mdeberta-semeval25_narratives_fold3
This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 4.2072
- Precision Samples: 0.3215
- Recall Samples: 0.7807
- F1 Samples: 0.4308
- Precision Macro: 0.6748
- Recall Macro: 0.4927
- F1 Macro: 0.2710
- Precision Micro: 0.2999
- Recall Micro: 0.7380
- F1 Micro: 0.4264
- Precision Weighted: 0.4569
- Recall Weighted: 0.7380
- F1 Weighted: 0.3669
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.6486 | 1.0 | 19 | 5.3336 | 0.3483 | 0.1721 | 0.1761 | 0.9485 | 0.1103 | 0.0885 | 0.2808 | 0.1513 | 0.1966 | 0.8757 | 0.1513 | 0.0961 |
5.1546 | 2.0 | 38 | 5.1500 | 0.2167 | 0.4798 | 0.2793 | 0.8504 | 0.2332 | 0.1144 | 0.2138 | 0.4244 | 0.2843 | 0.6587 | 0.4244 | 0.1537 |
4.8699 | 3.0 | 57 | 4.9488 | 0.2564 | 0.5453 | 0.3324 | 0.7640 | 0.2641 | 0.1615 | 0.2495 | 0.4649 | 0.3247 | 0.5390 | 0.4649 | 0.2268 |
4.5166 | 4.0 | 76 | 4.6712 | 0.2862 | 0.6829 | 0.3830 | 0.7666 | 0.3645 | 0.1962 | 0.2768 | 0.6089 | 0.3806 | 0.5521 | 0.6089 | 0.2853 |
4.6349 | 5.0 | 95 | 4.4841 | 0.3041 | 0.7471 | 0.4094 | 0.7060 | 0.4314 | 0.2415 | 0.2890 | 0.6900 | 0.4074 | 0.4760 | 0.6900 | 0.3405 |
4.4166 | 6.0 | 114 | 4.3419 | 0.3141 | 0.7724 | 0.4210 | 0.7013 | 0.4581 | 0.2433 | 0.2912 | 0.7232 | 0.4153 | 0.4724 | 0.7232 | 0.3455 |
3.9808 | 7.0 | 133 | 4.2831 | 0.3158 | 0.7755 | 0.4256 | 0.6779 | 0.4803 | 0.2690 | 0.2942 | 0.7306 | 0.4195 | 0.4555 | 0.7306 | 0.3618 |
4.051 | 8.0 | 152 | 4.2851 | 0.3114 | 0.7416 | 0.4174 | 0.6723 | 0.4709 | 0.2650 | 0.2961 | 0.7048 | 0.4170 | 0.4528 | 0.7048 | 0.3579 |
4.0759 | 9.0 | 171 | 4.2030 | 0.3236 | 0.7830 | 0.4340 | 0.6801 | 0.4942 | 0.2758 | 0.3009 | 0.7417 | 0.4281 | 0.4611 | 0.7417 | 0.3710 |
4.3531 | 10.0 | 190 | 4.2072 | 0.3215 | 0.7807 | 0.4308 | 0.6748 | 0.4927 | 0.2710 | 0.2999 | 0.7380 | 0.4264 | 0.4569 | 0.7380 | 0.3669 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.3.1
- Datasets 2.21.0
- Tokenizers 0.20.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for g-assismoraes/mdeberta-semeval25_narratives_fold3
Base model
microsoft/mdeberta-v3-base