|
import pandas as pd |
|
from pandas_image_methods import PILMethods |
|
|
|
from pathlib import Path |
|
|
|
|
|
SKILLS = { |
|
"single_skill/counting_only-paired-distance_and_counting": "Counting (w/ Distance)", |
|
"single_skill/counting_only-paired-position_and_counting": "Counting (w/ Position)", |
|
"single_skill/distance_only": "Distance", |
|
"single_skill/position_only": "Position", |
|
"single_skill/size_only": "Size", |
|
"combine_2_skill/distance_and_counting": "Distance + Counting", |
|
"combine_2_skill/distance_and_size": "Distance + Size", |
|
"combine_2_skill/position_and_counting": "Position + Counting", |
|
"reasoning/object_manipulation": "Object Manipulation", |
|
"reasoning/object_occlusion": "Object Occlusion", |
|
} |
|
|
|
pd.api.extensions.register_series_accessor("pil")(PILMethods) |
|
|
|
for skill in SKILLS.keys(): |
|
print(skill) |
|
fn_json = f"eval_datasets/coco_test2017_annotations/{skill}.json" |
|
df = pd.read_json(fn_json) |
|
df["image"] = df["metadata"].map( |
|
lambda dict: f"eval_datasets/coco_test2017/{dict['source_img_id']:0>12}.jpg" |
|
).pil.open() |
|
|
|
fn_parquet = f"eval_datasets/coco_test2017_annotations_hf/{skill}.parquet" |
|
Path(fn_parquet).parent.mkdir(parents=True, exist_ok=True) |
|
df.to_parquet(fn_parquet) |
|
|