Datasets:
File size: 1,246 Bytes
604ba29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import pandas as pd
from pandas_image_methods import PILMethods
from pathlib import Path
SKILLS = {
"single_skill/counting_only-paired-distance_and_counting": "Counting (w/ Distance)",
"single_skill/counting_only-paired-position_and_counting": "Counting (w/ Position)",
"single_skill/distance_only": "Distance",
"single_skill/position_only": "Position",
"single_skill/size_only": "Size",
"combine_2_skill/distance_and_counting": "Distance + Counting",
"combine_2_skill/distance_and_size": "Distance + Size",
"combine_2_skill/position_and_counting": "Position + Counting",
"reasoning/object_manipulation": "Object Manipulation",
"reasoning/object_occlusion": "Object Occlusion",
}
pd.api.extensions.register_series_accessor("pil")(PILMethods)
for skill in SKILLS.keys():
print(skill)
fn_json = f"eval_datasets/coco_test2017_annotations/{skill}.json"
df = pd.read_json(fn_json)
df["image"] = df["metadata"].map(
lambda dict: f"eval_datasets/coco_test2017/{dict['source_img_id']:0>12}.jpg"
).pil.open()
fn_parquet = f"eval_datasets/coco_test2017_annotations_hf/{skill}.parquet"
Path(fn_parquet).parent.mkdir(parents=True, exist_ok=True)
df.to_parquet(fn_parquet)
|