ditengm commited on
Commit
2b716de
·
verified ·
1 Parent(s): cb2ac76

Add new SentenceTransformer model.

Browse files
Files changed (2) hide show
  1. README.md +41 -1
  2. modules.json +6 -0
README.md CHANGED
@@ -5,12 +5,13 @@ tags:
5
  - sentence-transformers
6
  - feature-extraction
7
  - sentence-similarity
 
8
 
9
  ---
10
 
11
  # ditengm/bge-base-en-v1.5-fine-tuned_reels_1.1
12
 
13
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a None dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
15
  <!--- Describe your model here -->
16
 
@@ -35,6 +36,44 @@ print(embeddings)
35
 
36
 
37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
  ## Evaluation Results
39
 
40
  <!--- Describe how your model was evaluated -->
@@ -47,6 +86,7 @@ For an automated evaluation of this model, see the *Sentence Embeddings Benchmar
47
  ```
48
  SentenceTransformer(
49
  (0): Transformer({'max_seq_length': 768, 'do_lower_case': False}) with Transformer model: BertModel
 
50
  )
51
  ```
52
 
 
5
  - sentence-transformers
6
  - feature-extraction
7
  - sentence-similarity
8
+ - transformers
9
 
10
  ---
11
 
12
  # ditengm/bge-base-en-v1.5-fine-tuned_reels_1.1
13
 
14
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
15
 
16
  <!--- Describe your model here -->
17
 
 
36
 
37
 
38
 
39
+ ## Usage (HuggingFace Transformers)
40
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
41
+
42
+ ```python
43
+ from transformers import AutoTokenizer, AutoModel
44
+ import torch
45
+
46
+
47
+ #Mean Pooling - Take attention mask into account for correct averaging
48
+ def mean_pooling(model_output, attention_mask):
49
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
50
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
51
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
52
+
53
+
54
+ # Sentences we want sentence embeddings for
55
+ sentences = ['This is an example sentence', 'Each sentence is converted']
56
+
57
+ # Load model from HuggingFace Hub
58
+ tokenizer = AutoTokenizer.from_pretrained('ditengm/bge-base-en-v1.5-fine-tuned_reels_1.1')
59
+ model = AutoModel.from_pretrained('ditengm/bge-base-en-v1.5-fine-tuned_reels_1.1')
60
+
61
+ # Tokenize sentences
62
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
63
+
64
+ # Compute token embeddings
65
+ with torch.no_grad():
66
+ model_output = model(**encoded_input)
67
+
68
+ # Perform pooling. In this case, mean pooling.
69
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
70
+
71
+ print("Sentence embeddings:")
72
+ print(sentence_embeddings)
73
+ ```
74
+
75
+
76
+
77
  ## Evaluation Results
78
 
79
  <!--- Describe how your model was evaluated -->
 
86
  ```
87
  SentenceTransformer(
88
  (0): Transformer({'max_seq_length': 768, 'do_lower_case': False}) with Transformer model: BertModel
89
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
90
  )
91
  ```
92
 
modules.json CHANGED
@@ -4,5 +4,11 @@
4
  "name": "0",
5
  "path": "",
6
  "type": "sentence_transformers.models.Transformer"
 
 
 
 
 
 
7
  }
8
  ]
 
4
  "name": "0",
5
  "path": "",
6
  "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
  }
14
  ]