metadata
language:
- en
license: llama3
library_name: transformers
tags:
- orpo
- llama 3
- rlhf
- sft
datasets:
- mlabonne/orpo-dpo-mix-40k
base_model:
- meta-llama/Meta-Llama-3-70B
dfurman/Llama-3-70B-Orpo-v0.1
This is an ORPO fine-tune of meta-llama/Meta-Llama-3-70B on 2k samples of mlabonne/orpo-dpo-mix-40k.
It's a successful fine-tune that follows the ChatML template!
π Application
This model uses a context window of 8k. It was trained with the ChatML template.
π Evaluation
Open LLM Leaderboard
TBD.
π Training curves
You can find the experiment on W&B at this address.
π» Usage
Setup
!pip install -qU transformers accelerate bitsandbytes
from transformers import AutoTokenizer, BitsAndBytesConfig
import transformers
import torch
if torch.cuda.get_device_capability()[0] >= 8:
!pip install -qqq flash-attn
attn_implementation = "flash_attention_2"
torch_dtype = torch.bfloat16
else:
attn_implementation = "eager"
torch_dtype = torch.float16
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch_dtype,
bnb_4bit_use_double_quant=True,
)
model = "dfurman/Llama-3-70B-Orpo-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={
"torch_dtype": torch_dtype,
"quantization_config": bnb_config,
"device_map": "auto",
"attn_implementation": attn_implementation,
}
)
Run
messages = [{"role": "user", "content": "What is a large language model?"}]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
print("***Prompt:\n", prompt)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print("***Generation:\n", outputs[0]["generated_text"])
Output
coming