RoBERTa-mini: Sentiment Classifier
Model Name: dilip025/RoBERTa-mini
Task: Sentiment Classification
Labels: Very Negative, Negative, Neutral, Positive, Very Positive
A compact RoBERTa like model trained from scratch for sentiment classification.
Example Usage
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
tokenizer = AutoTokenizer.from_pretrained("dilip025/RoBERTa-mini")
model = AutoModelForSequenceClassification.from_pretrained("dilip025/RoBERTa-mini", trust_remote_code=True)
id2label = {
0: "Very Negative",
1: "Negative",
2: "Neutral",
3: "Positive",
4: "Very Positive"
}
def predict_sentiment(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)
with torch.no_grad():
outputs = model(**inputs)
probs = torch.softmax(outputs["logits"], dim=1)
pred_class = torch.argmax(probs, dim=1).item()
return {
"text": text,
"class_id": pred_class,
"label": id2label[pred_class],
"probabilities": probs.tolist()[0]
}
# Example
result = predict_sentiment("I absolutely hate this product.")
print(result)
Model Card
- Architecture: RoBERTa (custom small version)
- Training Dataset: Amazon Reviews Dataset
- Use Case: Sentiment classification for customer feedback, reviews, etc.
- Input Format: Plain text (string)
- Output: Dictionary with class ID, label, and class probabilities
License
This model is licensed under the MIT License. You are free to use, modify, and distribute it with attribution.
Author
Developed and Trained by Dilip Pokhrel
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support