mdeberta-semeval25_thresh05_fold3
This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 9.3100
- Precision Samples: 0.1032
- Recall Samples: 0.6755
- F1 Samples: 0.1696
- Precision Macro: 0.6795
- Recall Macro: 0.4191
- F1 Macro: 0.2016
- Precision Micro: 0.1008
- Recall Micro: 0.5892
- F1 Micro: 0.1721
- Precision Weighted: 0.3940
- Recall Weighted: 0.5892
- F1 Weighted: 0.1438
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11.0696 | 1.0 | 19 | 10.6040 | 0.1690 | 0.2482 | 0.1849 | 0.9705 | 0.1772 | 0.1621 | 0.1667 | 0.1388 | 0.1515 | 0.8753 | 0.1388 | 0.0429 |
10.1938 | 2.0 | 38 | 10.2562 | 0.1054 | 0.4123 | 0.1552 | 0.8984 | 0.2377 | 0.1723 | 0.1031 | 0.3031 | 0.1538 | 0.6860 | 0.3031 | 0.0742 |
9.6611 | 3.0 | 57 | 10.0662 | 0.0922 | 0.4680 | 0.1440 | 0.8729 | 0.2666 | 0.1780 | 0.0920 | 0.3598 | 0.1465 | 0.6321 | 0.3598 | 0.0845 |
9.0954 | 4.0 | 76 | 9.8720 | 0.1062 | 0.5533 | 0.1669 | 0.8057 | 0.3171 | 0.1969 | 0.1022 | 0.4419 | 0.1660 | 0.5290 | 0.4419 | 0.1089 |
9.3051 | 5.0 | 95 | 9.6646 | 0.1077 | 0.5701 | 0.1687 | 0.7450 | 0.3349 | 0.1947 | 0.1002 | 0.4731 | 0.1654 | 0.4512 | 0.4731 | 0.1090 |
9.0741 | 6.0 | 114 | 9.5296 | 0.1025 | 0.6164 | 0.1655 | 0.7381 | 0.3658 | 0.2022 | 0.0983 | 0.5156 | 0.1652 | 0.4412 | 0.5156 | 0.1245 |
9.5375 | 7.0 | 133 | 9.4199 | 0.1022 | 0.6282 | 0.1657 | 0.6966 | 0.3790 | 0.1954 | 0.0983 | 0.5354 | 0.1661 | 0.4215 | 0.5354 | 0.1328 |
8.4783 | 8.0 | 152 | 9.3455 | 0.1038 | 0.6645 | 0.1698 | 0.6831 | 0.4140 | 0.2024 | 0.1006 | 0.5807 | 0.1715 | 0.4004 | 0.5807 | 0.1438 |
9.1304 | 9.0 | 171 | 9.3003 | 0.1046 | 0.6769 | 0.1716 | 0.6840 | 0.4272 | 0.2060 | 0.1017 | 0.5977 | 0.1738 | 0.4007 | 0.5977 | 0.1494 |
9.0129 | 10.0 | 190 | 9.3100 | 0.1032 | 0.6755 | 0.1696 | 0.6795 | 0.4191 | 0.2016 | 0.1008 | 0.5892 | 0.1721 | 0.3940 | 0.5892 | 0.1438 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.3.1
- Datasets 2.21.0
- Tokenizers 0.20.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for g-assismoraes/mdeberta-semeval25_thresh05_fold3
Base model
microsoft/mdeberta-v3-base