|
# 基准测试 |
|
|
|
这里我们对 MMDetection3D 和其他开源 3D 目标检测代码库中模型的训练速度和测试速度进行了基准测试。 |
|
|
|
## 配置 |
|
|
|
- 硬件:8 NVIDIA Tesla V100 (32G) GPUs, Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz |
|
- 软件:Python 3.7, CUDA 10.1, cuDNN 7.6.5, PyTorch 1.3, numba 0.48.0. |
|
- 模型:由于不同代码库所实现的模型种类有所不同,在基准测试中我们选择了 SECOND、PointPillars、Part-A2 和 VoteNet 几种模型,分别与其他代码库中的相应模型实现进行了对比。 |
|
- 度量方法:我们使用整个训练过程中的平均吞吐量作为度量方法,并跳过每个 epoch 的前 50 次迭代以消除训练预热的影响。 |
|
|
|
## 主要结果 |
|
|
|
对于模型的训练速度(样本/秒),我们将 MMDetection3D 与其他实现了相同模型的代码库进行了对比。结果如下所示,表格内的数字越大,代表模型的训练速度越快。代码库中不支持的模型使用 `×` 进行标识。 |
|
|
|
| 模型 | MMDetection3D | OpenPCDet | votenet | Det3D | |
|
| :-----------------: | :-----------: | :-------: | :-----: | :---: | |
|
| VoteNet | 358 | × | 77 | × | |
|
| PointPillars-car | 141 | × | × | 140 | |
|
| PointPillars-3class | 107 | 44 | × | × | |
|
| SECOND | 40 | 30 | × | × | |
|
| Part-A2 | 17 | 14 | × | × | |
|
|
|
## 测试细节 |
|
|
|
### 为了计算速度所做的修改 |
|
|
|
- __MMDetection3D__:我们尝试使用与其他代码库中尽可能相同的配置,具体配置细节见 [基准测试配置](https://github.com/open-mmlab/MMDetection3D/blob/main/configs/benchmark)。 |
|
|
|
- __Det3D__:为了与 Det3D 进行比较,我们使用了 commit [519251e](https://github.com/poodarchu/Det3D/tree/519251e72a5c1fdd58972eabeac67808676b9bb7) 所对应的代码版本。 |
|
|
|
- __OpenPCDet__:为了与 OpenPCDet 进行比较,我们使用了 commit [b32fbddb](https://github.com/open-mmlab/OpenPCDet/tree/b32fbddbe06183507bad433ed99b407cbc2175c2) 所对应的代码版本。 |
|
|
|
为了计算训练速度,我们在 `./tools/train_utils/train_utils.py` 文件中添加了用于记录运行时间的代码。我们对每个 epoch 的训练速度进行计算,并报告所有 epoch 的平均速度。 |
|
|
|
<details> |
|
<summary> |
|
(为了使用相同方法进行测试所做的具体修改 - 点击展开) |
|
</summary> |
|
|
|
```diff |
|
diff --git a/tools/train_utils/train_utils.py b/tools/train_utils/train_utils.py |
|
index 91f21dd..021359d 100644 |
|
--- a/tools/train_utils/train_utils.py |
|
+++ b/tools/train_utils/train_utils.py |
|
@@ -2,6 +2,7 @@ import torch |
|
import os |
|
import glob |
|
import tqdm |
|
+import datetime |
|
from torch.nn.utils import clip_grad_norm_ |
|
|
|
|
|
@@ -13,7 +14,10 @@ def train_one_epoch(model, optimizer, train_loader, model_func, lr_scheduler, ac |
|
if rank == 0: |
|
pbar = tqdm.tqdm(total=total_it_each_epoch, leave=leave_pbar, desc='train', dynamic_ncols=True) |
|
|
|
+ start_time = None |
|
for cur_it in range(total_it_each_epoch): |
|
+ if cur_it > 49 and start_time is None: |
|
+ start_time = datetime.datetime.now() |
|
try: |
|
batch = next(dataloader_iter) |
|
except StopIteration: |
|
@@ -55,9 +59,11 @@ def train_one_epoch(model, optimizer, train_loader, model_func, lr_scheduler, ac |
|
tb_log.add_scalar('learning_rate', cur_lr, accumulated_iter) |
|
for key, val in tb_dict.items(): |
|
tb_log.add_scalar('train_' + key, val, accumulated_iter) |
|
+ endtime = datetime.datetime.now() |
|
+ speed = (endtime - start_time).seconds / (total_it_each_epoch - 50) |
|
if rank == 0: |
|
pbar.close() |
|
- return accumulated_iter |
|
+ return accumulated_iter, speed |
|
|
|
|
|
def train_model(model, optimizer, train_loader, model_func, lr_scheduler, optim_cfg, |
|
@@ -65,6 +71,7 @@ def train_model(model, optimizer, train_loader, model_func, lr_scheduler, optim_ |
|
lr_warmup_scheduler=None, ckpt_save_interval=1, max_ckpt_save_num=50, |
|
merge_all_iters_to_one_epoch=False): |
|
accumulated_iter = start_iter |
|
+ speeds = [] |
|
with tqdm.trange(start_epoch, total_epochs, desc='epochs', dynamic_ncols=True, leave=(rank == 0)) as tbar: |
|
total_it_each_epoch = len(train_loader) |
|
if merge_all_iters_to_one_epoch: |
|
@@ -82,7 +89,7 @@ def train_model(model, optimizer, train_loader, model_func, lr_scheduler, optim_ |
|
cur_scheduler = lr_warmup_scheduler |
|
else: |
|
cur_scheduler = lr_scheduler |
|
- accumulated_iter = train_one_epoch( |
|
+ accumulated_iter, speed = train_one_epoch( |
|
model, optimizer, train_loader, model_func, |
|
lr_scheduler=cur_scheduler, |
|
accumulated_iter=accumulated_iter, optim_cfg=optim_cfg, |
|
@@ -91,7 +98,7 @@ def train_model(model, optimizer, train_loader, model_func, lr_scheduler, optim_ |
|
total_it_each_epoch=total_it_each_epoch, |
|
dataloader_iter=dataloader_iter |
|
) |
|
- |
|
+ speeds.append(speed) |
|
# save trained model |
|
trained_epoch = cur_epoch + 1 |
|
if trained_epoch % ckpt_save_interval == 0 and rank == 0: |
|
@@ -107,6 +114,8 @@ def train_model(model, optimizer, train_loader, model_func, lr_scheduler, optim_ |
|
save_checkpoint( |
|
checkpoint_state(model, optimizer, trained_epoch, accumulated_iter), filename=ckpt_name, |
|
) |
|
+ print(speed) |
|
+ print(f'*******{sum(speeds) / len(speeds)}******') |
|
|
|
|
|
def model_state_to_cpu(model_state): |
|
``` |
|
|
|
</details> |
|
|
|
### VoteNet |
|
|
|
- __MMDetection3D__:在 v0.1.0 版本下, 执行如下命令: |
|
|
|
```bash |
|
./tools/dist_train.sh configs/votenet/votenet_8xb16_sunrgbd-3d.py 8 --no-validate |
|
``` |
|
|
|
- __votenet__:在 commit [2f6d6d3](https://github.com/facebookresearch/votenet/tree/2f6d6d36ff98d96901182e935afe48ccee82d566) 版本下,执行如下命令: |
|
|
|
```bash |
|
python train.py --dataset sunrgbd --batch_size 16 |
|
``` |
|
|
|
然后执行如下命令,对测试速度进行评估: |
|
|
|
```bash |
|
python eval.py --dataset sunrgbd --checkpoint_path log_sunrgbd/checkpoint.tar --batch_size 1 --dump_dir eval_sunrgbd --cluster_sampling seed_fps --use_3d_nms --use_cls_nms --per_class_proposal |
|
``` |
|
|
|
注意,为了计算推理速度,我们对 `eval.py` 进行了修改。 |
|
|
|
<details> |
|
<summary> |
|
(为了对相同模型进行测试所做的具体修改 - 点击展开) |
|
</summary> |
|
|
|
```diff |
|
diff --git a/eval.py b/eval.py |
|
index c0b2886..04921e9 100644 |
|
--- a/eval.py |
|
+++ b/eval.py |
|
@@ -10,6 +10,7 @@ import os |
|
import sys |
|
import numpy as np |
|
from datetime import datetime |
|
+import time |
|
import argparse |
|
import importlib |
|
import torch |
|
@@ -28,7 +29,7 @@ parser.add_argument('--checkpoint_path', default=None, help='Model checkpoint pa |
|
parser.add_argument('--dump_dir', default=None, help='Dump dir to save sample outputs [default: None]') |
|
parser.add_argument('--num_point', type=int, default=20000, help='Point Number [default: 20000]') |
|
parser.add_argument('--num_target', type=int, default=256, help='Point Number [default: 256]') |
|
-parser.add_argument('--batch_size', type=int, default=8, help='Batch Size during training [default: 8]') |
|
+parser.add_argument('--batch_size', type=int, default=1, help='Batch Size during training [default: 8]') |
|
parser.add_argument('--vote_factor', type=int, default=1, help='Number of votes generated from each seed [default: 1]') |
|
parser.add_argument('--cluster_sampling', default='vote_fps', help='Sampling strategy for vote clusters: vote_fps, seed_fps, random [default: vote_fps]') |
|
parser.add_argument('--ap_iou_thresholds', default='0.25,0.5', help='A list of AP IoU thresholds [default: 0.25,0.5]') |
|
@@ -132,6 +133,7 @@ CONFIG_DICT = {'remove_empty_box': (not FLAGS.faster_eval), 'use_3d_nms': FLAGS. |
|
# ------------------------------------------------------------------------- GLOBAL CONFIG END |
|
|
|
def evaluate_one_epoch(): |
|
+ time_list = list() |
|
stat_dict = {} |
|
ap_calculator_list = [APCalculator(iou_thresh, DATASET_CONFIG.class2type) \ |
|
for iou_thresh in AP_IOU_THRESHOLDS] |
|
@@ -144,6 +146,8 @@ def evaluate_one_epoch(): |
|
|
|
# Forward pass |
|
inputs = {'point_clouds': batch_data_label['point_clouds']} |
|
+ torch.cuda.synchronize() |
|
+ start_time = time.perf_counter() |
|
with torch.no_grad(): |
|
end_points = net(inputs) |
|
|
|
@@ -161,6 +165,12 @@ def evaluate_one_epoch(): |
|
|
|
batch_pred_map_cls = parse_predictions(end_points, CONFIG_DICT) |
|
batch_gt_map_cls = parse_groundtruths(end_points, CONFIG_DICT) |
|
+ torch.cuda.synchronize() |
|
+ elapsed = time.perf_counter() - start_time |
|
+ time_list.append(elapsed) |
|
+ |
|
+ if len(time_list==200): |
|
+ print("average inference time: %4f"%(sum(time_list[5:])/len(time_list[5:]))) |
|
for ap_calculator in ap_calculator_list: |
|
ap_calculator.step(batch_pred_map_cls, batch_gt_map_cls) |
|
|
|
``` |
|
|
|
### PointPillars-car |
|
|
|
- __MMDetection3D__:在 v0.1.0 版本下, 执行如下命令: |
|
|
|
```bash |
|
./tools/dist_train.sh configs/benchmark/hv_pointpillars_secfpn_3x8_100e_det3d_kitti-3d-car.py 8 --no-validate |
|
``` |
|
|
|
- __Det3D__:在 commit [519251e](https://github.com/poodarchu/Det3D/tree/519251e72a5c1fdd58972eabeac67808676b9bb7) 版本下,使用 `kitti_point_pillars_mghead_syncbn.py` 并执行如下命令: |
|
|
|
```bash |
|
./tools/scripts/train.sh --launcher=slurm --gpus=8 |
|
``` |
|
|
|
注意,为了训练 PointPillars,我们对 `train.sh` 进行了修改。 |
|
|
|
<details> |
|
<summary> |
|
(为了对相同模型进行测试所做的具体修改 - 点击展开) |
|
</summary> |
|
|
|
```diff |
|
diff --git a/tools/scripts/train.sh b/tools/scripts/train.sh |
|
index 3a93f95..461e0ea 100755 |
|
--- a/tools/scripts/train.sh |
|
+++ b/tools/scripts/train.sh |
|
@@ -16,9 +16,9 @@ then |
|
fi |
|
|
|
# Voxelnet |
|
-python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py examples/second/configs/ kitti_car_vfev3_spmiddlefhd_rpn1_mghead_syncbn.py --work_dir=$SECOND_WORK_DIR |
|
+# python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py examples/second/configs/ kitti_car_vfev3_spmiddlefhd_rpn1_mghead_syncbn.py --work_dir=$SECOND_WORK_DIR |
|
# python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py examples/cbgs/configs/ nusc_all_vfev3_spmiddleresnetfhd_rpn2_mghead_syncbn.py --work_dir=$NUSC_CBGS_WORK_DIR |
|
# python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py examples/second/configs/ lyft_all_vfev3_spmiddleresnetfhd_rpn2_mghead_syncbn.py --work_dir=$LYFT_CBGS_WORK_DIR |
|
|
|
# PointPillars |
|
-# python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py ./examples/point_pillars/configs/ original_pp_mghead_syncbn_kitti.py --work_dir=$PP_WORK_DIR |
|
+python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py ./examples/point_pillars/configs/ kitti_point_pillars_mghead_syncbn.py |
|
``` |
|
|
|
</details> |
|
|
|
### PointPillars-3class |
|
|
|
- __MMDetection3D__:在 v0.1.0 版本下, 执行如下命令: |
|
|
|
```bash |
|
./tools/dist_train.sh configs/benchmark/hv_pointpillars_secfpn_4x8_80e_pcdet_kitti-3d-3class.py 8 --no-validate |
|
``` |
|
|
|
- __OpenPCDet__:在 commit [b32fbddb](https://github.com/open-mmlab/OpenPCDet/tree/b32fbddbe06183507bad433ed99b407cbc2175c2) 版本下,执行如下命令: |
|
|
|
```bash |
|
cd tools |
|
sh scripts/slurm_train.sh ${PARTITION} ${JOB_NAME} 8 --cfg_file ./cfgs/kitti_models/pointpillar.yaml --batch_size 32 --workers 32 --epochs 80 |
|
``` |
|
|
|
### SECOND |
|
|
|
基准测试中的 SECOND 指在 [second.Pytorch](https://github.com/traveller59/second.pytorch) 首次被实现的 [SECONDv1.5](https://github.com/traveller59/second.pytorch/blob/master/second/configs/all.fhd.config)。Det3D 实现的 SECOND 中,使用了自己实现的 Multi-Group Head,因此无法将它的速度与其他代码库进行对比。 |
|
|
|
- __MMDetection3D__:在 v0.1.0 版本下, 执行如下命令: |
|
|
|
```bash |
|
./tools/dist_train.sh configs/benchmark/hv_second_secfpn_4x8_80e_pcdet_kitti-3d-3class.py 8 --no-validate |
|
``` |
|
|
|
- __OpenPCDet__:在 commit [b32fbddb](https://github.com/open-mmlab/OpenPCDet/tree/b32fbddbe06183507bad433ed99b407cbc2175c2) 版本下,执行如下命令: |
|
|
|
```bash |
|
cd tools |
|
sh ./scripts/slurm_train.sh ${PARTITION} ${JOB_NAME} 8 --cfg_file ./cfgs/kitti_models/second.yaml --batch_size 32 --workers 32 --epochs 80 |
|
``` |
|
|
|
### Part-A2 |
|
|
|
- __MMDetection3D__:在 v0.1.0 版本下, 执行如下命令: |
|
|
|
```bash |
|
./tools/dist_train.sh configs/benchmark/hv_PartA2_secfpn_4x8_cyclic_80e_pcdet_kitti-3d-3class.py 8 --no-validate |
|
``` |
|
|
|
- __OpenPCDet__:在 commit [b32fbddb](https://github.com/open-mmlab/OpenPCDet/tree/b32fbddbe06183507bad433ed99b407cbc2175c2) 版本下,执行如下命令以进行模型训练: |
|
|
|
```bash |
|
cd tools |
|
sh ./scripts/slurm_train.sh ${PARTITION} ${JOB_NAME} 8 --cfg_file ./cfgs/kitti_models/PartA2.yaml --batch_size 32 --workers 32 --epochs 80 |
|
``` |
|
|