
0.5229 | 0.1709 | 10 | 0.6532 | 0.5292 |
0.4513 | 0.2564 | 15 | 0.6738 | 0.4716 |
0.5194 | 0.3419 | 20 | 0.6736 | 0.4769 |
0.4323 | 0.4274 | 25 | 0.6592 | 0.5277 |
0.4733 | 0.5128 | 30 | 0.6529 | 0.5504 |
0.3579 | 0.5983 | 35 | 0.6559 | 0.5299 |
0.2933 | 0.6838 | 40 | 0.6503 | 0.5322 |
0.3119 | 0.7692 | 45 | 0.6438 | 0.5504 |
0.3451 | 0.8547 | 50 | 0.6330 | 0.5883 |
0.3238 | 0.9402 | 55 | 0.6331 | 0.5845 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for graf/Llama-3.2-1B-RM-GSM8k
Base model
meta-llama/Llama-3.2-1B-Instruct