Model Klasifikasi Review Mobile App ๐ฎ๐ฉ
Model ini digunakan untuk mengklasifikasikan ulasan pengguna aplikasi di Mobile Store ke dalam 4 kategori:
Bug
: crash, error, gagal fungsiFeature
: permintaan fitur baruUX
: pengalaman pengguna buruk (lambat, sulit, membingungkan)Noise
: spam, ambigu, sangat singkat
๐ง Base Model
Model ini dilatih berdasarkan pretrained model IndoBERT (indobenchmark/indobert-base-p1) dari IndoNLU.
๐ Sitasi IndoBERT
@inproceedings{wilie2020indonlu, title={IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding}, author={Bryan Wilie and Karissa Vincentio and Genta Indra Winata and Samuel Cahyawijaya and X. Li and Zhi Yuan Lim and S. Soleman and R. Mahendra and Pascale Fung and Syafri Bahar and A. Purwarianti}, booktitle={Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing}, year={2020} }
Dataset
Dilatih pada dataset berlabel berbahasa Indonesia (custom dataset).
Akurasi
- F1 Score terbaik: 0.64
Cara Penggunaan
from transformers import AutoTokenizer, AutoModelForSequenceClassification
model = AutoModelForSequenceClassification.from_pretrained("gilangsp/01-classification-review-mobilestore-model-f1-064")
tokenizer = AutoTokenizer.from_pretrained("gilangsp/01-classification-review-mobilestore-model-f1-064")
inputs = tokenizer("aplikasi sering crash pas buka kamera", return_tensors="pt")
outputs = model(**inputs)
- Downloads last month
- 3