ditengm commited on
Commit
cb2ac76
·
verified ·
1 Parent(s): 069e1f6

Add new SentenceTransformer model.

Browse files
Files changed (2) hide show
  1. README.md +1 -41
  2. modules.json +0 -6
README.md CHANGED
@@ -5,13 +5,12 @@ tags:
5
  - sentence-transformers
6
  - feature-extraction
7
  - sentence-similarity
8
- - transformers
9
 
10
  ---
11
 
12
  # ditengm/bge-base-en-v1.5-fine-tuned_reels_1.1
13
 
14
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
15
 
16
  <!--- Describe your model here -->
17
 
@@ -36,44 +35,6 @@ print(embeddings)
36
 
37
 
38
 
39
- ## Usage (HuggingFace Transformers)
40
- Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
41
-
42
- ```python
43
- from transformers import AutoTokenizer, AutoModel
44
- import torch
45
-
46
-
47
- #Mean Pooling - Take attention mask into account for correct averaging
48
- def mean_pooling(model_output, attention_mask):
49
- token_embeddings = model_output[0] #First element of model_output contains all token embeddings
50
- input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
51
- return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
52
-
53
-
54
- # Sentences we want sentence embeddings for
55
- sentences = ['This is an example sentence', 'Each sentence is converted']
56
-
57
- # Load model from HuggingFace Hub
58
- tokenizer = AutoTokenizer.from_pretrained('ditengm/bge-base-en-v1.5-fine-tuned_reels_1.1')
59
- model = AutoModel.from_pretrained('ditengm/bge-base-en-v1.5-fine-tuned_reels_1.1')
60
-
61
- # Tokenize sentences
62
- encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
63
-
64
- # Compute token embeddings
65
- with torch.no_grad():
66
- model_output = model(**encoded_input)
67
-
68
- # Perform pooling. In this case, mean pooling.
69
- sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
70
-
71
- print("Sentence embeddings:")
72
- print(sentence_embeddings)
73
- ```
74
-
75
-
76
-
77
  ## Evaluation Results
78
 
79
  <!--- Describe how your model was evaluated -->
@@ -86,7 +47,6 @@ For an automated evaluation of this model, see the *Sentence Embeddings Benchmar
86
  ```
87
  SentenceTransformer(
88
  (0): Transformer({'max_seq_length': 768, 'do_lower_case': False}) with Transformer model: BertModel
89
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
90
  )
91
  ```
92
 
 
5
  - sentence-transformers
6
  - feature-extraction
7
  - sentence-similarity
 
8
 
9
  ---
10
 
11
  # ditengm/bge-base-en-v1.5-fine-tuned_reels_1.1
12
 
13
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a None dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
15
  <!--- Describe your model here -->
16
 
 
35
 
36
 
37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
  ## Evaluation Results
39
 
40
  <!--- Describe how your model was evaluated -->
 
47
  ```
48
  SentenceTransformer(
49
  (0): Transformer({'max_seq_length': 768, 'do_lower_case': False}) with Transformer model: BertModel
 
50
  )
51
  ```
52
 
modules.json CHANGED
@@ -4,11 +4,5 @@
4
  "name": "0",
5
  "path": "",
6
  "type": "sentence_transformers.models.Transformer"
7
- },
8
- {
9
- "idx": 1,
10
- "name": "1",
11
- "path": "1_Pooling",
12
- "type": "sentence_transformers.models.Pooling"
13
  }
14
  ]
 
4
  "name": "0",
5
  "path": "",
6
  "type": "sentence_transformers.models.Transformer"
 
 
 
 
 
 
7
  }
8
  ]