text
stringlengths
5
261k
id
stringlengths
16
106
metadata
dict
__index_level_0__
int64
0
266
from keras_core import ops from keras_core.api_export import keras_core_export from keras_core.layers.merging.base_merge import Merge @keras_core_export("keras_core.layers.Concatenate") class Concatenate(Merge): """Concatenates a list of inputs. It takes as input a list of tensors, all of the same shape except for the concatenation axis, and returns a single tensor that is the concatenation of all inputs. Examples: >>> x = np.arange(20).reshape(2, 2, 5) >>> y = np.arange(20, 30).reshape(2, 1, 5) >>> keras_core.layers.Concatenate(axis=1)([x, y]) Usage in a Keras model: >>> x1 = keras_core.layers.Dense(8)(np.arange(10).reshape(5, 2)) >>> x2 = keras_core.layers.Dense(8)(np.arange(10, 20).reshape(5, 2)) >>> y = keras_core.layers.Concatenate()([x1, x2]) Args: axis: Axis along which to concatenate. **kwargs: Standard layer keyword arguments. Returns: A tensor, the concatenation of the inputs alongside axis `axis`. """ def __init__(self, axis=-1, **kwargs): super().__init__(**kwargs) self.axis = axis self.supports_masking = True self._reshape_required = False def build(self, input_shape): # Used purely for shape validation. if len(input_shape) < 1 or not isinstance( input_shape[0], (tuple, list) ): raise ValueError( "A `Concatenate` layer should be called on a list of " f"at least 1 input. Received: input_shape={input_shape}" ) if all(shape is None for shape in input_shape): return reduced_inputs_shapes = [list(shape) for shape in input_shape] shape_set = set() for i in range(len(reduced_inputs_shapes)): # Convert self.axis to positive axis for each input # in case self.axis is a negative number concat_axis = self.axis % len(reduced_inputs_shapes[i]) # Skip batch axis. for axis, axis_value in enumerate( reduced_inputs_shapes[i][1:], start=1 ): # Remove squeezable axes (axes with value of 1) # if not in the axis that will be used for concatenation # otherwise leave it. # This approach allows building the layer, # but if tensor shapes are not the same when # calling, an exception will be raised. if axis != concat_axis and axis_value == 1: del reduced_inputs_shapes[i][axis] if len(reduced_inputs_shapes[i]) > self.axis: del reduced_inputs_shapes[i][self.axis] shape_set.add(tuple(reduced_inputs_shapes[i])) if len(shape_set) != 1: err_msg = ( "A `Concatenate` layer requires inputs with matching shapes " "except for the concatenation axis. " f"Received: input_shape={input_shape}" ) # Make sure all the shapes have same ranks. ranks = set(len(shape) for shape in shape_set) if len(ranks) != 1: raise ValueError(err_msg) # Get the only rank for the set. (rank,) = ranks for axis in range(rank): # Skip the Nones in the shape since they are dynamic, also the # axis for concat has been removed above. unique_dims = set( shape[axis] for shape in shape_set if shape[axis] is not None ) if len(unique_dims) > 1: raise ValueError(err_msg) self.built = True def _merge_function(self, inputs): return ops.concatenate(inputs, axis=self.axis) def compute_output_shape(self, input_shape): if (not isinstance(input_shape, (tuple, list))) or ( not isinstance(input_shape[0], (tuple, list)) ): raise ValueError( "A `Concatenate` layer should be called on a list of inputs. " f"Received: input_shape={input_shape}" ) input_shapes = input_shape output_shape = list(input_shapes[0]) for shape in input_shapes[1:]: if output_shape[self.axis] is None or shape[self.axis] is None: output_shape[self.axis] = None break output_shape[self.axis] += shape[self.axis] return tuple(output_shape) def compute_mask(self, inputs, mask=None): if mask is None: return None if not isinstance(mask, (tuple, list)): raise ValueError(f"`mask` should be a list. Received mask={mask}") if not isinstance(inputs, (tuple, list)): raise ValueError( f"`inputs` should be a list. Received: inputs={inputs}" ) if len(mask) != len(inputs): raise ValueError( "The lists `inputs` and `mask` should have the same length. " f"Received: inputs={inputs} of length {len(inputs)}, and " f"mask={mask} of length {len(mask)}" ) if all(m is None for m in mask): return None # Make a list of masks while making sure # the dimensionality of each mask # is the same as the corresponding input. masks = [] for input_i, mask_i in zip(inputs, mask): if mask_i is None: # Input is unmasked. Append all 1s to masks, masks.append(ops.ones_like(input_i, dtype="bool")) elif mask_i.ndim < input_i.ndim: # Mask is smaller than the input, expand it masks.append(ops.expand_dims(mask_i, axis=-1)) else: masks.append(mask_i) concatenated = ops.concatenate(masks, axis=self.axis) return ops.all(concatenated, axis=-1, keepdims=False) def get_config(self): config = {"axis": self.axis} base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) @keras_core_export("keras_core.layers.concatenate") def concatenate(inputs, axis=-1, **kwargs): """Functional interface to the `Concatenate` layer. Args: inputs: A list of input tensors. axis: Concatenation axis. **kwargs: Standard layer keyword arguments. Returns: A tensor, the concatenation of the inputs alongside axis `axis`. """ return Concatenate(axis=axis, **kwargs)(inputs)
keras-core/keras_core/layers/merging/concatenate.py/0
{ "file_path": "keras-core/keras_core/layers/merging/concatenate.py", "repo_id": "keras-core", "token_count": 3129 }
36
from keras_core import ops from keras_core.api_export import keras_core_export from keras_core.layers.layer import Layer @keras_core_export("keras_core.layers.UnitNormalization") class UnitNormalization(Layer): """Unit normalization layer. Normalize a batch of inputs so that each input in the batch has a L2 norm equal to 1 (across the axes specified in `axis`). Example: >>> data = np.arange(6).reshape(2, 3) >>> normalized_data = keras_core.layers.UnitNormalization()(data) >>> print(np.sum(normalized_data[0, :] ** 2) 1.0 Args: axis: Integer or list/tuple. The axis or axes to normalize across. Typically, this is the features axis or axes. The left-out axes are typically the batch axis or axes. `-1` is the last dimension in the input. Defaults to `-1`. """ def __init__(self, axis=-1, **kwargs): super().__init__(**kwargs) if isinstance(axis, (list, tuple)): self.axis = list(axis) elif isinstance(axis, int): self.axis = axis else: raise TypeError( "Invalid value for `axis` argument: " "expected an int or a list/tuple of ints. " f"Received: axis={axis}" ) self.supports_masking = True def build(self, input_shape): self.built = True def call(self, inputs): x = ops.cast(inputs, self.compute_dtype) square_sum = ops.sum(ops.square(x), axis=self.axis, keepdims=True) x_inv_norm = ops.rsqrt(ops.maximum(square_sum, 1e-12)) return ops.multiply(x, x_inv_norm) def compute_output_shape(self, input_shape): return input_shape def get_config(self): config = super().get_config() config.update({"axis": self.axis}) return config
keras-core/keras_core/layers/normalization/unit_normalization.py/0
{ "file_path": "keras-core/keras_core/layers/normalization/unit_normalization.py", "repo_id": "keras-core", "token_count": 801 }
37
import numpy as np import pytest from absl.testing import parameterized from keras_core import layers from keras_core import testing @pytest.mark.requires_trainable_backend class GlobalMaxPoolingBasicTest(testing.TestCase, parameterized.TestCase): @parameterized.parameters( ("channels_last", False, (3, 5, 4), (3, 4)), ("channels_last", True, (3, 5, 4), (3, 1, 4)), ("channels_first", False, (3, 5, 4), (3, 5)), ) def test_global_max_pooling1d( self, data_format, keepdims, input_shape, output_shape, ): self.run_layer_test( layers.GlobalMaxPooling1D, init_kwargs={ "data_format": data_format, "keepdims": keepdims, }, input_shape=input_shape, expected_output_shape=output_shape, expected_num_trainable_weights=0, expected_num_non_trainable_weights=0, expected_num_losses=0, supports_masking=False, ) @parameterized.parameters( ("channels_last", False, (3, 5, 6, 4), (3, 4)), ("channels_last", True, (3, 5, 6, 4), (3, 1, 1, 4)), ("channels_first", False, (3, 5, 6, 4), (3, 5)), ) def test_global_max_pooling2d( self, data_format, keepdims, input_shape, output_shape, ): self.run_layer_test( layers.GlobalMaxPooling2D, init_kwargs={ "data_format": data_format, "keepdims": keepdims, }, input_shape=input_shape, expected_output_shape=output_shape, expected_num_trainable_weights=0, expected_num_non_trainable_weights=0, expected_num_losses=0, supports_masking=False, ) @parameterized.parameters( ("channels_last", False, (3, 5, 6, 5, 4), (3, 4)), ("channels_last", True, (3, 5, 6, 5, 4), (3, 1, 1, 1, 4)), ("channels_first", False, (3, 5, 6, 5, 4), (3, 5)), ) def test_global_max_pooling3d( self, data_format, keepdims, input_shape, output_shape, ): self.run_layer_test( layers.GlobalMaxPooling3D, init_kwargs={ "data_format": data_format, "keepdims": keepdims, }, input_shape=input_shape, expected_output_shape=output_shape, expected_num_trainable_weights=0, expected_num_non_trainable_weights=0, expected_num_losses=0, supports_masking=False, ) class GlobalMaxPoolingCorrectnessTest(testing.TestCase, parameterized.TestCase): @parameterized.parameters( ("channels_last", False), ("channels_last", True), ("channels_first", False), ("channels_first", True), ) def test_global_max_pooling1d(self, data_format, keepdims): def np_global_max_pool1d(x, data_format, keepdims): steps_axis = [1] if data_format == "channels_last" else [2] res = np.apply_over_axes(np.max, x, steps_axis) if not keepdims: res = res.squeeze() return res inputs = np.arange(24, dtype="float32").reshape((2, 3, 4)) layer = layers.GlobalMaxPooling1D( data_format=data_format, keepdims=keepdims, ) outputs = layer(inputs) expected = np_global_max_pool1d(inputs, data_format, keepdims) self.assertAllClose(outputs, expected) @parameterized.parameters( ("channels_last", False), ("channels_last", True), ("channels_first", False), ("channels_first", True), ) def test_global_max_pooling2d(self, data_format, keepdims): def np_global_max_pool2d(x, data_format, keepdims): steps_axis = [1, 2] if data_format == "channels_last" else [2, 3] res = np.apply_over_axes(np.max, x, steps_axis) if not keepdims: res = res.squeeze() return res inputs = np.arange(96, dtype="float32").reshape((2, 3, 4, 4)) layer = layers.GlobalMaxPooling2D( data_format=data_format, keepdims=keepdims, ) outputs = layer(inputs) expected = np_global_max_pool2d(inputs, data_format, keepdims) self.assertAllClose(outputs, expected) @parameterized.parameters( ("channels_last", False), ("channels_last", True), ("channels_first", False), ("channels_first", True), ) def test_global_max_pooling3d(self, data_format, keepdims): def np_global_max_pool3d(x, data_format, keepdims): steps_axis = ( [1, 2, 3] if data_format == "channels_last" else [2, 3, 4] ) res = np.apply_over_axes(np.max, x, steps_axis) if not keepdims: res = res.squeeze() return res inputs = np.arange(360, dtype="float32").reshape((2, 3, 3, 5, 4)) layer = layers.GlobalMaxPooling3D( data_format=data_format, keepdims=keepdims, ) outputs = layer(inputs) expected = np_global_max_pool3d(inputs, data_format, keepdims) self.assertAllClose(outputs, expected)
keras-core/keras_core/layers/pooling/global_max_pooling_test.py/0
{ "file_path": "keras-core/keras_core/layers/pooling/global_max_pooling_test.py", "repo_id": "keras-core", "token_count": 2751 }
38
from keras_core import backend from keras_core.api_export import keras_core_export from keras_core.layers.layer import Layer from keras_core.utils import backend_utils from keras_core.utils import tf_utils from keras_core.utils.module_utils import tensorflow as tf @keras_core_export("keras_core.layers.Hashing") class Hashing(Layer): """A preprocessing layer which hashes and bins categorical features. This layer transforms categorical inputs to hashed output. It element-wise converts a ints or strings to ints in a fixed range. The stable hash function uses `tensorflow::ops::Fingerprint` to produce the same output consistently across all platforms. This layer uses [FarmHash64](https://github.com/google/farmhash) by default, which provides a consistent hashed output across different platforms and is stable across invocations, regardless of device and context, by mixing the input bits thoroughly. If you want to obfuscate the hashed output, you can also pass a random `salt` argument in the constructor. In that case, the layer will use the [SipHash64](https://github.com/google/highwayhash) hash function, with the `salt` value serving as additional input to the hash function. **Note:** This layer internally uses TensorFlow. It cannot be used as part of the compiled computation graph of a model with any backend other than TensorFlow. It can however be used with any backend when running eagerly. It can also always be used as part of an input preprocessing pipeline with any backend (outside the model itself), which is how we recommend to use this layer. **Note:** This layer is safe to use inside a `tf.data` pipeline (independently of which backend you're using). **Example (FarmHash64)** >>> layer = keras_core.layers.Hashing(num_bins=3) >>> inp = [['A'], ['B'], ['C'], ['D'], ['E']] >>> layer(inp) array([[1], [0], [1], [1], [2]])> **Example (FarmHash64) with a mask value** >>> layer = keras_core.layers.Hashing(num_bins=3, mask_value='') >>> inp = [['A'], ['B'], [''], ['C'], ['D']] >>> layer(inp) array([[1], [1], [0], [2], [2]]) **Example (SipHash64)** >>> layer = keras_core.layers.Hashing(num_bins=3, salt=[133, 137]) >>> inp = [['A'], ['B'], ['C'], ['D'], ['E']] >>> layer(inp) array([[1], [2], [1], [0], [2]]) **Example (Siphash64 with a single integer, same as `salt=[133, 133]`)** >>> layer = keras_core.layers.Hashing(num_bins=3, salt=133) >>> inp = [['A'], ['B'], ['C'], ['D'], ['E']] >>> layer(inp) array([[0], [0], [2], [1], [0]]) Args: num_bins: Number of hash bins. Note that this includes the `mask_value` bin, so the effective number of bins is `(num_bins - 1)` if `mask_value` is set. mask_value: A value that represents masked inputs, which are mapped to index 0. `None` means no mask term will be added and the hashing will start at index 0. Defaults to `None`. salt: A single unsigned integer or None. If passed, the hash function used will be SipHash64, with these values used as an additional input (known as a "salt" in cryptography). These should be non-zero. If `None`, uses the FarmHash64 hash function. It also supports tuple/list of 2 unsigned integer numbers, see reference paper for details. Defaults to `None`. output_mode: Specification for the output of the layer. Values can be `"int"`, `"one_hot"`, `"multi_hot"`, or `"count"` configuring the layer as follows: - `"int"`: Return the integer bin indices directly. - `"one_hot"`: Encodes each individual element in the input into an array the same size as `num_bins`, containing a 1 at the input's bin index. If the last dimension is size 1, will encode on that dimension. If the last dimension is not size 1, will append a new dimension for the encoded output. - `"multi_hot"`: Encodes each sample in the input into a single array the same size as `num_bins`, containing a 1 for each bin index index present in the sample. Treats the last dimension as the sample dimension, if input shape is `(..., sample_length)`, output shape will be `(..., num_tokens)`. - `"count"`: As `"multi_hot"`, but the int array contains a count of the number of times the bin index appeared in the sample. Defaults to `"int"`. sparse: Boolean. Only applicable to `"one_hot"`, `"multi_hot"`, and `"count"` output modes. Only supported with TensorFlow backend. If `True`, returns a `SparseTensor` instead of a dense `Tensor`. Defaults to `False`. **kwargs: Keyword arguments to construct a layer. Input shape: A single string, a list of strings, or an `int32` or `int64` tensor of shape `(batch_size, ...,)`. Output shape: An `int32` tensor of shape `(batch_size, ...)`. Reference: - [SipHash with salt](https://www.131002.net/siphash/siphash.pdf) """ def __init__( self, num_bins, mask_value=None, salt=None, output_mode="int", sparse=False, **kwargs, ): if not tf.available: raise ImportError( "Layer Hashing requires TensorFlow. " "Install it via `pip install tensorflow`." ) # By default, output int32 when output_mode='int' and floats otherwise. if "dtype" not in kwargs or kwargs["dtype"] is None: kwargs["dtype"] = ( "int64" if output_mode == "int" else backend.floatx() ) super().__init__(**kwargs) if num_bins is None or num_bins <= 0: raise ValueError( "The `num_bins` for `Hashing` cannot be `None` or " f"non-positive values. Received: num_bins={num_bins}." ) if output_mode == "int" and not kwargs["dtype"] in ("int32", "int64"): raise ValueError( 'When `output_mode="int"`, `dtype` should be an integer ' f"type, 'int32' or 'in64'. Received: dtype={kwargs['dtype']}" ) # 'output_mode' must be one of (INT, ONE_HOT, MULTI_HOT, COUNT) accepted_output_modes = ("int", "one_hot", "multi_hot", "count") if output_mode not in accepted_output_modes: raise ValueError( "Invalid value for argument `output_mode`. " f"Expected one of {accepted_output_modes}. " f"Received: output_mode={output_mode}" ) if sparse and output_mode == "int": raise ValueError( "`sparse` may only be true if `output_mode` is " '`"one_hot"`, `"multi_hot"`, or `"count"`. ' f"Received: sparse={sparse} and " f"output_mode={output_mode}" ) self.num_bins = num_bins self.mask_value = mask_value self.strong_hash = True if salt is not None else False self.output_mode = output_mode self.sparse = sparse self.salt = None if salt is not None: if isinstance(salt, (tuple, list)) and len(salt) == 2: self.salt = list(salt) elif isinstance(salt, int): self.salt = [salt, salt] else: raise ValueError( "The `salt` argument for `Hashing` can only be a tuple of " "size 2 integers, or a single integer. " f"Received: salt={salt}." ) self._convert_input_args = False self._allow_non_tensor_positional_args = True self.supports_jit = False def call(self, inputs): if not isinstance( inputs, (tf.Tensor, tf.SparseTensor, tf.RaggedTensor) ): inputs = tf.convert_to_tensor(backend.convert_to_numpy(inputs)) if isinstance(inputs, tf.SparseTensor): indices = tf.SparseTensor( indices=inputs.indices, values=self._hash_values_to_bins(inputs.values), dense_shape=inputs.dense_shape, ) else: indices = self._hash_values_to_bins(inputs) outputs = tf_utils.encode_categorical_inputs( indices, output_mode=self.output_mode, depth=self.num_bins, sparse=self.sparse, dtype=self.dtype, ) if ( backend.backend() != "tensorflow" and not backend_utils.in_tf_graph() ): outputs = backend.convert_to_tensor(outputs) return outputs def _hash_values_to_bins(self, values): """Converts a non-sparse tensor of values to bin indices.""" hash_bins = self.num_bins mask = None # If mask_value is set, the zeroth bin is reserved for it. if self.mask_value is not None and hash_bins > 1: hash_bins -= 1 mask = tf.equal(values, self.mask_value) # Convert all values to strings before hashing. # Floats are first normalized to int64. if values.dtype.is_floating: values = tf.cast(values, dtype="int64") if values.dtype != tf.string: values = tf.as_string(values) # Hash the strings. if self.strong_hash: values = tf.strings.to_hash_bucket_strong( values, hash_bins, name="hash", key=self.salt ) else: values = tf.strings.to_hash_bucket_fast( values, hash_bins, name="hash" ) if mask is not None: values = tf.add(values, tf.ones_like(values)) values = tf.where(mask, tf.zeros_like(values), values) return values def compute_output_spec(self, inputs): if self.output_mode == "int": return backend.KerasTensor(shape=inputs.shape, dtype=self.dtype) if len(inputs.shape) >= 1: base_shape = tuple(inputs.shape)[:-1] else: base_shape = () return backend.KerasTensor( shape=base_shape + (self.num_bins,), dtype=self.dtype ) def get_config(self): config = super().get_config() config.update( { "num_bins": self.num_bins, "salt": self.salt, "mask_value": self.mask_value, "output_mode": self.output_mode, "sparse": self.sparse, } ) return config
keras-core/keras_core/layers/preprocessing/hashing.py/0
{ "file_path": "keras-core/keras_core/layers/preprocessing/hashing.py", "repo_id": "keras-core", "token_count": 5162 }
39
import numpy as np from keras_core import backend from keras_core.api_export import keras_core_export from keras_core.layers.preprocessing.tf_data_layer import TFDataLayer from keras_core.random.seed_generator import SeedGenerator @keras_core_export("keras_core.layers.RandomRotation") class RandomRotation(TFDataLayer): """A preprocessing layer which randomly rotates images during training. This layer will apply random rotations to each image, filling empty space according to `fill_mode`. By default, random rotations are only applied during training. At inference time, the layer does nothing. If you need to apply random rotations at inference time, set `training` to True when calling the layer. Input pixel values can be of any range (e.g. `[0., 1.)` or `[0, 255]`) and of integer or floating point dtype. By default, the layer will output floats. **Note:** This layer is safe to use inside a `tf.data` pipeline (independently of which backend you're using). Input shape: 3D (unbatched) or 4D (batched) tensor with shape: `(..., height, width, channels)`, in `"channels_last"` format Output shape: 3D (unbatched) or 4D (batched) tensor with shape: `(..., height, width, channels)`, in `"channels_last"` format Args: factor: a float represented as fraction of 2 Pi, or a tuple of size 2 representing lower and upper bound for rotating clockwise and counter-clockwise. A positive values means rotating counter clock-wise, while a negative value means clock-wise. When represented as a single float, this value is used for both the upper and lower bound. For instance, `factor=(-0.2, 0.3)` results in an output rotation by a random amount in the range `[-20% * 2pi, 30% * 2pi]`. `factor=0.2` results in an output rotating by a random amount in the range `[-20% * 2pi, 20% * 2pi]`. fill_mode: Points outside the boundaries of the input are filled according to the given mode (one of `{"constant", "reflect", "wrap", "nearest"}`). - *reflect*: `(d c b a | a b c d | d c b a)` The input is extended by reflecting about the edge of the last pixel. - *constant*: `(k k k k | a b c d | k k k k)` The input is extended by filling all values beyond the edge with the same constant value k = 0. - *wrap*: `(a b c d | a b c d | a b c d)` The input is extended by wrapping around to the opposite edge. - *nearest*: `(a a a a | a b c d | d d d d)` The input is extended by the nearest pixel. interpolation: Interpolation mode. Supported values: `"nearest"`, `"bilinear"`. seed: Integer. Used to create a random seed. fill_value: a float represents the value to be filled outside the boundaries when `fill_mode="constant"`. """ _FACTOR_VALIDATION_ERROR = ( "The `factor` argument should be a number (or a list of two numbers) " "in the range [-1.0, 1.0]. " ) _VALUE_RANGE_VALIDATION_ERROR = ( "The `value_range` argument should be a list of two numbers. " ) _SUPPORTED_FILL_MODE = ("reflect", "wrap", "constant", "nearest") _SUPPORTED_INTERPOLATION = ("nearest", "bilinear") def __init__( self, factor, fill_mode="reflect", interpolation="bilinear", seed=None, fill_value=0.0, value_range=(0, 255), data_format=None, **kwargs, ): super().__init__(**kwargs) self.seed = seed self.generator = SeedGenerator(seed) self._set_factor(factor) self._set_value_range(value_range) self.data_format = backend.standardize_data_format(data_format) self.fill_mode = fill_mode self.interpolation = interpolation self.fill_value = fill_value self.supports_jit = False if self.fill_mode not in self._SUPPORTED_FILL_MODE: raise NotImplementedError( f"Unknown `fill_mode` {fill_mode}. Expected of one " f"{self._SUPPORTED_FILL_MODE}." ) if self.interpolation not in self._SUPPORTED_INTERPOLATION: raise NotImplementedError( f"Unknown `interpolation` {interpolation}. Expected of one " f"{self._SUPPORTED_INTERPOLATION}." ) def _set_value_range(self, value_range): if not isinstance(value_range, (tuple, list)): raise ValueError( self.value_range_VALIDATION_ERROR + f"Received: value_range={value_range}" ) if len(value_range) != 2: raise ValueError( self.value_range_VALIDATION_ERROR + f"Received: value_range={value_range}" ) self.value_range = sorted(value_range) def _set_factor(self, factor): if isinstance(factor, (tuple, list)): if len(factor) != 2: raise ValueError( self._FACTOR_VALIDATION_ERROR + f"Received: factor={factor}" ) self._check_factor_range(factor[0]) self._check_factor_range(factor[1]) self._factor = sorted(factor) elif isinstance(factor, (int, float)): self._check_factor_range(factor) factor = abs(factor) self._factor = [-factor, factor] else: raise ValueError( self._FACTOR_VALIDATION_ERROR + f"Received: factor={factor}" ) def _check_factor_range(self, input_number): if input_number > 1.0 or input_number < -1.0: raise ValueError( self._FACTOR_VALIDATION_ERROR + f"Received: input_number={input_number}" ) """ Assume an angle ø, then rotation matrix is defined by | cos(ø) -sin(ø) x_offset | | sin(ø) cos(ø) y_offset | | 0 0 1 | This function is returning the 8 elements barring the final 1 as a 1D array """ def _get_rotation_matrix(self, inputs): shape = self.backend.core.shape(inputs) if len(shape) == 4: if self.data_format == "channels_last": batch_size = shape[0] image_height = shape[1] image_width = shape[2] else: batch_size = shape[1] image_height = shape[2] image_width = shape[3] else: batch_size = 1 if self.data_format == "channels_last": image_height = shape[0] image_width = shape[1] else: image_height = shape[1] image_width = shape[2] image_height = float(image_height) image_width = float(image_width) lower = self._factor[0] * 2.0 * self.backend.convert_to_tensor(np.pi) upper = self._factor[1] * 2.0 * self.backend.convert_to_tensor(np.pi) seed_generator = self._get_seed_generator(self.backend._backend) angle = self.backend.random.uniform( shape=(batch_size,), minval=lower, maxval=upper, seed=seed_generator, ) cos_theta = self.backend.numpy.cos(angle) sin_theta = self.backend.numpy.sin(angle) x_offset = ( (image_width - 1) - (cos_theta * (image_width - 1) - sin_theta * (image_height - 1)) ) / 2.0 y_offset = ( (image_height - 1) - (sin_theta * (image_width - 1) + cos_theta * (image_height - 1)) ) / 2.0 outputs = self.backend.numpy.concatenate( [ self.backend.numpy.cos(angle)[:, None], -self.backend.numpy.sin(angle)[:, None], x_offset[:, None], self.backend.numpy.sin(angle)[:, None], self.backend.numpy.cos(angle)[:, None], y_offset[:, None], self.backend.numpy.zeros((batch_size, 2)), ], axis=1, ) if len(shape) == 3: outputs = self.backend.numpy.squeeze(outputs, axis=0) return outputs def call(self, inputs, training=True): inputs = self.backend.cast(inputs, self.compute_dtype) if training: rotation_matrix = self._get_rotation_matrix(inputs) transformed_image = self.backend.image.affine_transform( image=inputs, transform=rotation_matrix, interpolation=self.interpolation, fill_mode=self.fill_mode, fill_value=self.fill_value, data_format=self.data_format, ) return transformed_image else: return inputs def compute_output_shape(self, input_shape): return input_shape def get_config(self): config = { "factor": self._factor, "value_range": self.value_range, "data_format": self.data_format, "fill_mode": self.fill_mode, "fill_value": self.fill_value, "interpolation": self.interpolation, "seed": self.seed, } base_config = super().get_config() return {**base_config, **config}
keras-core/keras_core/layers/preprocessing/random_rotation.py/0
{ "file_path": "keras-core/keras_core/layers/preprocessing/random_rotation.py", "repo_id": "keras-core", "token_count": 4569 }
40
from keras_core import regularizers from keras_core.api_export import keras_core_export from keras_core.layers.layer import Layer @keras_core_export("keras_core.layers.ActivityRegularization") class ActivityRegularization(Layer): """Layer that applies an update to the cost function based input activity. Args: l1: L1 regularization factor (positive float). l2: L2 regularization factor (positive float). Input shape: Arbitrary. Use the keyword argument `input_shape` (tuple of integers, does not include the samples axis) when using this layer as the first layer in a model. Output shape: Same shape as input. """ def __init__(self, l1=0.0, l2=0.0, **kwargs): super().__init__( activity_regularizer=regularizers.L1L2(l1=l1, l2=l2), **kwargs ) self.supports_masking = True self.l1 = l1 self.l2 = l2 def call(self, inputs): return inputs def compute_output_shape(self, input_shape): return input_shape def get_config(self): base_config = super().get_config() config = {"l1": self.l1, "l2": self.l2} return {**base_config, **config}
keras-core/keras_core/layers/regularization/activity_regularization.py/0
{ "file_path": "keras-core/keras_core/layers/regularization/activity_regularization.py", "repo_id": "keras-core", "token_count": 491 }
41
import numpy as np import pytest from absl.testing import parameterized from keras_core import layers from keras_core import ops from keras_core import testing class Cropping3DTest(testing.TestCase, parameterized.TestCase): @parameterized.product( ( {"dim1_cropping": (1, 2), "dim1_expected": (1, 5)}, # both {"dim1_cropping": (0, 2), "dim1_expected": (0, 5)}, # left only {"dim1_cropping": (1, 0), "dim1_expected": (1, 7)}, # right only ), ( {"dim2_cropping": (3, 4), "dim2_expected": (3, 5)}, # both {"dim2_cropping": (0, 4), "dim2_expected": (0, 5)}, # left only {"dim2_cropping": (3, 0), "dim2_expected": (3, 9)}, # right only ), ( {"dim3_cropping": (5, 6), "dim3_expected": (5, 7)}, # both {"dim3_cropping": (0, 6), "dim3_expected": (0, 7)}, # left only {"dim3_cropping": (5, 0), "dim3_expected": (5, 13)}, # right only ), ( {"data_format": "channels_first"}, {"data_format": "channels_last"}, ), ) @pytest.mark.requires_trainable_backend def test_cropping_3d( self, dim1_cropping, dim2_cropping, dim3_cropping, data_format, dim1_expected, dim2_expected, dim3_expected, ): if data_format == "channels_first": inputs = np.random.rand(3, 5, 7, 9, 13) expected_output = ops.convert_to_tensor( inputs[ :, :, dim1_expected[0] : dim1_expected[1], dim2_expected[0] : dim2_expected[1], dim3_expected[0] : dim3_expected[1], ] ) else: inputs = np.random.rand(3, 7, 9, 13, 5) expected_output = ops.convert_to_tensor( inputs[ :, dim1_expected[0] : dim1_expected[1], dim2_expected[0] : dim2_expected[1], dim3_expected[0] : dim3_expected[1], :, ] ) cropping = (dim1_cropping, dim2_cropping, dim3_cropping) self.run_layer_test( layers.Cropping3D, init_kwargs={"cropping": cropping, "data_format": data_format}, input_data=inputs, expected_output=expected_output, ) @parameterized.product( ( # same cropping values with 3 tuples { "cropping": ((2, 2), (2, 2), (2, 2)), "expected": ((2, 5), (2, 7), (2, 11)), }, # same cropping values with 1 tuple {"cropping": (2, 2, 2), "expected": ((2, 5), (2, 7), (2, 11))}, # same cropping values with an integer {"cropping": 2, "expected": ((2, 5), (2, 7), (2, 11))}, ), ( {"data_format": "channels_first"}, {"data_format": "channels_last"}, ), ) @pytest.mark.requires_trainable_backend def test_cropping_3d_with_same_cropping( self, cropping, data_format, expected ): if data_format == "channels_first": inputs = np.random.rand(3, 5, 7, 9, 13) expected_output = ops.convert_to_tensor( inputs[ :, :, expected[0][0] : expected[0][1], expected[1][0] : expected[1][1], expected[2][0] : expected[2][1], ] ) else: inputs = np.random.rand(3, 7, 9, 13, 5) expected_output = ops.convert_to_tensor( inputs[ :, expected[0][0] : expected[0][1], expected[1][0] : expected[1][1], expected[2][0] : expected[2][1], :, ] ) self.run_layer_test( layers.Cropping3D, init_kwargs={"cropping": cropping, "data_format": data_format}, input_data=inputs, expected_output=expected_output, ) def test_cropping_3d_with_dynamic_spatial_dim(self): input_layer = layers.Input(batch_shape=(1, 7, None, 13, 5)) cropped = layers.Cropping3D(((1, 2), (3, 4), (5, 6)))(input_layer) self.assertEqual(cropped.shape, (1, 4, None, 2, 5)) @parameterized.product( ( {"cropping": ((3, 6), (0, 0), (0, 0))}, {"cropping": ((0, 0), (5, 8), (0, 0))}, {"cropping": ((0, 0), (0, 0), (7, 6))}, ), ( {"data_format": "channels_first"}, {"data_format": "channels_last"}, ), ) def test_cropping_3d_errors_if_cropping_more_than_available( self, cropping, data_format ): input_layer = layers.Input(batch_shape=(3, 7, 9, 13, 5)) with self.assertRaises(ValueError): layers.Cropping3D(cropping=cropping, data_format=data_format)( input_layer ) def test_cropping_3d_errors_if_cropping_argument_invalid(self): with self.assertRaises(ValueError): layers.Cropping3D(cropping=(1,)) with self.assertRaises(ValueError): layers.Cropping3D(cropping=(1, 2)) with self.assertRaises(ValueError): layers.Cropping3D(cropping=(1, 2, 3, 4)) with self.assertRaises(ValueError): layers.Cropping3D(cropping="1") with self.assertRaises(ValueError): layers.Cropping3D(cropping=((1, 2), (3, 4), (5, 6, 7))) with self.assertRaises(ValueError): layers.Cropping3D(cropping=((1, 2), (3, 4), (5, -6))) with self.assertRaises(ValueError): layers.Cropping3D(cropping=((1, 2), (3, 4), "5"))
keras-core/keras_core/layers/reshaping/cropping3d_test.py/0
{ "file_path": "keras-core/keras_core/layers/reshaping/cropping3d_test.py", "repo_id": "keras-core", "token_count": 3252 }
42
import numpy as np from absl.testing import parameterized from keras_core import layers from keras_core import testing class ZeroPadding1DTest(testing.TestCase, parameterized.TestCase): def test_zero_padding_1d(self): inputs = np.random.rand(1, 2, 3) outputs = layers.ZeroPadding1D(padding=(1, 2))(inputs) for index in [0, -1, -2]: self.assertAllClose(outputs[:, index, :], 0.0) self.assertAllClose(outputs[:, 1:-2, :], inputs) @parameterized.named_parameters(("one_tuple", (2, 2)), ("one_int", 2)) def test_zero_padding_1d_with_same_padding(self, padding): inputs = np.random.rand(1, 2, 3) outputs = layers.ZeroPadding1D(padding=padding)(inputs) for index in [0, 1, -1, -2]: self.assertAllClose(outputs[:, index, :], 0.0) self.assertAllClose(outputs[:, 2:-2, :], inputs) def test_zero_padding_1d_with_dynamic_spatial_dim(self): input_layer = layers.Input(batch_shape=(1, None, 3)) padded = layers.ZeroPadding1D((1, 2))(input_layer) self.assertEqual(padded.shape, (1, None, 3)) def test_zero_padding_1d_errors_if_padding_argument_invalid(self): with self.assertRaises(ValueError): layers.ZeroPadding1D(padding=(1,)) with self.assertRaises(ValueError): layers.ZeroPadding1D(padding=(1, 2, 3)) with self.assertRaises(ValueError): layers.ZeroPadding1D(padding="1")
keras-core/keras_core/layers/reshaping/zero_padding1d_test.py/0
{ "file_path": "keras-core/keras_core/layers/reshaping/zero_padding1d_test.py", "repo_id": "keras-core", "token_count": 639 }
43
from keras_core import backend from keras_core import ops class DropoutRNNCell: """Object that holds dropout-related functionality for RNN cells. This class is not a standalone RNN cell. It suppose to be used with a RNN cell by multiple inheritance. Any cell that mix with class should have following fields: - `dropout`: a float number in the range `[0, 1]`. Dropout rate for the input tensor. - `recurrent_dropout`: a float number in the range `[0, 1]`. Dropout rate for the recurrent connections. - `seed_generator`, an instance of `backend.random.SeedGenerator`. This object will create and cache dropout masks, and reuse them for all incoming steps, so that the same mask is used for every step. """ def get_dropout_mask(self, step_input): if not hasattr(self, "_dropout_mask"): self._dropout_mask = None if self._dropout_mask is None and self.dropout > 0: ones = ops.ones_like(step_input) self._dropout_mask = backend.random.dropout( ones, rate=self.dropout, seed=self.seed_generator ) return self._dropout_mask def get_recurrent_dropout_mask(self, step_input): if not hasattr(self, "_recurrent_dropout_mask"): self._recurrent_dropout_mask = None if self._recurrent_dropout_mask is None and self.recurrent_dropout > 0: ones = ops.ones_like(step_input) self._recurrent_dropout_mask = backend.random.dropout( ones, rate=self.dropout, seed=self.seed_generator ) return self._recurrent_dropout_mask def reset_dropout_mask(self): """Reset the cached dropout mask if any. The RNN layer invokes this in the `call()` method so that the cached mask is cleared after calling `cell.call()`. The mask should be cached across all timestep within the same batch, but shouldn't be cached between batches. """ self._dropout_mask = None def reset_recurrent_dropout_mask(self): self._recurrent_dropout_mask = None
keras-core/keras_core/layers/rnn/dropout_rnn_cell.py/0
{ "file_path": "keras-core/keras_core/layers/rnn/dropout_rnn_cell.py", "repo_id": "keras-core", "token_count": 830 }
44
"""Legacy Keras 1/2 layers. AlphaDropout RandomHeight RandomWidth ThresholdedReLU """ from keras_core import backend from keras_core.api_export import keras_core_export from keras_core.layers.layer import Layer from keras_core.utils.module_utils import tensorflow as tf @keras_core_export("keras_core._legacy.layers.AlphaDropout") class AlphaDropout(Layer): """DEPRECATED.""" def __init__(self, rate, noise_shape=None, seed=None, **kwargs): super().__init__(**kwargs) self.rate = rate self.seed = seed self.noise_shape = noise_shape self.seed_generator = backend.random.SeedGenerator(seed) self.supports_masking = True self.built = True def call(self, inputs, training=False): if training and self.rate > 0: alpha = 1.6732632423543772848170429916717 scale = 1.0507009873554804934193349852946 alpha_p = -alpha * scale if self.noise_shape is None: noise_shape = tf.shape(inputs) else: noise_shape = self.noise_shape kept_idx = tf.greater_equal( backend.random.uniform(noise_shape), self.rate, seed=self.seed_generator, ) kept_idx = tf.cast(kept_idx, inputs.dtype) # Get affine transformation params a = ((1 - self.rate) * (1 + self.rate * alpha_p**2)) ** -0.5 b = -a * alpha_p * self.rate # Apply mask x = inputs * kept_idx + alpha_p * (1 - kept_idx) # Do affine transformation return a * x + b return inputs def get_config(self): config = {"rate": self.rate, "seed": self.seed} base_config = super().get_config() return {**base_config, **config} def compute_output_shape(self, input_shape): return input_shape @keras_core_export("keras_core._legacy.layers.RandomHeight") class RandomHeight(Layer): """DEPRECATED.""" def __init__(self, factor, interpolation="bilinear", seed=None, **kwargs): super().__init__(**kwargs) self.seed_generator = backend.random.SeedGenerator(seed) self.factor = factor if isinstance(factor, (tuple, list)): self.height_lower = factor[0] self.height_upper = factor[1] else: self.height_lower = -factor self.height_upper = factor if self.height_upper < self.height_lower: raise ValueError( "`factor` argument cannot have an upper bound lesser than the " f"lower bound. Received: factor={factor}" ) if self.height_lower < -1.0 or self.height_upper < -1.0: raise ValueError( "`factor` argument must have values larger than -1. " f"Received: factor={factor}" ) self.interpolation = interpolation self.seed = seed def call(self, inputs, training=True): inputs = tf.convert_to_tensor(inputs, dtype=self.compute_dtype) def random_height_inputs(inputs): """Inputs height-adjusted with random ops.""" inputs_shape = tf.shape(inputs) img_hd = tf.cast(inputs_shape[-3], tf.float32) img_wd = inputs_shape[-2] height_factor = backend.random.uniform( shape=[], minval=(1.0 + self.height_lower), maxval=(1.0 + self.height_upper), seed=self.seed_generator, ) adjusted_height = tf.cast(height_factor * img_hd, tf.int32) adjusted_size = tf.stack([adjusted_height, img_wd]) output = tf.image.resize( images=inputs, size=adjusted_size, method=self.interpolation, ) # tf.resize will output float32 regardless of input type. output = tf.cast(output, self.compute_dtype) output_shape = inputs.shape.as_list() output_shape[-3] = None output.set_shape(output_shape) return output if training: return random_height_inputs(inputs) else: return inputs def compute_output_shape(self, input_shape): input_shape = list(input_shape) input_shape[-3] = None return tuple(input_shape) def get_config(self): config = { "factor": self.factor, "interpolation": self.interpolation, "seed": self.seed, } base_config = super().get_config() return {**base_config, **config} @keras_core_export("keras_core._legacy.layers.RandomWidth") class RandomWidth(Layer): """DEPRECATED.""" def __init__(self, factor, interpolation="bilinear", seed=None, **kwargs): super().__init__(**kwargs) self.seed_generator = backend.random.SeedGenerator(seed) self.factor = factor if isinstance(factor, (tuple, list)): self.width_lower = factor[0] self.width_upper = factor[1] else: self.width_lower = -factor self.width_upper = factor if self.width_upper < self.width_lower: raise ValueError( "`factor` argument cannot have an upper bound less than the " f"lower bound. Received: factor={factor}" ) if self.width_lower < -1.0 or self.width_upper < -1.0: raise ValueError( "`factor` argument must have values larger than -1. " f"Received: factor={factor}" ) self.interpolation = interpolation self.seed = seed def call(self, inputs, training=True): inputs = tf.convert_to_tensor(inputs, dtype=self.compute_dtype) def random_width_inputs(inputs): """Inputs width-adjusted with random ops.""" inputs_shape = tf.shape(inputs) img_hd = inputs_shape[-3] img_wd = tf.cast(inputs_shape[-2], tf.float32) width_factor = backend.random.uniform( shape=[], minval=(1.0 + self.width_lower), maxval=(1.0 + self.width_upper), seed=self.seed_generator, ) adjusted_width = tf.cast(width_factor * img_wd, tf.int32) adjusted_size = tf.stack([img_hd, adjusted_width]) output = tf.image.resize( images=inputs, size=adjusted_size, method=self.interpolation, ) # tf.resize will output float32 regardless of input type. output = tf.cast(output, self.compute_dtype) output_shape = inputs.shape.as_list() output_shape[-2] = None output.set_shape(output_shape) return output if training: return random_width_inputs(inputs) else: return inputs def compute_output_shape(self, input_shape): input_shape = list(input_shape) input_shape[-2] = None return tuple(input_shape) def get_config(self): config = { "factor": self.factor, "interpolation": self.interpolation, "seed": self.seed, } base_config = super().get_config() return {**base_config, **config} @keras_core_export("keras_core._legacy.layers.ThresholdedReLU") class ThresholdedReLU(Layer): """DEPRECATED.""" def __init__(self, theta=1.0, **kwargs): super().__init__(**kwargs) if theta is None: raise ValueError( "Theta of a Thresholded ReLU layer cannot be None, expecting a " f"float. Received: {theta}" ) if theta < 0: raise ValueError( "The theta value of a Thresholded ReLU layer " f"should be >=0. Received: {theta}" ) self.supports_masking = True self.theta = tf.convert_to_tensor(theta, dtype=self.compute_dtype) def call(self, inputs): dtype = self.compute_dtype return inputs * tf.cast(tf.greater(inputs, self.theta), dtype) def get_config(self): config = {"theta": float(self.theta)} base_config = super().get_config() return {**base_config, **config} def compute_output_shape(self, input_shape): return input_shape
keras-core/keras_core/legacy/layers.py/0
{ "file_path": "keras-core/keras_core/legacy/layers.py", "repo_id": "keras-core", "token_count": 4092 }
45
import numpy as np import pytest from keras_core import backend from keras_core import losses as losses_module from keras_core import ops from keras_core import testing from keras_core.losses.loss import Loss class ExampleLoss(Loss): def call(self, y_true, y_pred): return (y_true - y_pred) ** 2 class LossTest(testing.TestCase): def test_reduction(self): y_true = np.array([1.0, 0.0, 1.0, 0.0]) y_pred = np.array([0.1, 0.2, 0.3, 0.4]) # No reduction loss_fn = ExampleLoss(reduction=None) loss = loss_fn(y_true, y_pred) self.assertEqual(backend.standardize_dtype(loss.dtype), "float32") self.assertAllClose((y_true - y_pred) ** 2, loss) # sum loss_fn = ExampleLoss(reduction="sum") loss = loss_fn(y_true, y_pred) self.assertEqual(backend.standardize_dtype(loss.dtype), "float32") self.assertAllClose(np.sum((y_true - y_pred) ** 2), loss) # sum_over_batch_size loss_fn = ExampleLoss(reduction="sum_over_batch_size") loss = loss_fn(y_true, y_pred) self.assertEqual(backend.standardize_dtype(loss.dtype), "float32") self.assertAllClose(np.sum((y_true - y_pred) ** 2) / 4, loss) # bad reduction with self.assertRaisesRegex(ValueError, "Invalid value for argument"): ExampleLoss(reduction="abc") @pytest.mark.skipif( backend.backend() == "numpy", reason="Numpy backend does not support masking.", ) def test_mask(self): mask = np.array([True, False, True, True]) y_true = np.array([1.0, 0.0, 1.0, 0.0]) y_pred = np.array([0.1, 0.2, 0.3, 0.4]) masked_y_true = np.array([1.0, 1.0, 0.0]) masked_y_pred = np.array([0.1, 0.3, 0.4]) mask = ops.convert_to_tensor(mask) y_true = ops.convert_to_tensor(y_true) y_pred = ops.convert_to_tensor(y_pred) y_pred._keras_mask = mask loss_fn = ExampleLoss() loss = loss_fn(y_true, y_pred) self.assertEqual(backend.standardize_dtype(loss.dtype), "float32") self.assertAllClose( np.sum((masked_y_true - masked_y_pred) ** 2) / 3, loss ) # Test edge case where everything is masked. mask = np.array([False, False, False, False]) y_pred._keras_mask = mask loss = loss_fn(y_true, y_pred) self.assertEqual(backend.standardize_dtype(loss.dtype), "float32") self.assertAllClose(loss, 0) # No NaN. def test_sample_weight(self): sample_weight = np.array([0.4, 0.3, 0.2, 0.1]) y_true = np.array([1.0, 0.0, 1.0, 0.0]) y_pred = np.array([0.1, 0.2, 0.3, 0.4]) loss_fn = ExampleLoss() loss = loss_fn(y_true, y_pred, sample_weight=sample_weight) self.assertEqual(backend.standardize_dtype(loss.dtype), "float32") self.assertAllClose( np.sum(sample_weight * (y_true - y_pred) ** 2) / 4, loss ) # Test edge case where every weight is 0. sample_weight = np.array([0.0, 0.0, 0.0, 0.0]) loss = loss_fn(y_true, y_pred, sample_weight=sample_weight) self.assertEqual(backend.standardize_dtype(loss.dtype), "float32") self.assertAllClose(loss, 0) # No NaN. @pytest.mark.skipif( backend.backend() == "numpy", reason="Numpy backend does not support masking.", ) def test_mask_and_sample_weight(self): sample_weight = np.array([0.4, 0.3, 0.2, 0.1]) y_true = np.array([1.0, 0.0, 1.0, 0.0]) y_pred = np.array([0.1, 0.2, 0.3, 0.4]) mask = np.array([True, False, True, True]) masked_sample_weight = np.array([0.4, 0.2, 0.1]) masked_y_true = np.array([1.0, 1.0, 0.0]) masked_y_pred = np.array([0.1, 0.3, 0.4]) mask = ops.convert_to_tensor(mask) y_true = ops.convert_to_tensor(y_true) y_pred = ops.convert_to_tensor(y_pred) y_pred._keras_mask = mask loss_fn = ExampleLoss() loss = loss_fn(y_true, y_pred, sample_weight=sample_weight) self.assertEqual(backend.standardize_dtype(loss.dtype), "float32") self.assertAllClose( np.sum(masked_sample_weight * (masked_y_true - masked_y_pred) ** 2) / 3, loss, ) @pytest.mark.skipif( backend.backend() == "numpy", reason="Numpy backend does not support masking.", ) def test_mask_and_sample_weight_rank2(self): # check loss of inputs with duplicate rows doesn't change sample_weight = np.array([0.4, 0.3, 0.2, 0.1]) y_true = np.array([1.0, 0.0, 1.0, 0.0]) y_pred = np.array([0.1, 0.2, 0.3, 0.4]) mask = np.array([True, False, True, True]) mask = ops.convert_to_tensor(mask) y_true = ops.convert_to_tensor(y_true) y_pred = ops.convert_to_tensor(y_pred) y_pred._keras_mask = mask loss_fn = ExampleLoss() rank1_loss = loss_fn(y_true, y_pred, sample_weight=sample_weight) # duplicate rows mask = ops.tile(ops.expand_dims(mask, axis=0), (2, 1)) y_true = ops.tile(ops.expand_dims(y_true, axis=0), (2, 1)) y_pred = ops.tile(ops.expand_dims(y_pred, axis=0), (2, 1)) sample_weight = ops.tile(ops.expand_dims(sample_weight, axis=0), (2, 1)) y_pred._keras_mask = mask rank2_loss = loss_fn(y_true, y_pred, sample_weight=sample_weight) self.assertAllClose(rank1_loss, rank2_loss) # @testing.parametrize( # "uprank", ["mask", "sample_weight", "y_true", "y_pred"]) # TODO: use parameterization decorator @pytest.mark.skipif( backend.backend() == "numpy", reason="Numpy backend does not support masking.", ) def test_rank_adjustment(self): for uprank in ["mask", "sample_weight", "ys"]: sample_weight = np.array([0.4, 0.3, 0.2, 0.1]) y_true = np.array([1.0, 0.0, 1.0, 0.0]) y_pred = np.array([0.1, 0.2, 0.3, 0.4]) mask = np.array([True, False, True, True]) if uprank == "mask": mask = np.expand_dims(mask, -1) elif uprank == "sample_weight": sample_weight = np.expand_dims(sample_weight, -1) elif uprank == "ys": y_true = np.expand_dims(y_true, -1) y_pred = np.expand_dims(y_pred, -1) masked_sample_weight = np.array([0.4, 0.2, 0.1]) masked_y_true = np.array([1.0, 1.0, 0.0]) masked_y_pred = np.array([0.1, 0.3, 0.4]) mask = ops.convert_to_tensor(mask) y_true = ops.convert_to_tensor(y_true) y_pred = ops.convert_to_tensor(y_pred) y_pred._keras_mask = mask loss_fn = ExampleLoss() loss = loss_fn(y_true, y_pred, sample_weight=sample_weight) self.assertEqual(backend.standardize_dtype(loss.dtype), "float32") self.assertAllClose( np.sum( masked_sample_weight * (masked_y_true - masked_y_pred) ** 2 ) / 3, loss, ) def test_mixed_dtypes(self): sample_weight = np.array([0.4, 0.3, 0.2, 0.1], dtype="float64") y_true = np.array([1.0, 0.0, 1.0, 0.0], dtype="int32") y_pred = np.array([0.1, 0.2, 0.3, 0.4], dtype="float32") loss_fn = ExampleLoss() loss = loss_fn(y_true, y_pred, sample_weight=sample_weight) self.assertEqual(backend.standardize_dtype(loss.dtype), "float32") self.assertAllClose( np.sum(sample_weight * (y_true - y_pred) ** 2) / 4, loss, ) def test_get_method(self): loss = losses_module.get("mse") self.assertEqual(loss, losses_module.mean_squared_error) loss = losses_module.get(None) self.assertEqual(loss, None) with self.assertRaises(ValueError): losses_module.get("typo") def test_dtype_arg(self): y_true = np.array([1.0, 0.0, 1.0, 0.0], dtype="float32") y_pred = np.array([0.1, 0.2, 0.3, 0.4], dtype="float32") # Note: we use float16 and not float64 to test this because # JAX will map float64 to float32. loss_fn = ExampleLoss(dtype="float16") loss = loss_fn(y_true, y_pred) self.assertEqual(backend.standardize_dtype(loss.dtype), "float16")
keras-core/keras_core/losses/loss_test.py/0
{ "file_path": "keras-core/keras_core/losses/loss_test.py", "repo_id": "keras-core", "token_count": 4238 }
46
from enum import Enum import numpy as np from keras_core import backend from keras_core import ops from keras_core.losses.loss import squeeze_to_same_rank from keras_core.utils.python_utils import to_list NEG_INF = -1e10 def assert_thresholds_range(thresholds): if thresholds is not None: invalid_thresholds = [ t for t in thresholds if t is None or t < 0 or t > 1 ] if invalid_thresholds: raise ValueError( "Threshold values must be in [0, 1]. " f"Received: {invalid_thresholds}" ) def parse_init_thresholds(thresholds, default_threshold=0.5): if thresholds is not None: assert_thresholds_range(to_list(thresholds)) thresholds = to_list( default_threshold if thresholds is None else thresholds ) return thresholds class ConfusionMatrix(Enum): TRUE_POSITIVES = "tp" FALSE_POSITIVES = "fp" TRUE_NEGATIVES = "tn" FALSE_NEGATIVES = "fn" class AUCCurve(Enum): """Type of AUC Curve (ROC or PR).""" ROC = "ROC" PR = "PR" @staticmethod def from_str(key): if key in ("pr", "PR"): return AUCCurve.PR elif key in ("roc", "ROC"): return AUCCurve.ROC else: raise ValueError( f'Invalid AUC curve value: "{key}". ' 'Expected values are ["PR", "ROC"]' ) class AUCSummationMethod(Enum): """Type of AUC summation method. https://en.wikipedia.org/wiki/Riemann_sum) Contains the following values: * 'interpolation': Applies mid-point summation scheme for `ROC` curve. For `PR` curve, interpolates (true/false) positives but not the ratio that is precision (see Davis & Goadrich 2006 for details). * 'minoring': Applies left summation for increasing intervals and right summation for decreasing intervals. * 'majoring': Applies right summation for increasing intervals and left summation for decreasing intervals. """ INTERPOLATION = "interpolation" MAJORING = "majoring" MINORING = "minoring" @staticmethod def from_str(key): if key in ("interpolation", "Interpolation"): return AUCSummationMethod.INTERPOLATION elif key in ("majoring", "Majoring"): return AUCSummationMethod.MAJORING elif key in ("minoring", "Minoring"): return AUCSummationMethod.MINORING else: raise ValueError( f'Invalid AUC summation method value: "{key}". ' 'Expected values are ["interpolation", "majoring", "minoring"]' ) def _update_confusion_matrix_variables_optimized( variables_to_update, y_true, y_pred, thresholds, multi_label=False, sample_weights=None, label_weights=None, thresholds_with_epsilon=False, ): """Update confusion matrix variables with memory efficient alternative. Note that the thresholds need to be evenly distributed within the list, eg, the diff between consecutive elements are the same. To compute TP/FP/TN/FN, we are measuring a binary classifier C(t) = (predictions >= t) at each threshold 't'. So we have TP(t) = sum( C(t) * true_labels ) FP(t) = sum( C(t) * false_labels ) But, computing C(t) requires computation for each t. To make it fast, observe that C(t) is a cumulative integral, and so if we have thresholds = [t_0, ..., t_{n-1}]; t_0 < ... < t_{n-1} where n = num_thresholds, and if we can compute the bucket function B(i) = Sum( (predictions == t), t_i <= t < t{i+1} ) then we get C(t_i) = sum( B(j), j >= i ) which is the reversed cumulative sum in ops.cumsum(). We can compute B(i) efficiently by taking advantage of the fact that our thresholds are evenly distributed, in that width = 1.0 / (num_thresholds - 1) thresholds = [0.0, 1*width, 2*width, 3*width, ..., 1.0] Given a prediction value p, we can map it to its bucket by bucket_index(p) = floor( p * (num_thresholds - 1) ) so we can use ops.segment_sum() to update the buckets in one pass. Consider following example: y_true = [0, 0, 1, 1] y_pred = [0.1, 0.5, 0.3, 0.9] thresholds = [0.0, 0.5, 1.0] num_buckets = 2 # [0.0, 1.0], (1.0, 2.0] bucket_index(y_pred) = ops.floor(y_pred * num_buckets) = ops.floor([0.2, 1.0, 0.6, 1.8]) = [0, 0, 0, 1] # The meaning of this bucket is that if any of the label is true, # then 1 will be added to the corresponding bucket with the index. # Eg, if the label for 0.2 is true, then 1 will be added to bucket 0. If the # label for 1.8 is true, then 1 will be added to bucket 1. # # Note the second item "1.0" is floored to 0, since the value need to be # strictly larger than the bucket lower bound. # In the implementation, we use ops.ceil() - 1 to achieve this. tp_bucket_value = ops.segment_sum(true_labels, bucket_indices, num_segments=num_thresholds) = [1, 1, 0] # For [1, 1, 0] here, it means there is 1 true value contributed by bucket # 0, and 1 value contributed by bucket 1. When we aggregate them to # together, the result become [a + b + c, b + c, c], since large thresholds # will always contribute to the value for smaller thresholds. true_positive = ops.cumsum(tp_bucket_value, reverse=True) = [2, 1, 0] This implementation exhibits a run time and space complexity of O(T + N), where T is the number of thresholds and N is the size of predictions. Metrics that rely on standard implementation instead exhibit a complexity of O(T * N). Args: variables_to_update: Dictionary with 'tp', 'fn', 'tn', 'fp' as valid keys and corresponding variables to update as values. y_true: A floating point `Tensor` whose shape matches `y_pred`. Will be cast to `bool`. y_pred: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. thresholds: A sorted floating point `Tensor` with value in `[0, 1]`. It need to be evenly distributed (the diff between each element need to be the same). multi_label: Optional boolean indicating whether multidimensional prediction/labels should be treated as multilabel responses, or flattened into a single label. When True, the valus of `variables_to_update` must have a second dimension equal to the number of labels in y_true and y_pred, and those tensors must not be RaggedTensors. sample_weights: Optional `Tensor` whose rank is either 0, or the same rank as `y_true`, and must be broadcastable to `y_true` (i.e., all dimensions must be either `1`, or the same as the corresponding `y_true` dimension). label_weights: Optional tensor of non-negative weights for multilabel data. The weights are applied when calculating TP, FP, FN, and TN without explicit multilabel handling (i.e. when the data is to be flattened). thresholds_with_epsilon: Optional boolean indicating whether the leading and tailing thresholds has any epsilon added for floating point imprecisions. It will change how we handle the leading and tailing bucket. """ num_thresholds = ops.shape(thresholds)[0] if sample_weights is None: sample_weights = 1.0 else: sample_weights = ops.broadcast_to( ops.cast(sample_weights, dtype=y_pred.dtype), ops.shape(y_pred) ) if not multi_label: sample_weights = ops.reshape(sample_weights, [-1]) if label_weights is None: label_weights = 1.0 else: label_weights = ops.expand_dims(label_weights, 0) label_weights = ops.broadcast_to(label_weights, ops.shape(y_pred)) if not multi_label: label_weights = ops.reshape(label_weights, [-1]) weights = ops.cast( ops.multiply(sample_weights, label_weights), y_true.dtype ) # We shouldn't need this, but in case there are predict value that is out of # the range of [0.0, 1.0] y_pred = ops.clip(y_pred, x_min=0.0, x_max=1.0) y_true = ops.cast(ops.cast(y_true, "bool"), y_true.dtype) if not multi_label: y_true = ops.reshape(y_true, [-1]) y_pred = ops.reshape(y_pred, [-1]) true_labels = ops.multiply(y_true, weights) false_labels = ops.multiply((1.0 - y_true), weights) # Compute the bucket indices for each prediction value. # Since the predict value has to be strictly greater than the thresholds, # eg, buckets like [0, 0.5], (0.5, 1], and 0.5 belongs to first bucket. # We have to use math.ceil(val) - 1 for the bucket. bucket_indices = ( ops.ceil(y_pred * (ops.cast(num_thresholds, dtype=y_pred.dtype) - 1)) - 1 ) if thresholds_with_epsilon: # In this case, the first bucket should actually take into account since # the any prediction between [0.0, 1.0] should be larger than the first # threshold. We change the bucket value from -1 to 0. bucket_indices = ops.relu(bucket_indices) bucket_indices = ops.cast(bucket_indices, "int32") if multi_label: # We need to run bucket segment sum for each of the label class. In the # multi_label case, the rank of the label is 2. We first transpose it so # that the label dim becomes the first and we can parallel run though # them. true_labels = ops.transpose(true_labels) false_labels = ops.transpose(false_labels) bucket_indices = ops.transpose(bucket_indices) def gather_bucket(label_and_bucket_index): label, bucket_index = ( label_and_bucket_index[0], label_and_bucket_index[1], ) return ops.segment_sum( data=label, segment_ids=bucket_index, num_segments=num_thresholds, ) tp_bucket_v = backend.vectorized_map( gather_bucket, (true_labels, bucket_indices), ) fp_bucket_v = backend.vectorized_map( gather_bucket, (false_labels, bucket_indices) ) tp = ops.transpose(ops.flip(ops.cumsum(ops.flip(tp_bucket_v), axis=1))) fp = ops.transpose(ops.flip(ops.cumsum(ops.flip(fp_bucket_v), axis=1))) else: tp_bucket_v = ops.segment_sum( data=true_labels, segment_ids=bucket_indices, num_segments=num_thresholds, ) fp_bucket_v = ops.segment_sum( data=false_labels, segment_ids=bucket_indices, num_segments=num_thresholds, ) tp = ops.flip(ops.cumsum(ops.flip(tp_bucket_v))) fp = ops.flip(ops.cumsum(ops.flip(fp_bucket_v))) # fn = sum(true_labels) - tp # tn = sum(false_labels) - fp if ( ConfusionMatrix.TRUE_NEGATIVES in variables_to_update or ConfusionMatrix.FALSE_NEGATIVES in variables_to_update ): if multi_label: total_true_labels = ops.sum(true_labels, axis=1) total_false_labels = ops.sum(false_labels, axis=1) else: total_true_labels = ops.sum(true_labels) total_false_labels = ops.sum(false_labels) if ConfusionMatrix.TRUE_POSITIVES in variables_to_update: variable = variables_to_update[ConfusionMatrix.TRUE_POSITIVES] variable.assign(variable + tp) if ConfusionMatrix.FALSE_POSITIVES in variables_to_update: variable = variables_to_update[ConfusionMatrix.FALSE_POSITIVES] variable.assign(variable + fp) if ConfusionMatrix.TRUE_NEGATIVES in variables_to_update: variable = variables_to_update[ConfusionMatrix.TRUE_NEGATIVES] tn = total_false_labels - fp variable.assign(variable + tn) if ConfusionMatrix.FALSE_NEGATIVES in variables_to_update: variable = variables_to_update[ConfusionMatrix.FALSE_NEGATIVES] fn = total_true_labels - tp variable.assign(variable + fn) def is_evenly_distributed_thresholds(thresholds): """Check if the thresholds list is evenly distributed. We could leverage evenly distributed thresholds to use less memory when calculate metrcis like AUC where each individual threshold need to be evaluated. Args: thresholds: A python list or tuple, or 1D numpy array whose value is ranged in [0, 1]. Returns: boolean, whether the values in the inputs are evenly distributed. """ # Check the list value and see if it is evenly distributed. num_thresholds = len(thresholds) if num_thresholds < 3: return False even_thresholds = np.arange(num_thresholds, dtype=np.float32) / ( num_thresholds - 1 ) return np.allclose(thresholds, even_thresholds, atol=backend.epsilon()) def update_confusion_matrix_variables( variables_to_update, y_true, y_pred, thresholds, top_k=None, class_id=None, sample_weight=None, multi_label=False, label_weights=None, thresholds_distributed_evenly=False, ): """Updates the given confusion matrix variables. For every pair of values in y_true and y_pred: true_positive: y_true == True and y_pred > thresholds false_negatives: y_true == True and y_pred <= thresholds true_negatives: y_true == False and y_pred <= thresholds false_positive: y_true == False and y_pred > thresholds The results will be weighted and added together. When multiple thresholds are provided, we will repeat the same for every threshold. For estimation of these metrics over a stream of data, the function creates an `update_op` operation that updates the given variables. If `sample_weight` is `None`, weights default to 1. Use weights of 0 to mask values. Args: variables_to_update: Dictionary with 'tp', 'fn', 'tn', 'fp' as valid keys and corresponding variables to update as values. y_true: A `Tensor` whose shape matches `y_pred`. Will be cast to `bool`. y_pred: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. thresholds: A float value, float tensor, python list, or tuple of float thresholds in `[0, 1]`, or NEG_INF (used when top_k is set). top_k: Optional int, indicates that the positive labels should be limited to the top k predictions. class_id: Optional int, limits the prediction and labels to the class specified by this argument. sample_weight: Optional `Tensor` whose rank is either 0, or the same rank as `y_true`, and must be broadcastable to `y_true` (i.e., all dimensions must be either `1`, or the same as the corresponding `y_true` dimension). multi_label: Optional boolean indicating whether multidimensional prediction/labels should be treated as multilabel responses, or flattened into a single label. When True, the valus of `variables_to_update` must have a second dimension equal to the number of labels in y_true and y_pred, and those tensors must not be RaggedTensors. label_weights: (optional) tensor of non-negative weights for multilabel data. The weights are applied when calculating TP, FP, FN, and TN without explicit multilabel handling (i.e. when the data is to be flattened). thresholds_distributed_evenly: Boolean, whether the thresholds are evenly distributed within the list. An optimized method will be used if this is the case. See _update_confusion_matrix_variables_optimized() for more details. Raises: ValueError: If `y_pred` and `y_true` have mismatched shapes, or if `sample_weight` is not `None` and its shape doesn't match `y_pred`, or if `variables_to_update` contains invalid keys. """ if multi_label and label_weights is not None: raise ValueError( "`label_weights` for multilabel data should be handled " "outside of `update_confusion_matrix_variables` when " "`multi_label` is True." ) if variables_to_update is None: return if not any( key for key in variables_to_update if key in list(ConfusionMatrix) ): raise ValueError( "Please provide at least one valid confusion matrix " "variable to update. Valid variable key options are: " f'"{list(ConfusionMatrix)}". ' f'Received: "{variables_to_update.keys()}"' ) variable_dtype = list(variables_to_update.values())[0].dtype y_true = ops.cast(y_true, dtype=variable_dtype) y_pred = ops.cast(y_pred, dtype=variable_dtype) if thresholds_distributed_evenly: # Check whether the thresholds has any leading or tailing epsilon added # for floating point imprecision. The leading and tailing threshold will # be handled bit differently as the corner case. At this point, # thresholds should be a list/array with more than 2 items, and ranged # between [0, 1]. See is_evenly_distributed_thresholds() for more # details. thresholds_with_epsilon = thresholds[0] < 0.0 or thresholds[-1] > 1.0 thresholds = ops.convert_to_tensor(thresholds, dtype=variable_dtype) num_thresholds = ops.shape(thresholds)[0] if multi_label: one_thresh = ops.equal( np.array(1, dtype="int32"), len(thresholds.shape), ) else: one_thresh = np.array(True, dtype="bool") invalid_keys = [ key for key in variables_to_update if key not in list(ConfusionMatrix) ] if invalid_keys: raise ValueError( f'Invalid keys: "{invalid_keys}". ' f'Valid variable key options are: "{list(ConfusionMatrix)}"' ) y_pred, y_true = squeeze_to_same_rank(y_pred, y_true) if sample_weight is not None: sample_weight = ops.expand_dims( ops.cast(sample_weight, dtype=variable_dtype), axis=-1 ) _, sample_weight = squeeze_to_same_rank(y_true, sample_weight) if top_k is not None: y_pred = _filter_top_k(y_pred, top_k) if class_id is not None: if len(y_pred.shape) == 1: raise ValueError( "When class_id is provided, y_pred must be a 2D array " "with shape (num_samples, num_classes), found shape: " f"{y_pred.shape}" ) # Preserve dimension to match with sample_weight y_true = y_true[..., class_id, None] y_pred = y_pred[..., class_id, None] if thresholds_distributed_evenly: return _update_confusion_matrix_variables_optimized( variables_to_update, y_true, y_pred, thresholds, multi_label=multi_label, sample_weights=sample_weight, label_weights=label_weights, thresholds_with_epsilon=thresholds_with_epsilon, ) if None in y_pred.shape: pred_shape = ops.shape(y_pred) num_predictions = pred_shape[0] if len(y_pred.shape) == 1: num_labels = 1 else: num_labels = ops.cast( ops.prod(ops.array(pred_shape[1:]), axis=0), "int32" ) thresh_label_tile = ops.where(one_thresh, num_labels, 1) else: pred_shape = y_pred.shape num_predictions = pred_shape[0] if len(y_pred.shape) == 1: num_labels = 1 else: num_labels = np.prod(pred_shape[1:], axis=0).astype("int32") thresh_label_tile = np.where(one_thresh, num_labels, 1) # Reshape predictions and labels, adding a dim for thresholding. if multi_label: predictions_extra_dim = ops.expand_dims(y_pred, 0) labels_extra_dim = ops.expand_dims(ops.cast(y_true, dtype="bool"), 0) else: # Flatten predictions and labels when not multilabel. predictions_extra_dim = ops.reshape(y_pred, [1, -1]) labels_extra_dim = ops.reshape(ops.cast(y_true, dtype="bool"), [1, -1]) # Tile the thresholds for every prediction. if multi_label: thresh_pretile_shape = [num_thresholds, 1, -1] thresh_tiles = [1, num_predictions, thresh_label_tile] data_tiles = [num_thresholds, 1, 1] else: thresh_pretile_shape = [num_thresholds, -1] thresh_tiles = [1, num_predictions * num_labels] data_tiles = [num_thresholds, 1] thresh_tiled = ops.tile( ops.reshape(thresholds, thresh_pretile_shape), thresh_tiles ) # Tile the predictions for every threshold. preds_tiled = ops.tile(predictions_extra_dim, data_tiles) # Compare predictions and threshold. pred_is_pos = ops.greater(preds_tiled, thresh_tiled) # Tile labels by number of thresholds label_is_pos = ops.tile(labels_extra_dim, data_tiles) if sample_weight is not None: sample_weight = ops.broadcast_to( ops.cast(sample_weight, dtype=y_pred.dtype), y_pred.shape ) weights_tiled = ops.tile( ops.reshape(sample_weight, thresh_tiles), data_tiles ) else: weights_tiled = None if label_weights is not None and not multi_label: label_weights = ops.expand_dims(label_weights, 0) label_weights = ops.broadcast_to(label_weights, ops.shape(y_pred)) label_weights_tiled = ops.tile( ops.reshape(label_weights, thresh_tiles), data_tiles ) if weights_tiled is None: weights_tiled = label_weights_tiled else: weights_tiled = ops.multiply(weights_tiled, label_weights_tiled) def weighted_assign_add(label, pred, weights, var): label_and_pred = ops.cast(ops.logical_and(label, pred), dtype=var.dtype) if weights is not None: label_and_pred *= ops.cast(weights, dtype=var.dtype) var.assign(var + ops.sum(label_and_pred, 1)) loop_vars = { ConfusionMatrix.TRUE_POSITIVES: (label_is_pos, pred_is_pos), } update_tn = ConfusionMatrix.TRUE_NEGATIVES in variables_to_update update_fp = ConfusionMatrix.FALSE_POSITIVES in variables_to_update update_fn = ConfusionMatrix.FALSE_NEGATIVES in variables_to_update if update_fn or update_tn: pred_is_neg = ops.logical_not(pred_is_pos) loop_vars[ConfusionMatrix.FALSE_NEGATIVES] = (label_is_pos, pred_is_neg) if update_fp or update_tn: label_is_neg = ops.logical_not(label_is_pos) loop_vars[ConfusionMatrix.FALSE_POSITIVES] = (label_is_neg, pred_is_pos) if update_tn: loop_vars[ConfusionMatrix.TRUE_NEGATIVES] = ( label_is_neg, pred_is_neg, ) for matrix_cond, (label, pred) in loop_vars.items(): if matrix_cond in variables_to_update: weighted_assign_add( label, pred, weights_tiled, variables_to_update[matrix_cond] ) def _filter_top_k(x, k): """Filters top-k values in the last dim of x and set the rest to NEG_INF. Used for computing top-k prediction values in dense labels (which has the same shape as predictions) for recall and precision top-k metrics. Args: x: tensor with any dimensions. k: the number of values to keep. Returns: tensor with same shape and dtype as x. """ _, top_k_idx = ops.top_k(x, k) top_k_mask = ops.sum( ops.one_hot(top_k_idx, ops.shape(x)[-1], axis=-1), axis=-2 ) return x * top_k_mask + NEG_INF * (1 - top_k_mask) def confusion_matrix( labels, predictions, num_classes=None, weights=None, dtype="int32", ): """Computes the confusion matrix from predictions and labels. The matrix columns represent the prediction labels and the rows represent the real labels. The confusion matrix is always a 2-D array of shape `(n, n)`, where `n` is the number of valid labels for a given classification task. Both prediction and labels must be 1-D arrays of the same shape in order for this function to work. If `num_classes` is `None`, then `num_classes` will be set to one plus the maximum value in either predictions or labels. Class labels are expected to start at 0. For example, if `num_classes` is 3, then the possible labels would be `[0, 1, 2]`. If `weights` is not `None`, then each prediction contributes its corresponding weight to the total value of the confusion matrix cell. For example: ```python keras_core.metrics.metrics_utils.confusion_matrix([1, 2, 4], [2, 2, 4]) ==> [[0 0 0 0 0] [0 0 1 0 0] [0 0 1 0 0] [0 0 0 0 0] [0 0 0 0 1]] ``` Note that the possible labels are assumed to be `[0, 1, 2, 3, 4]`, resulting in a 5x5 confusion matrix. Args: labels: 1-D tensor of real labels for the classification task. predictions: 1-D tensor of predictions for a given classification. num_classes: The possible number of labels the classification task can have. If this value is not provided, it will be calculated using both predictions and labels array. weights: An optional tensor whose shape matches `predictions`. dtype: Data type of the confusion matrix. Returns: A tensor of type `dtype` with shape `(n, n)` representing the confusion matrix, where `n` is the number of possible labels in the classification task. """ labels = ops.convert_to_tensor(labels, dtype) predictions = ops.convert_to_tensor(predictions, dtype) labels, predictions = squeeze_to_same_rank(labels, predictions) predictions = ops.cast(predictions, dtype) labels = ops.cast(labels, dtype) if num_classes is None: num_classes = ops.maximum(ops.max(predictions), ops.max(labels)) + 1 else: num_classes = ops.cast(num_classes, dtype) if weights is not None: weights = ops.convert_to_tensor(weights, dtype) indices = ops.stack([labels, predictions], axis=1) values = ops.ones_like(predictions, dtype) if weights is None else weights indices = ops.cast(indices, dtype="int64") values = ops.cast(values, dtype=dtype) num_classes = ops.cast(num_classes, "int64") confusion_matrix = ops.scatter(indices, values, (num_classes, num_classes)) return confusion_matrix
keras-core/keras_core/metrics/metrics_utils.py/0
{ "file_path": "keras-core/keras_core/metrics/metrics_utils.py", "repo_id": "keras-core", "token_count": 11195 }
47
import copy import tree from keras_core.api_export import keras_core_export from keras_core.backend.common import global_state from keras_core.layers.core.input_layer import InputLayer from keras_core.layers.layer import Layer from keras_core.legacy.saving import saving_utils from keras_core.legacy.saving import serialization as legacy_serialization from keras_core.models.functional import Functional from keras_core.models.model import Model from keras_core.saving import serialization_lib @keras_core_export(["keras_core.Sequential", "keras_core.models.Sequential"]) class Sequential(Model): """`Sequential` groups a linear stack of layers into a `Model`. Examples: ```python model = keras_core.Sequential() model.add(keras_core.Input(shape=(16,))) model.add(keras_core.layers.Dense(8)) # Note that you can also omit the initial `Input`. # In that case the model doesn't have any weights until the first call # to a training/evaluation method (since it isn't yet built): model = keras_core.Sequential() model.add(keras_core.layers.Dense(8)) model.add(keras_core.layers.Dense(4)) # model.weights not created yet # Whereas if you specify an `Input`, the model gets built # continuously as you are adding layers: model = keras_core.Sequential() model.add(keras_core.Input(shape=(16,))) model.add(keras_core.layers.Dense(8)) len(model.weights) # Returns "2" # When using the delayed-build pattern (no input shape specified), you can # choose to manually build your model by calling # `build(batch_input_shape)`: model = keras_core.Sequential() model.add(keras_core.layers.Dense(8)) model.add(keras_core.layers.Dense(4)) model.build((None, 16)) len(model.weights) # Returns "4" # Note that when using the delayed-build pattern (no input shape specified), # the model gets built the first time you call `fit`, `eval`, or `predict`, # or the first time you call the model on some input data. model = keras_core.Sequential() model.add(keras_core.layers.Dense(8)) model.add(keras_core.layers.Dense(1)) model.compile(optimizer='sgd', loss='mse') # This builds the model for the first time: model.fit(x, y, batch_size=32, epochs=10) ``` """ def __init__(self, layers=None, trainable=True, name=None): super().__init__(trainable=trainable, name=name) self._functional = None self._layers = [] if layers: for layer in layers: self.add(layer, rebuild=False) self._maybe_rebuild() def add(self, layer, rebuild=True): """Adds a layer instance on top of the layer stack. Args: layer: layer instance. """ # Legacy case: if the first layer has an input_shape arg, # use it to build an InputLayer. if not self._layers: if getattr(layer, "_input_shape_arg", None) is not None: self.add(InputLayer(shape=layer._input_shape_arg)) # If we are passed a Keras tensor created by keras.Input(), we # extract the input layer from its keras history and use that. if hasattr(layer, "_keras_history"): origin_layer = layer._keras_history[0] if isinstance(origin_layer, InputLayer): layer = origin_layer if not isinstance(layer, Layer): raise ValueError( "Only instances of `keras_core.Layer` can be " f"added to a Sequential model. Received: {layer} " f"(of type {type(layer)})" ) if not self._is_layer_name_unique(layer): raise ValueError( "All layers added to a Sequential model " f"should have unique names. Name '{layer.name}' is already " "the name of a layer in this model. Update the `name` argument " "to pass a unique name." ) if ( isinstance(layer, InputLayer) and self._layers and isinstance(self._layers[0], InputLayer) ): raise ValueError( f"Sequential model '{self.name}' has already been configured " f"to use input shape {self._layers[0].batch_shape}. You cannot " f"add a different Input layer to it." ) self._layers.append(layer) if rebuild: self._maybe_rebuild() else: self.built = False self._functional = None def pop(self, rebuild=True): """Removes the last layer in the model.""" layer = self._layers.pop() self.built = False self._functional = None if rebuild: self._maybe_rebuild() return layer def _maybe_rebuild(self): self.built = False self._functional = None if isinstance(self._layers[0], InputLayer) and len(self._layers) > 1: input_shape = self._layers[0].batch_shape self.build(input_shape) def _lock_state(self): # Unlike other layers, Sequential is mutable after build. pass def build(self, input_shape=None): if not isinstance(input_shape, (tuple, list)): # Do not attempt to build if the model does not have a single # input tensor. return if input_shape and not ( isinstance(input_shape[0], int) or input_shape[0] is None ): # Do not attempt to build if the model does not have a single # input tensor. return if not self._layers: raise ValueError( f"Sequential model {self.name} cannot be built because it has " "no layers. Call `model.add(layer)`." ) if isinstance(self._layers[0], InputLayer): if self._layers[0].batch_shape != input_shape: raise ValueError( f"Sequential model '{self.name}' has already been " "configured to use input shape " f"{self._layers[0].batch_shape}. You cannot build it " f"with input_shape {input_shape}" ) else: dtype = self._layers[0].compute_dtype self._layers = [ InputLayer(batch_shape=input_shape, dtype=dtype) ] + self._layers # Build functional model inputs = self._layers[0].output x = inputs for layer in self._layers[1:]: try: x = layer(x) except NotImplementedError: # Can happen if shape inference is not implemented. # TODO: consider reverting inbound nodes on layers processed. return outputs = x self._functional = Functional(inputs=inputs, outputs=outputs) self.built = True def call(self, inputs, training=None, mask=None): if self._functional: return self._functional.call(inputs, training=training, mask=mask) # Fallback: Just apply the layer sequence. # This typically happens if `inputs` is a nested struct. for layer in self.layers: # During each iteration, `inputs` are the inputs to `layer`, and # `outputs` are the outputs of `layer` applied to `inputs`. At the # end of each iteration `inputs` is set to `outputs` to prepare for # the next layer. kwargs = {} if layer._call_has_mask_arg: kwargs["mask"] = mask if layer._call_has_training_arg and training is not None: kwargs["training"] = training outputs = layer(inputs, **kwargs) inputs = outputs def _get_mask_from_keras_tensor(kt): return getattr(kt, "_keras_mask", None) mask = tree.map_structure(_get_mask_from_keras_tensor, outputs) return outputs @property def layers(self): # Historically, `sequential.layers` only returns layers that were added # via `add`, and omits the auto-generated `InputLayer` that comes at the # bottom of the stack. layers = self._layers if layers and isinstance(layers[0], InputLayer): return layers[1:] return layers[:] def compute_output_spec(self, inputs, training=None, mask=None): if self._functional: return self._functional.compute_output_spec( inputs, training=training, mask=mask ) # Direct application for layer in self.layers: outputs = layer.compute_output_spec( inputs, training=training ) # Ignore mask inputs = outputs return outputs @property def input_shape(self): if self._functional: return self._functional.input_shape raise ValueError( f"Sequential model '{self.name}' has no defined input shape yet." ) @property def output_shape(self): if self._functional: return self._functional.output_shape raise ValueError( f"Sequential model '{self.name}' has no defined output shape yet." ) @property def inputs(self): if self._functional: return self._functional.inputs raise ValueError( f"Sequential model '{self.name}' has no defined inputs yet." ) @property def outputs(self): if self._functional: return self._functional.outputs raise ValueError( f"Sequential model '{self.name}' has no defined outputs yet." ) @property def input_dtype(self): # Sequential.__call__ will try to convert its inputs # to the dtype expected by its input layer, if any. layers = self._layers if layers and isinstance(layers[0], InputLayer): return layers[0].dtype return super().input_dtype def _is_layer_name_unique(self, layer): for ref_layer in self._layers: if layer.name == ref_layer.name and ref_layer is not layer: return False return True def get_config(self): serialize_fn = serialization_lib.serialize_keras_object if global_state.get_global_attribute("use_legacy_config", False): # Legacy format serialization used for H5 and SavedModel formats serialize_fn = legacy_serialization.serialize_keras_object layer_configs = [] for layer in super().layers: # `super().layers` include the InputLayer if available (it is # filtered out of `self.layers`). layer_configs.append(serialize_fn(layer)) config = Model.get_config(self) config["name"] = self.name config["layers"] = copy.deepcopy(layer_configs) if self._functional is not None: config["build_input_shape"] = self._layers[0].batch_shape return config @classmethod def from_config(cls, config, custom_objects=None): if "name" in config: name = config["name"] build_input_shape = config.get("build_input_shape") layer_configs = config["layers"] else: name = None layer_configs = config model = cls(name=name) for layer_config in layer_configs: if "module" not in layer_config: # Legacy format deserialization (no "module" key) # used for H5 and SavedModel formats layer = saving_utils.model_from_config( layer_config, custom_objects=custom_objects, ) else: layer = serialization_lib.deserialize_keras_object( layer_config, custom_objects=custom_objects, ) model.add(layer) if ( not model._functional and build_input_shape and isinstance(build_input_shape, (tuple, list)) ): model.build(build_input_shape) return model
keras-core/keras_core/models/sequential.py/0
{ "file_path": "keras-core/keras_core/models/sequential.py", "repo_id": "keras-core", "token_count": 5454 }
48
import numpy as np from keras_core import Layer from keras_core import testing from keras_core.backend import KerasTensor from keras_core.ops.node import Node class DummyLayer(Layer): pass class NodeTest(testing.TestCase): # Testing a simple node and layer combination **a** def test_simple_case(self): shape = (2, 3, 4) a = KerasTensor(shape=shape) a_layer = DummyLayer() node = Node(a_layer, outputs=a, call_args=(), call_kwargs={}) self.assertEqual(node.is_input, True) self.assertEqual(node.output_tensors[0], a) self.assertEqual(node.output_tensors[0].shape, shape) # Testing a simple node connection with args and kwargs **a** --> **b** def test_single_wired_layers(self): shape = (2, 3, 4) a = KerasTensor(shape=shape) a_layer = DummyLayer() node1 = Node(a_layer, outputs=a, call_args=(), call_kwargs={}) b = KerasTensor(shape=shape) x = KerasTensor(shape=shape) kwargs = {"x": x} args = (a,) b_layer = DummyLayer() node2 = Node(b_layer, outputs=b, call_args=args, call_kwargs=kwargs) self.assertEqual(node1.is_input, True) self.assertEqual(node2.is_input, False) self.assertEqual(node1.operation, a_layer) self.assertEqual(node2.operation, b_layer) self.assertEqual(node1.output_tensors[0], a) self.assertEqual(node1.output_tensors[0].shape, shape) self.assertEqual(a_layer._inbound_nodes[0], node1) self.assertEqual(a_layer._outbound_nodes[0], node2) self.assertEqual(b_layer._inbound_nodes[0], node2) self.assertEqual(node2.parent_nodes[0], node1) self.assertEqual(node2.input_tensors, [a, x]) self.assertEqual(node2.arguments.kwargs, kwargs) self.assertEqual(node2.arguments.args, args) # Testing when output tensor is not Keras Tensor def test_output_tensor_error(self): a = np.random.rand(2, 3, 4) a_layer = DummyLayer() with self.assertRaisesRegex( ValueError, "operation outputs must be tensors." ): Node(a_layer, outputs=a, call_args=(), call_kwargs={})
keras-core/keras_core/ops/node_test.py/0
{ "file_path": "keras-core/keras_core/ops/node_test.py", "repo_id": "keras-core", "token_count": 996 }
49
from keras_core import ops from keras_core.api_export import keras_core_export from keras_core.optimizers import optimizer @keras_core_export(["keras_core.optimizers.Adam"]) class Adam(optimizer.Optimizer): """Optimizer that implements the Adam algorithm. Adam optimization is a stochastic gradient descent method that is based on adaptive estimation of first-order and second-order moments. According to [Kingma et al., 2014](http://arxiv.org/abs/1412.6980), the method is "*computationally efficient, has little memory requirement, invariant to diagonal rescaling of gradients, and is well suited for problems that are large in terms of data/parameters*". Args: learning_rate: A float, a `keras_core.optimizers.schedules.LearningRateSchedule` instance, or a callable that takes no arguments and returns the actual value to use. The learning rate. Defaults to `0.001`. beta_1: A float value or a constant float tensor, or a callable that takes no arguments and returns the actual value to use. The exponential decay rate for the 1st moment estimates. Defaults to `0.9`. beta_2: A float value or a constant float tensor, or a callable that takes no arguments and returns the actual value to use. The exponential decay rate for the 2nd moment estimates. Defaults to `0.999`. epsilon: A small constant for numerical stability. This epsilon is "epsilon hat" in the Kingma and Ba paper (in the formula just before Section 2.1), not the epsilon in Algorithm 1 of the paper. Defaults to `1e-7`. amsgrad: Boolean. Whether to apply AMSGrad variant of this algorithm from the paper "On the Convergence of Adam and beyond". Defaults to `False`. {{base_optimizer_keyword_args}} """ def __init__( self, learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-7, amsgrad=False, weight_decay=None, clipnorm=None, clipvalue=None, global_clipnorm=None, use_ema=False, ema_momentum=0.99, ema_overwrite_frequency=None, name="adam", **kwargs, ): super().__init__( learning_rate=learning_rate, name=name, weight_decay=weight_decay, clipnorm=clipnorm, clipvalue=clipvalue, global_clipnorm=global_clipnorm, use_ema=use_ema, ema_momentum=ema_momentum, ema_overwrite_frequency=ema_overwrite_frequency, **kwargs, ) self.beta_1 = beta_1 self.beta_2 = beta_2 self.epsilon = epsilon self.amsgrad = amsgrad def build(self, var_list): """Initialize optimizer variables. Adam optimizer has 3 types of variables: momentums, velocities and velocity_hat (only set when amsgrad is applied), Args: var_list: list of model variables to build Adam variables on. """ if self.built: return super().build(var_list) self._momentums = [] self._velocities = [] for var in var_list: self._momentums.append( self.add_variable_from_reference( reference_variable=var, name="momentum" ) ) self._velocities.append( self.add_variable_from_reference( reference_variable=var, name="velocity" ) ) if self.amsgrad: self._velocity_hats = [] for var in var_list: self._velocity_hats.append( self.add_variable_from_reference( reference_variable=var, name="velocity_hat" ) ) def update_step(self, gradient, variable, learning_rate): """Update step given gradient and the associated model variable.""" lr = ops.cast(learning_rate, variable.dtype) gradient = ops.cast(gradient, variable.dtype) local_step = ops.cast(self.iterations + 1, variable.dtype) beta_1_power = ops.power( ops.cast(self.beta_1, variable.dtype), local_step ) beta_2_power = ops.power( ops.cast(self.beta_2, variable.dtype), local_step ) m = self._momentums[self._get_variable_index(variable)] v = self._velocities[self._get_variable_index(variable)] alpha = lr * ops.sqrt(1 - beta_2_power) / (1 - beta_1_power) m.assign(m + (gradient - m) * (1 - self.beta_1)) v.assign(v + (ops.square(gradient) - v) * (1 - self.beta_2)) if self.amsgrad: v_hat = self._velocity_hats[self._get_variable_index(variable)] v_hat.assign(ops.maximum(v_hat, v)) v = v_hat variable.assign(variable - (m * alpha) / (ops.sqrt(v) + self.epsilon)) def get_config(self): config = super().get_config() config.update( { "beta_1": self.beta_1, "beta_2": self.beta_2, "epsilon": self.epsilon, "amsgrad": self.amsgrad, } ) return config Adam.__doc__ = Adam.__doc__.replace( "{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args )
keras-core/keras_core/optimizers/adam.py/0
{ "file_path": "keras-core/keras_core/optimizers/adam.py", "repo_id": "keras-core", "token_count": 2582 }
50
import numpy as np from keras_core import backend from keras_core import constraints from keras_core import optimizers from keras_core import testing class OptimizerTest(testing.TestCase): def test_constraints_are_applied(self): v = backend.Variable(np.random.random((2, 2)) - 1.0) v.constraint = constraints.NonNeg() optimizer = optimizers.SGD(learning_rate=0.0001) grad = backend.numpy.zeros((2, 2)) optimizer.apply_gradients([(grad, v)]) self.assertAlmostEqual(np.min(v), 0.0) def test_get_method(self): obj = optimizers.get("sgd") self.assertIsInstance(obj, optimizers.SGD) obj = optimizers.get("adamw") self.assertIsInstance(obj, optimizers.AdamW) obj = optimizers.get(None) self.assertEqual(obj, None) with self.assertRaises(ValueError): optimizers.get("typo") def test_static_loss_scaling(self): v = backend.Variable([[1.0, 2.0], [3.0, 4.0]]) grads = backend.convert_to_tensor([[1.0, 2.0], [3.0, 4.0]]) * 1024.0 optimizer = optimizers.SGD(learning_rate=1.0, loss_scale_factor=1024.0) optimizer.apply_gradients([(grads, v)]) self.assertEqual(optimizer.scale_loss(1.0), 1024.0) self.assertAllClose(v, [[0.0, 0.0], [0.0, 0.0]]) def test_set_weights(self): x = backend.Variable([[1.0, 2.0], [3.0, 4.0]]) optimizer_1 = optimizers.Adam() grads = backend.convert_to_tensor([[1.0, 2.0], [3.0, 4.0]]) optimizer_1.apply_gradients(zip([grads], [x])) optimizer_2 = optimizers.Adam() with self.assertRaisesRegex(ValueError, "You are calling*"): optimizer_2.set_weights(optimizer_1.variables) optimizer_2.build([x]) optimizer_2.set_weights(optimizer_1.variables) for i in range(len(optimizer_1.variables)): self.assertAllClose( optimizer_1.variables[i], optimizer_2.variables[i], )
keras-core/keras_core/optimizers/optimizer_test.py/0
{ "file_path": "keras-core/keras_core/optimizers/optimizer_test.py", "repo_id": "keras-core", "token_count": 948 }
51
import numpy as np import pandas import pytest import tensorflow as tf from absl.testing import parameterized from keras_core import backend from keras_core import testing from keras_core.trainers.data_adapters import array_data_adapter class TestArrayDataAdapter(testing.TestCase, parameterized.TestCase): def make_array(self, array_type, shape, dtype="float32"): if array_type == "np": return np.ones(shape, dtype=dtype) elif array_type == "tf": return tf.ones(shape, dtype=dtype) elif array_type == "backend": if backend.backend() == "jax": import jax return jax.numpy.ones(shape, dtype=dtype) elif backend.backend() == "torch": import torch return torch.tensor(np.ones(shape, dtype=dtype)) else: return tf.ones(shape, dtype=dtype) elif array_type == "pandas": return pandas.DataFrame(np.ones(shape, dtype=dtype)) @parameterized.parameters([("np",), ("tf",), ("backend",), ("pandas",)]) def test_basic_flow(self, array_type): x = self.make_array(array_type, (34, 4)) y = self.make_array(array_type, (34, 2)) adapter = array_data_adapter.ArrayDataAdapter( x, y=y, sample_weight=None, batch_size=16, steps=None, shuffle=False, ) self.assertEqual(adapter.num_batches, 3) self.assertEqual(adapter.batch_size, 16) self.assertEqual(adapter.has_partial_batch, True) self.assertEqual(adapter.partial_batch_size, 2) gen = adapter.get_numpy_iterator() for i, batch in enumerate(gen): self.assertEqual(len(batch), 2) bx, by = batch self.assertIsInstance(bx, np.ndarray) self.assertIsInstance(by, np.ndarray) self.assertEqual(bx.dtype, by.dtype) self.assertEqual(bx.dtype, backend.floatx()) if i < 2: self.assertEqual(bx.shape, (16, 4)) self.assertEqual(by.shape, (16, 2)) else: self.assertEqual(bx.shape, (2, 4)) self.assertEqual(by.shape, (2, 2)) ds = adapter.get_tf_dataset() for i, batch in enumerate(ds): self.assertEqual(len(batch), 2) bx, by = batch self.assertIsInstance(bx, tf.Tensor) self.assertIsInstance(by, tf.Tensor) self.assertEqual(bx.dtype, by.dtype) self.assertEqual(bx.dtype, backend.floatx()) if i < 2: self.assertEqual(tuple(bx.shape), (16, 4)) self.assertEqual(tuple(by.shape), (16, 2)) else: self.assertEqual(tuple(bx.shape), (2, 4)) self.assertEqual(tuple(by.shape), (2, 2)) def test_multi_inputs_and_outputs(self): x1 = np.random.random((34, 1)) x2 = np.random.random((34, 2)) y1 = np.random.random((34, 3)) y2 = np.random.random((34, 4)) sw = np.random.random((34,)) adapter = array_data_adapter.ArrayDataAdapter( x={"x1": x1, "x2": x2}, y=[y1, y2], sample_weight=sw, batch_size=16, steps=None, shuffle=False, ) gen = adapter.get_numpy_iterator() for i, batch in enumerate(gen): self.assertEqual(len(batch), 3) bx, by, bw = batch self.assertIsInstance(bx, dict) # NOTE: the y list was converted to a tuple for tf.data # compatibility. self.assertIsInstance(by, tuple) self.assertIsInstance(bw, tuple) self.assertIsInstance(bx["x1"], np.ndarray) self.assertIsInstance(bx["x2"], np.ndarray) self.assertIsInstance(by[0], np.ndarray) self.assertIsInstance(by[1], np.ndarray) self.assertIsInstance(bw[0], np.ndarray) self.assertIsInstance(bw[1], np.ndarray) self.assertEqual(bx["x1"].dtype, by[0].dtype) self.assertEqual(bx["x1"].dtype, backend.floatx()) if i < 2: self.assertEqual(bx["x1"].shape, (16, 1)) self.assertEqual(bx["x2"].shape, (16, 2)) self.assertEqual(by[0].shape, (16, 3)) self.assertEqual(by[1].shape, (16, 4)) self.assertEqual(bw[0].shape, (16,)) self.assertEqual(bw[1].shape, (16,)) else: self.assertEqual(bx["x1"].shape, (2, 1)) self.assertEqual(by[0].shape, (2, 3)) self.assertEqual(bw[0].shape, (2,)) self.assertEqual(bw[1].shape, (2,)) ds = adapter.get_tf_dataset() for i, batch in enumerate(ds): self.assertEqual(len(batch), 3) bx, by, bw = batch self.assertIsInstance(bx, dict) # NOTE: the y list was converted to a tuple for tf.data # compatibility. self.assertIsInstance(by, tuple) self.assertIsInstance(bw, tuple) self.assertIsInstance(bx["x1"], tf.Tensor) self.assertIsInstance(bx["x2"], tf.Tensor) self.assertIsInstance(by[0], tf.Tensor) self.assertIsInstance(by[1], tf.Tensor) self.assertIsInstance(bw[0], tf.Tensor) self.assertIsInstance(bw[1], tf.Tensor) self.assertEqual(bx["x1"].dtype, by[0].dtype) self.assertEqual(bx["x1"].dtype, backend.floatx()) if i < 2: self.assertEqual(tuple(bx["x1"].shape), (16, 1)) self.assertEqual(tuple(bx["x2"].shape), (16, 2)) self.assertEqual(tuple(by[0].shape), (16, 3)) self.assertEqual(tuple(by[1].shape), (16, 4)) self.assertEqual(tuple(bw[0].shape), (16,)) self.assertEqual(tuple(bw[1].shape), (16,)) else: self.assertEqual(tuple(bx["x1"].shape), (2, 1)) self.assertEqual(tuple(by[0].shape), (2, 3)) self.assertEqual(tuple(bw[0].shape), (2,)) self.assertEqual(tuple(bw[1].shape), (2,)) @parameterized.parameters([("int",), ("categorical",)]) def test_class_weights(self, target_encoding): x = np.random.random((4, 2)) if target_encoding == "int": y = np.array([[0], [1], [2], [3]], dtype="int32") else: y = np.array( [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], dtype="float32", ) class_weight = { 0: 0.1, 1: 0.2, 2: 0.3, 3: 0.4, } adapter = array_data_adapter.ArrayDataAdapter( x, y=y, class_weight=class_weight, batch_size=16, ) gen = adapter.get_numpy_iterator() for batch in gen: self.assertEqual(len(batch), 3) _, _, bw = batch self.assertAllClose(bw, [0.1, 0.2, 0.3, 0.4]) def test_errors(self): # TODO pass @parameterized.parameters([("np",), ("tf",), ("backend",), ("pandas",)]) def test_integer_inputs(self, array_type): x1 = self.make_array(array_type, (4, 4), dtype="float64") x2 = self.make_array(array_type, (4, 4), dtype="int32") y = self.make_array(array_type, (4, 2)) adapter = array_data_adapter.ArrayDataAdapter( (x1, x2), y=y, sample_weight=None, batch_size=4, steps=None, shuffle=False, ) (x1, x2), y = next(adapter.get_numpy_iterator()) self.assertEqual(x1.dtype, backend.floatx()) self.assertEqual(x2.dtype, "int32") def test_pandas_series(self): x = pandas.Series(np.ones((10,))) y = np.ones((10,)) adapter = array_data_adapter.ArrayDataAdapter( x, y=y, sample_weight=None, batch_size=4, steps=None, shuffle=False, ) self.assertEqual(adapter.num_batches, 3) self.assertEqual(adapter.batch_size, 4) self.assertEqual(adapter.has_partial_batch, True) self.assertEqual(adapter.partial_batch_size, 2) x, y = next(adapter.get_numpy_iterator()) self.assertEqual(x.dtype, backend.floatx()) self.assertIsInstance(x, np.ndarray) self.assertEqual(x.shape, (4, 1)) @pytest.mark.skipif( backend.backend() != "tensorflow", reason="Only tensorflow supports raggeds", ) def test_tf_ragged(self): x = tf.ragged.constant([[1, 2], [1, 2, 3], [1, 2], [1], []], "float64") y = np.ones((5,)) adapter = array_data_adapter.ArrayDataAdapter( x, y=y, sample_weight=None, batch_size=2, steps=None, shuffle=False, ) self.assertEqual(adapter.num_batches, 3) self.assertEqual(adapter.batch_size, 2) self.assertEqual(adapter.has_partial_batch, True) self.assertEqual(adapter.partial_batch_size, 1) x, y = next(adapter.get_numpy_iterator()) self.assertEqual(x.dtype, backend.floatx()) self.assertIsInstance(x, tf.RaggedTensor) self.assertEqual(x.shape, (2, None))
keras-core/keras_core/trainers/data_adapters/array_data_adapter_test.py/0
{ "file_path": "keras-core/keras_core/trainers/data_adapters/array_data_adapter_test.py", "repo_id": "keras-core", "token_count": 5119 }
52
sh_binary( name = "build_pip_pkg", srcs = ["build_deps/build_pip_pkg.sh"], data = [ "LICENSE", "MANIFEST.in", "README.md", "setup.cfg", "setup.py", "//keras_cv", ], )
keras-cv/BUILD.bazel/0
{ "file_path": "keras-cv/BUILD.bazel", "repo_id": "keras-cv", "token_count": 138 }
53
# Copyright 2023 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import unittest import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from tensorflow import keras from keras_cv import bounding_box from keras_cv.layers import JitteredResize from keras_cv.layers.preprocessing.base_image_augmentation_layer import ( BaseImageAugmentationLayer, ) from keras_cv.layers.preprocessing.vectorized_base_image_augmentation_layer import ( # noqa: E501 BOUNDING_BOXES, ) from keras_cv.layers.preprocessing.vectorized_base_image_augmentation_layer import ( # noqa: E501 IMAGES, ) from keras_cv.utils import preprocessing as preprocessing_utils class OldJitteredResize(BaseImageAugmentationLayer): """JitteredResize implements resize with scale distortion. JitteredResize takes a three-step approach to size-distortion based image augmentation. This technique is specifically tuned for object detection pipelines. The layer takes an input of images and bounding boxes, both of which may be ragged. It outputs a dense image tensor, ready to feed to a model for training. As such this layer will commonly be the final step in an augmentation pipeline. The augmentation process is as follows: The image is first scaled according to a randomly sampled scale factor. The width and height of the image are then resized according to the sampled scale. This is done to introduce noise into the local scale of features in the image. A subset of the image is then cropped randomly according to `crop_size`. This crop is then padded to be `target_size`. Bounding boxes are translated and scaled according to the random scaling and random cropping. Usage: ```python train_ds = load_object_detection_dataset() jittered_resize = layers.JitteredResize( target_size=(640, 640), scale_factor=(0.8, 1.25), bounding_box_format="xywh", ) train_ds = train_ds.map( jittered_resize, num_parallel_calls=tf.data.AUTOTUNE ) # images now are (640, 640, 3) # an example using crop size train_ds = load_object_detection_dataset() jittered_resize = layers.JitteredResize( target_size=(640, 640), crop_size=(250, 250), scale_factor=(0.8, 1.25), bounding_box_format="xywh", ) train_ds = train_ds.map( jittered_resize, num_parallel_calls=tf.data.AUTOTUNE ) # images now are (640, 640, 3), but they were resized from a 250x250 crop. ``` Args: target_size: A tuple representing the output size of images. scale_factor: A tuple of two floats or a `keras_cv.FactorSampler`. For each augmented image a value is sampled from the provided range. This factor is used to scale the input image. To replicate the results of the MaskRCNN paper pass `(0.8, 1.25)`. crop_size: (Optional) the size of the image to crop from the scaled image, defaults to `target_size` when not provided. bounding_box_format: The format of bounding boxes of input boxes. Refer to https://github.com/keras-team/keras-cv/blob/master/keras_cv/bounding_box/converters.py for more details on supported bounding box formats. interpolation: String, the interpolation method, defaults to `"bilinear"`. Supports `"bilinear"`, `"nearest"`, `"bicubic"`, `"area"`, `"lanczos3"`, `"lanczos5"`, `"gaussian"`, `"mitchellcubic"`. seed: (Optional) integer to use as the random seed. """ def __init__( self, target_size, scale_factor, crop_size=None, bounding_box_format=None, interpolation="bilinear", seed=None, **kwargs, ): super().__init__(**kwargs) if not isinstance(target_size, tuple) or len(target_size) != 2: raise ValueError( "JitteredResize() expects `target_size` to be a tuple of two " f"integers. Received `target_size={target_size}`" ) crop_size = crop_size or target_size self.interpolation = preprocessing_utils.get_interpolation( interpolation ) self.scale_factor = preprocessing_utils.parse_factor( scale_factor, min_value=0.0, max_value=None, param_name="scale_factor", seed=seed, ) self.crop_size = crop_size self.target_size = target_size self.bounding_box_format = bounding_box_format self.seed = seed self.force_output_dense_images = True self.auto_vectorize = False def get_random_transformation(self, image=None, **kwargs): original_image_shape = tf.shape(image) image_shape = tf.cast(original_image_shape[0:2], tf.float32) scaled_size = tf.round(image_shape * self.scale_factor()) scale = tf.minimum( scaled_size[0] / image_shape[0], scaled_size[1] / image_shape[1] ) scaled_size = tf.round(image_shape * scale) image_scale = scaled_size / image_shape max_offset = scaled_size - self.crop_size max_offset = tf.where( tf.less(max_offset, 0), tf.zeros_like(max_offset), max_offset ) offset = max_offset * tf.random.uniform([2], minval=0, maxval=1) offset = tf.cast(offset, tf.int32) return { "original_size": original_image_shape, "image_scale": image_scale, "scaled_size": scaled_size, "offset": offset, } def compute_image_signature(self, images): return tf.TensorSpec( shape=list(self.target_size) + [images.shape[-1]], dtype=self.compute_dtype, ) def augment_image(self, image, transformation, **kwargs): # unpackage augmentation arguments scaled_size = transformation["scaled_size"] offset = transformation["offset"] target_size = self.target_size crop_size = self.crop_size scaled_image = tf.image.resize( image, tf.cast(scaled_size, tf.int32), method=self.interpolation ) scaled_image = scaled_image[ offset[0] : offset[0] + crop_size[0], offset[1] : offset[1] + crop_size[1], :, ] scaled_image = tf.image.pad_to_bounding_box( scaled_image, 0, 0, target_size[0], target_size[1] ) return tf.cast(scaled_image, self.compute_dtype) def augment_bounding_boxes(self, bounding_boxes, transformation, **kwargs): if self.bounding_box_format is None: raise ValueError( "Please provide a `bounding_box_format` when augmenting " "bounding boxes with `JitteredResize()`." ) result = bounding_boxes.copy() image_scale = tf.cast(transformation["image_scale"], self.compute_dtype) offset = tf.cast(transformation["offset"], self.compute_dtype) original_size = transformation["original_size"] bounding_boxes = bounding_box.convert_format( bounding_boxes, image_shape=original_size, source=self.bounding_box_format, target="yxyx", ) # Adjusts box coordinates based on image_scale and offset. yxyx = bounding_boxes["boxes"] yxyx *= tf.tile(tf.expand_dims(image_scale, axis=0), [1, 2]) yxyx -= tf.tile(tf.expand_dims(offset, axis=0), [1, 2]) result["boxes"] = yxyx result = bounding_box.clip_to_image( result, image_shape=self.target_size + (3,), bounding_box_format="yxyx", ) result = bounding_box.convert_format( result, image_shape=self.target_size + (3,), source="yxyx", target=self.bounding_box_format, ) return result def augment_label(self, label, transformation, **kwargs): return label def get_config(self): config = super().get_config() config.update( { "target_size": self.target_size, "scale_factor": self.scale_factor, "crop_size": self.crop_size, "bounding_box_format": self.bounding_box_format, "interpolation": self.interpolation, "seed": self.seed, } ) return config class JitteredResizeTest(tf.test.TestCase): def test_consistency_with_old_impl(self): target_size = (32, 32) fixed_scale_factor = (3 / 4, 3 / 4) image = tf.random.uniform(shape=(1, 64, 64, 3)) * 255.0 layer = JitteredResize( target_size=target_size, scale_factor=fixed_scale_factor, ) old_layer = OldJitteredResize( target_size=target_size, scale_factor=fixed_scale_factor, ) # makes offsets fixed to (0.5, 0.5) with unittest.mock.patch.object( layer._random_generator, "uniform", return_value=tf.convert_to_tensor([[0.5, 0.5]]), ): output = layer(image) with unittest.mock.patch.object( tf.random, "uniform", return_value=tf.convert_to_tensor([0.5, 0.5]), ): old_output = old_layer(image) self.assertAllClose(old_output, output) if __name__ == "__main__": # Run benchmark (x_train, _), _ = keras.datasets.cifar10.load_data() x_train = x_train.astype(np.float32) is_inputs_containing_bounding_boxes = True num_images = [100, 200, 500, 1000] results = {} aug_candidates = [JitteredResize, OldJitteredResize] aug_args = { "target_size": (30, 30), "scale_factor": (3 / 4, 4 / 3), "bounding_box_format": "xyxy", } for aug in aug_candidates: # Eager Mode c = aug.__name__ layer = aug(**aug_args) runtimes = [] print(f"Timing {c}") for n_images in num_images: inputs = {IMAGES: x_train[:n_images]} if is_inputs_containing_bounding_boxes: inputs.update( { BOUNDING_BOXES: { "classes": tf.zeros(shape=(n_images, 4)), "boxes": tf.zeros(shape=(n_images, 4, 4)), } } ) # warmup layer(inputs) t0 = time.time() r1 = layer(inputs) t1 = time.time() runtimes.append(t1 - t0) print(f"Runtime for {c}, n_images={n_images}: {t1-t0}") results[c] = runtimes # Graph Mode c = aug.__name__ + " Graph Mode" layer = aug(**aug_args) @tf.function() def apply_aug(inputs): return layer(inputs) runtimes = [] print(f"Timing {c}") for n_images in num_images: inputs = {IMAGES: x_train[:n_images]} if is_inputs_containing_bounding_boxes: inputs.update( { BOUNDING_BOXES: { "classes": tf.zeros(shape=(n_images, 4)), "boxes": tf.zeros(shape=(n_images, 4, 4)), } } ) # warmup apply_aug(inputs) t0 = time.time() r1 = apply_aug(inputs) t1 = time.time() runtimes.append(t1 - t0) print(f"Runtime for {c}, n_images={n_images}: {t1-t0}") results[c] = runtimes # XLA Mode # tf.map_fn while_loop cannot run on XLA plt.figure() for key in results: plt.plot(num_images, results[key], label=key) plt.xlabel("Number images") plt.ylabel("Runtime (seconds)") plt.legend() plt.savefig("comparison.png") # So we can actually see more relevant margins del results[aug_candidates[1].__name__] plt.figure() for key in results: plt.plot(num_images, results[key], label=key) plt.xlabel("Number images") plt.ylabel("Runtime (seconds)") plt.legend() plt.savefig("comparison_no_old_eager.png") # Run unit tests tf.test.main()
keras-cv/benchmarks/vectorized_jittered_resize.py/0
{ "file_path": "keras-cv/benchmarks/vectorized_jittered_resize.py", "repo_id": "keras-cv", "token_count": 5992 }
54
#!/usr/bin/env bash # Copyright 2022 The KerasCV Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # Builds a wheel of KerasCV for Pip. Requires Bazel. # Adapted from https://github.com/tensorflow/addons/blob/master/build_deps/build_pip_pkg.sh set -e set -x PLATFORM="$(uname -s | tr 'A-Z' 'a-z')" function is_windows() { if [[ "${PLATFORM}" =~ (cygwin|mingw32|mingw64|msys)_nt* ]]; then true else false fi } if is_windows; then PIP_FILE_PREFIX="bazel-bin/build_pip_pkg.exe.runfiles/__main__/" else PIP_FILE_PREFIX="bazel-bin/build_pip_pkg.runfiles/__main__/" fi function main() { while [[ ! -z "${1}" ]]; do if [[ ${1} == "make" ]]; then echo "Using Makefile to build pip package." PIP_FILE_PREFIX="" else DEST=${1} fi shift done if [[ -z ${DEST} ]]; then echo "No destination dir provided" exit 1 fi # Create the directory, then do dirname on a non-existent file inside it to # give us an absolute paths with tilde characters resolved to the destination # directory. mkdir -p ${DEST} if [[ ${PLATFORM} == "darwin" ]]; then DEST=$(pwd -P)/${DEST} else DEST=$(readlink -f "${DEST}") fi echo "=== destination directory: ${DEST}" TMPDIR=$(mktemp -d -t tmp.XXXXXXXXXX) echo $(date) : "=== Using tmpdir: ${TMPDIR}" echo "=== Copy KerasCV Custom op files" cp ${PIP_FILE_PREFIX}setup.cfg "${TMPDIR}" cp ${PIP_FILE_PREFIX}setup.py "${TMPDIR}" cp ${PIP_FILE_PREFIX}MANIFEST.in "${TMPDIR}" cp ${PIP_FILE_PREFIX}README.md "${TMPDIR}" cp ${PIP_FILE_PREFIX}LICENSE "${TMPDIR}" if is_windows; then from=$(cygpath -w ${PIP_FILE_PREFIX}keras_cv) to=$(cygpath -w "${TMPDIR}"/keras_cv) start robocopy //S "${from}" "${to}" //xf *_test.py sleep 5 else rsync -avm -L --exclude='*_test.py' ${PIP_FILE_PREFIX}keras_cv "${TMPDIR}" fi pushd ${TMPDIR} echo $(date) : "=== Building wheel" python setup.py bdist_wheel > /dev/null cp dist/*.whl "${DEST}" popd rm -rf ${TMPDIR} echo $(date) : "=== Output wheel file is in: ${DEST}" } main "$@"
keras-cv/build_deps/build_pip_pkg.sh/0
{ "file_path": "keras-cv/build_deps/build_pip_pkg.sh", "repo_id": "keras-cv", "token_count": 1026 }
55
# Copyright 2023 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility functions for preprocessing demos.""" import matplotlib.pyplot as plt import tensorflow as tf import tensorflow_datasets as tfds from tensorflow.keras import backend image_size = 512 BATCH_SIZE = 32 AUTOTUNE = tf.data.AUTOTUNE mean = tf.constant([0.485, 0.456, 0.406]) std = tf.constant([0.229, 0.224, 0.225]) def normalize(input_image, input_mask): input_image = tf.image.convert_image_dtype(input_image, tf.float32) input_image = (input_image - mean) / tf.maximum(std, backend.epsilon()) input_image = input_image / 255 input_mask -= 1 return input_image, input_mask def to_dict(datapoint): input_image = tf.image.resize(datapoint["image"], (image_size, image_size)) input_mask = tf.image.resize( datapoint["segmentation_mask"], (image_size, image_size), method="bilinear", ) input_image, input_mask = normalize(input_image, input_mask) input_mask = tf.one_hot( tf.squeeze(tf.cast(input_mask, tf.int32), axis=-1), depth=3 ) return {"images": input_image, "segmentation_masks": input_mask} def load_oxford_iiit_pet_dataset(): data, ds_info = tfds.load("oxford_iiit_pet:3.*.*", with_info=True) print("Dataset info: ", ds_info) dataset = data["train"] return ( dataset.shuffle(10 * BATCH_SIZE) .map(to_dict, num_parallel_calls=AUTOTUNE) .batch(BATCH_SIZE) ) def display(display_list): plt.figure(figsize=(6, 6)) title = ["Input Image", "True Mask", "Predicted Mask"] for i in range(len(display_list)): plt.subplot(1, len(display_list), i + 1) plt.title(title[i]) plt.imshow(tf.keras.utils.array_to_img(display_list[i])) plt.axis("off") plt.show() def visualize_dataset(ds): for samples in ds.take(1): sample_image, sample_mask = ( samples["images"][0], samples["segmentation_masks"][0], ) display([sample_image, sample_mask])
keras-cv/examples/layers/preprocessing/segmentation/demo_utils.py/0
{ "file_path": "keras-cv/examples/layers/preprocessing/segmentation/demo_utils.py", "repo_id": "keras-cv", "token_count": 1010 }
56
# Copyright 2022 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Title: Train an Object Detection Model on Pascal VOC 2007 using KerasCV Author: [lukewood](https://github.com/LukeWood), [tanzhenyu](https://github.com/tanzhenyu) Date created: 2022/09/27 Last modified: 2023/03/29 Description: Use KerasCV to train a RetinaNet on Pascal VOC 2007. """ # noqa: E501 import resource import sys import tensorflow as tf import tensorflow_datasets as tfds import tqdm from absl import flags from tensorflow import keras import keras_cv from keras_cv.callbacks import PyCOCOCallback low, high = resource.getrlimit(resource.RLIMIT_NOFILE) resource.setrlimit(resource.RLIMIT_NOFILE, (high, high)) flags.DEFINE_integer( "epochs", 100, "Number of epochs to run for.", ) flags.DEFINE_string( "weights_name", "weights_{epoch:02d}.weights.h5", "Directory which will be used to store weight checkpoints.", ) flags.DEFINE_string( "tensorboard_path", "logs", "Directory which will be used to store tensorboard logs.", ) FLAGS = flags.FLAGS FLAGS(sys.argv) # parameters from RetinaNet [paper](https://arxiv.org/abs/1708.02002) # Try to detect an available TPU. If none is present, defaults to # MirroredStrategy try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver.connect() strategy = tf.distribute.TPUStrategy(tpu) except ValueError: # MirroredStrategy is best for a single machine with one or multiple GPUs strategy = tf.distribute.MirroredStrategy() BATCH_SIZE = 4 GLOBAL_BATCH_SIZE = BATCH_SIZE * strategy.num_replicas_in_sync BASE_LR = 0.005 * GLOBAL_BATCH_SIZE / 16 print("Number of accelerators: ", strategy.num_replicas_in_sync) print("Global Batch Size: ", GLOBAL_BATCH_SIZE) IMG_SIZE = 640 image_size = [IMG_SIZE, IMG_SIZE, 3] train_ds = tfds.load( "voc/2007", split="train+validation", with_info=False, shuffle_files=True ) train_ds = train_ds.concatenate( tfds.load( "voc/2012", split="train+validation", with_info=False, shuffle_files=True, ) ) eval_ds = tfds.load("voc/2007", split="test", with_info=False) def unpackage_tfds_inputs(inputs, bounding_box_format): image = inputs["image"] boxes = keras_cv.bounding_box.convert_format( inputs["objects"]["bbox"], images=image, source="rel_yxyx", target=bounding_box_format, ) bounding_boxes = { "classes": tf.cast(inputs["objects"]["label"], dtype=tf.float32), "boxes": tf.cast(boxes, dtype=tf.float32), } return { "images": tf.cast(image, tf.float32), "bounding_boxes": bounding_boxes, } train_ds = train_ds.map( lambda inputs: unpackage_tfds_inputs(inputs, bounding_box_format="xywh"), num_parallel_calls=tf.data.AUTOTUNE, ) eval_ds = eval_ds.map( lambda inputs: unpackage_tfds_inputs(inputs, bounding_box_format="xywh"), num_parallel_calls=tf.data.AUTOTUNE, ) augmenter = keras.Sequential( layers=[ keras_cv.layers.RandomFlip( mode="horizontal", bounding_box_format="xywh" ), keras_cv.layers.JitteredResize( target_size=(640, 640), scale_factor=(0.8, 1.25), bounding_box_format="xywh", ), ] ) rand_augment = keras_cv.layers.RandAugment( value_range=(0, 255), augmentations_per_image=2, magnitude=0.2, rate=0.5, magnitude_stddev=0.1, geometric=False, ) def apply_rand_augment(inputs): inputs["images"] = rand_augment(inputs["images"]) return inputs train_ds = train_ds.map(apply_rand_augment) train_ds = train_ds.apply( tf.data.experimental.dense_to_ragged_batch(BATCH_SIZE) ) train_ds = train_ds.map(augmenter, num_parallel_calls=tf.data.AUTOTUNE) def pad_fn(inputs): inputs["bounding_boxes"] = keras_cv.bounding_box.to_dense( inputs["bounding_boxes"], max_boxes=32 ) return inputs train_ds = train_ds.shuffle(8 * strategy.num_replicas_in_sync) train_ds = train_ds.map(pad_fn, num_parallel_calls=tf.data.AUTOTUNE) train_ds = train_ds.prefetch(tf.data.AUTOTUNE) eval_resizing = keras_cv.layers.Resizing( 640, 640, pad_to_aspect_ratio=True, bounding_box_format="xywh" ) eval_ds = eval_ds.map( eval_resizing, num_parallel_calls=tf.data.AUTOTUNE, ) eval_ds = eval_ds.apply(tf.data.experimental.dense_to_ragged_batch(BATCH_SIZE)) eval_ds = eval_ds.map(pad_fn, num_parallel_calls=tf.data.AUTOTUNE) eval_ds = eval_ds.prefetch(tf.data.AUTOTUNE) """ ## Model creation We'll use the KerasCV API to construct a RetinaNet model. In this tutorial we use a pretrained ResNet50 backbone using weights. In order to perform fine-tuning, we freeze the backbone before training. When `include_rescaling=True` is set, inputs to the model are expected to be in the range `[0, 255]`. """ with strategy.scope(): model = keras_cv.models.RetinaNet( # number of classes to be used in box classification num_classes=20, # For more info on supported bounding box formats, visit # https://keras.io/api/keras_cv/bounding_box/ bounding_box_format="xywh", backbone=keras_cv.models.ResNet50Backbone.from_preset( "resnet50_imagenet" ), ) lr_decay = tf.keras.optimizers.schedules.PiecewiseConstantDecay( boundaries=[12000 * 16, 16000 * 16], values=[BASE_LR, 0.1 * BASE_LR, 0.01 * BASE_LR], ) optimizer = tf.keras.optimizers.SGD( learning_rate=lr_decay, momentum=0.9, global_clipnorm=10.0 ) model.prediction_decoder = keras_cv.layers.MultiClassNonMaxSuppression( bounding_box_format="xywh", confidence_threshold=0.5, from_logits=True ) model.compile( classification_loss="focal", box_loss="smoothl1", optimizer=optimizer, metrics=[], ) class EvaluateCOCOMetricsCallback(keras.callbacks.Callback): def __init__(self, data): super().__init__() self.data = data self.metrics = keras_cv.metrics.BoxCOCOMetrics( bounding_box_format="xywh", evaluate_freq=1e9 ) def on_epoch_end(self, epoch, logs): self.metrics.reset_state() for batch in tqdm.tqdm(self.data): images, y_true = batch[0], batch[1] y_pred = self.model.predict(images, verbose=0) self.metrics.update_state(y_true, y_pred) metrics = self.metrics.result(force=True) logs.update(metrics) return logs callbacks = [ keras.callbacks.ReduceLROnPlateau(patience=5), keras.callbacks.EarlyStopping(patience=10), keras.callbacks.ModelCheckpoint(FLAGS.weights_name, save_weights_only=True), # Temporarily need PyCOCOCallback to verify # a 1:1 comparison with the PyMetrics version. # Currently, results do not match. I have a feeling this is due # to how we are creating the boxes in `BoxCOCOMetrics` PyCOCOCallback(eval_ds, bounding_box_format="xywh"), keras.callbacks.TensorBoard(log_dir=FLAGS.tensorboard_path), ] history = model.fit( train_ds, validation_data=eval_ds, epochs=FLAGS.epochs, callbacks=callbacks, )
keras-cv/examples/training/object_detection/pascal_voc/retinanet.py/0
{ "file_path": "keras-cv/examples/training/object_detection/pascal_voc/retinanet.py", "repo_id": "keras-cv", "token_count": 3107 }
57
# Copyright 2023 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from keras_cv.backend import config if config.keras_3(): from keras.src.backend.tensorflow import * # noqa: F403, F401 from keras.src.backend.tensorflow import ( # noqa: F403, F401 convert_to_numpy, ) from keras.src.backend.tensorflow.core import * # noqa: F403, F401 from keras.src.backend.tensorflow.math import * # noqa: F403, F401 from keras.src.backend.tensorflow.nn import * # noqa: F403, F401 from keras.src.backend.tensorflow.numpy import * # noqa: F403, F401 else: # isort: off from keras_core.src.backend.tensorflow import * # noqa: F403, F401 from keras_core.src.backend.tensorflow import ( # noqa: F403, F401 convert_to_numpy, ) from keras_core.src.backend.tensorflow.core import * # noqa: F403, F401 from keras_core.src.backend.tensorflow.math import * # noqa: F403, F401 from keras_core.src.backend.tensorflow.nn import * # noqa: F403, F401 from keras_core.src.backend.tensorflow.numpy import * # noqa: F403, F401, E501 # Some TF APIs where the numpy API doesn't support raggeds that we need from tensorflow import broadcast_to # noqa: F403, F401 from tensorflow import concat as concatenate # noqa: F403, F401 from tensorflow import repeat # noqa: F403, F401 from tensorflow import reshape # noqa: F403, F401 from tensorflow import range as arange # noqa: F403, F401 from tensorflow import reduce_all as all # noqa: F403, F401 from tensorflow import reduce_max as max # noqa: F403, F401 from tensorflow import split # noqa: F403, F401 import numpy as np import tensorflow as tf def smart_resize(x, size, interpolation="bilinear"): """Resize images to a target size without aspect ratio distortion. Copied from `tf_keras` for Keras 3 and for use in `tf.data` pipeline. """ if len(size) != 2: raise ValueError( f"Expected `size` to be a tuple of 2 integers, but got: {size}." ) img = tf.convert_to_tensor(x) if img.shape.rank is not None: if img.shape.rank < 3 or img.shape.rank > 4: raise ValueError( "Expected an image array with shape `(height, width, " "channels)`, or `(batch_size, height, width, channels)`, but " f"got input with incorrect rank, of shape {img.shape}." ) shape = tf.shape(img) height, width = shape[-3], shape[-2] target_height, target_width = size if img.shape.rank is not None: static_num_channels = img.shape[-1] else: static_num_channels = None crop_height = tf.cast( tf.cast(width * target_height, "float32") / target_width, "int32" ) crop_width = tf.cast( tf.cast(height * target_width, "float32") / target_height, "int32" ) # Set back to input height / width if crop_height / crop_width is not # smaller. crop_height = tf.minimum(height, crop_height) crop_width = tf.minimum(width, crop_width) crop_box_hstart = tf.cast( tf.cast(height - crop_height, "float32") / 2, "int32" ) crop_box_wstart = tf.cast( tf.cast(width - crop_width, "float32") / 2, "int32" ) if img.shape.rank == 4: crop_box_start = tf.stack([0, crop_box_hstart, crop_box_wstart, 0]) crop_box_size = tf.stack([-1, crop_height, crop_width, -1]) else: crop_box_start = tf.stack([crop_box_hstart, crop_box_wstart, 0]) crop_box_size = tf.stack([crop_height, crop_width, -1]) img = tf.slice(img, crop_box_start, crop_box_size) img = tf.image.resize(images=img, size=size, method=interpolation) # Apparent bug in resize_images_v2 may cause shape to be lost if img.shape.rank is not None: if img.shape.rank == 4: img.set_shape((None, None, None, static_num_channels)) if img.shape.rank == 3: img.set_shape((None, None, static_num_channels)) if isinstance(x, np.ndarray): return img.numpy() return img
keras-cv/keras_cv/backend/tf_ops.py/0
{ "file_path": "keras-cv/keras_cv/backend/tf_ops.py", "repo_id": "keras-cv", "token_count": 1832 }
58
# Copyright 2022 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility functions for working with bounding boxes.""" from keras_cv import bounding_box from keras_cv.api_export import keras_cv_export from keras_cv.backend import ops from keras_cv.bounding_box.formats import XYWH @keras_cv_export("keras_cv.bounding_box.is_relative") def is_relative(bounding_box_format): """A util to check if a bounding box format uses relative coordinates""" if ( bounding_box_format.lower() not in bounding_box.converters.TO_XYXY_CONVERTERS ): raise ValueError( "`is_relative()` received an unsupported format for the argument " f"`bounding_box_format`. `bounding_box_format` should be one of " f"{bounding_box.converters.TO_XYXY_CONVERTERS.keys()}. " f"Got bounding_box_format={bounding_box_format}" ) return bounding_box_format.startswith("rel") @keras_cv_export("keras_cv.bounding_box.as_relative") def as_relative(bounding_box_format): """A util to get the relative equivalent of a provided bounding box format. If the specified format is already a relative format, it will be returned unchanged. """ if not is_relative(bounding_box_format): return "rel_" + bounding_box_format return bounding_box_format def _relative_area(boxes, bounding_box_format): boxes = bounding_box.convert_format( boxes, source=bounding_box_format, target="rel_xywh", ) widths = boxes[..., XYWH.WIDTH] heights = boxes[..., XYWH.HEIGHT] # handle corner case where shear performs a full inversion. return ops.where( ops.logical_and(widths > 0, heights > 0), widths * heights, 0.0 ) @keras_cv_export("keras_cv.bounding_box.clip_to_image") def clip_to_image( bounding_boxes, bounding_box_format, images=None, image_shape=None ): """clips bounding boxes to image boundaries. `clip_to_image()` clips bounding boxes that have coordinates out of bounds of an image down to the boundaries of the image. This is done by converting the bounding box to relative formats, then clipping them to the `[0, 1]` range. Additionally, bounding boxes that end up with a zero area have their class ID set to -1, indicating that there is no object present in them. Args: bounding_boxes: bounding box tensor to clip. bounding_box_format: the KerasCV bounding box format the bounding boxes are in. images: list of images to clip the bounding boxes to. image_shape: the shape of the images to clip the bounding boxes to. """ boxes, classes = bounding_boxes["boxes"], bounding_boxes["classes"] boxes = bounding_box.convert_format( boxes, source=bounding_box_format, target="rel_xyxy", images=images, image_shape=image_shape, ) boxes, classes, images, squeeze = _format_inputs(boxes, classes, images) x1, y1, x2, y2 = ops.split(boxes, 4, axis=-1) clipped_bounding_boxes = ops.concatenate( [ ops.clip(x1, 0, 1), ops.clip(y1, 0, 1), ops.clip(x2, 0, 1), ops.clip(y2, 0, 1), ], axis=-1, ) areas = _relative_area( clipped_bounding_boxes, bounding_box_format="rel_xyxy" ) clipped_bounding_boxes = bounding_box.convert_format( clipped_bounding_boxes, source="rel_xyxy", target=bounding_box_format, images=images, image_shape=image_shape, ) clipped_bounding_boxes = ops.where( ops.expand_dims(areas > 0.0, axis=-1), clipped_bounding_boxes, -1.0 ) classes = ops.where(areas > 0.0, classes, -1) nan_indices = ops.any(ops.isnan(clipped_bounding_boxes), axis=-1) classes = ops.where(nan_indices, -1, classes) # TODO update dict and return clipped_bounding_boxes, classes = _format_outputs( clipped_bounding_boxes, classes, squeeze ) result = bounding_boxes.copy() result["boxes"] = clipped_bounding_boxes result["classes"] = classes return result # TODO (tanzhenyu): merge with clip_to_image def _clip_boxes(boxes, box_format, image_shape): """Clip boxes to the boundaries of the image shape""" if boxes.shape[-1] != 4: raise ValueError( "boxes.shape[-1] is {:d}, but must be 4.".format(boxes.shape[-1]) ) if isinstance(image_shape, list) or isinstance(image_shape, tuple): height, width, _ = image_shape max_length = [height, width, height, width] else: image_shape = ops.cast(image_shape, dtype=boxes.dtype) height = image_shape[0] width = image_shape[1] max_length = ops.stack([height, width, height, width], axis=-1) clipped_boxes = ops.maximum(ops.minimum(boxes, max_length), 0.0) return clipped_boxes def _format_inputs(boxes, classes, images): boxes_rank = len(boxes.shape) if boxes_rank > 3: raise ValueError( "Expected len(boxes.shape)=2, or len(boxes.shape)=3, got " f"len(boxes.shape)={boxes_rank}" ) boxes_includes_batch = boxes_rank == 3 # Determine if images needs an expand_dims() call if images is not None: images_rank = len(images.shape) if images_rank > 4: raise ValueError( "Expected len(images.shape)=2, or len(images.shape)=3, got " f"len(images.shape)={images_rank}" ) images_include_batch = images_rank == 4 if boxes_includes_batch != images_include_batch: raise ValueError( "clip_to_image() expects both boxes and images to be batched, " "or both boxes and images to be unbatched. Received " f"len(boxes.shape)={boxes_rank}, " f"len(images.shape)={images_rank}. Expected either " "len(boxes.shape)=2 AND len(images.shape)=3, or " "len(boxes.shape)=3 AND len(images.shape)=4." ) if not images_include_batch: images = ops.expand_dims(images, axis=0) if not boxes_includes_batch: return ( ops.expand_dims(boxes, axis=0), ops.expand_dims(classes, axis=0), images, True, ) return boxes, classes, images, False def _format_outputs(boxes, classes, squeeze): if squeeze: return ops.squeeze(boxes, axis=0), ops.squeeze(classes, axis=0) return boxes, classes
keras-cv/keras_cv/bounding_box/utils.py/0
{ "file_path": "keras-cv/keras_cv/bounding_box/utils.py", "repo_id": "keras-cv", "token_count": 2894 }
59
# Copyright 2022 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf from keras_cv.api_export import keras_cv_export from keras_cv.core.factor_sampler.factor_sampler import FactorSampler @keras_cv_export("keras_cv.core.NormalFactorSampler") class NormalFactorSampler(FactorSampler): """NormalFactorSampler samples factors from a normal distribution. This is useful in cases where a user wants to always ensure that an augmentation layer performs augmentations of the same strength. Args: mean: mean value for the distribution. stddev: standard deviation of the distribution. min_value: values below min_value are clipped to min_value. max_value: values above max_value are clipped to max_value. Usage: ```python factor = keras_cv.core.NormalFactor( mean=0.5, stddev=0.1, lower=0, upper=1 ) random_sharpness = keras_cv.layers.RandomSharpness(factor=factor) # random_sharpness will now sample normally around 0.5, with a lower of 0 # and upper bound of 1. ``` """ def __init__(self, mean, stddev, min_value, max_value, seed=None): self.mean = mean self.stddev = stddev self.min_value = min_value self.max_value = max_value self.seed = seed def __call__(self, shape=(), dtype="float32"): return tf.clip_by_value( tf.random.normal( shape=shape, mean=self.mean, stddev=self.stddev, seed=self.seed, dtype=dtype, ), self.min_value, self.max_value, ) def get_config(self): return { "mean": self.mean, "stddev": self.stddev, "min_value": self.min_value, "max_value": self.max_value, "seed": self.seed, } @classmethod def from_config(cls, config): return cls(**config)
keras-cv/keras_cv/core/factor_sampler/normal_factor_sampler.py/0
{ "file_path": "keras-cv/keras_cv/core/factor_sampler/normal_factor_sampler.py", "repo_id": "keras-cv", "token_count": 1032 }
60
# Copyright 2022 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Mapping import tensorflow as tf from tensorflow import keras from keras_cv import bounding_box from keras_cv.backend import assert_tf_keras from keras_cv.bounding_box import iou from keras_cv.layers.object_detection import box_matcher from keras_cv.layers.object_detection import sampling from keras_cv.utils import target_gather @keras.utils.register_keras_serializable(package="keras_cv") class _RpnLabelEncoder(keras.layers.Layer): """Transforms the raw labels into training targets for region proposal network (RPN). # TODO(tanzhenyu): consider unifying with _ROISampler. This is different from _ROISampler for a couple of reasons: 1) This deals with unbatched input, dict of anchors and potentially ragged labels. 2) This deals with ground truth boxes, while _ROISampler deals with padded ground truth boxes with value -1 and padded ground truth classes with value -1. 3) this returns positive class target as 1, while _ROISampler returns positive class target as-is. (All negative class target are 0) The final classification loss will use one hot and #num_fg_classes + 1 4) this returns #num_anchors dense targets, while _ROISampler returns #num_sampled_rois dense targets. 5) this returns all positive box targets, while _ROISampler still samples positive box targets, while all negative box targets are also ignored in regression loss. Args: anchor_format: The format of bounding boxes for anchors to generate. Refer [to the keras.io docs](https://keras.io/api/keras_cv/bounding_box/formats/) for more details on supported bounding box formats. ground_truth_box_format: The format of bounding boxes for ground truth boxes to generate. positive_threshold: the float threshold to set an anchor to positive match to gt box. Values above it are positive matches. negative_threshold: the float threshold to set an anchor to negative match to gt box. Values below it are negative matches. samples_per_image: for each image, the number of positive and negative samples to generate. positive_fraction: the fraction of positive samples to the total samples. """ # noqa: E501 def __init__( self, anchor_format, ground_truth_box_format, positive_threshold, negative_threshold, samples_per_image, positive_fraction, box_variance=[0.1, 0.1, 0.2, 0.2], **kwargs, ): assert_tf_keras("keras_cv.layers._RpnLabelEncoder") super().__init__(**kwargs) self.anchor_format = anchor_format self.ground_truth_box_format = ground_truth_box_format self.positive_threshold = positive_threshold self.negative_threshold = negative_threshold self.samples_per_image = samples_per_image self.positive_fraction = positive_fraction self.box_matcher = box_matcher.BoxMatcher( thresholds=[negative_threshold, positive_threshold], match_values=[-1, -2, 1], force_match_for_each_col=False, ) self.box_variance = box_variance self.built = True self._positives = keras.metrics.Mean(name="percent_boxes_matched") def call( self, anchors_dict: Mapping[str, tf.Tensor], gt_boxes: tf.Tensor, gt_classes: tf.Tensor, ): """ Args: anchors_dict: dict of [num_anchors, 4] or [batch_size, num_anchors, 4] float Tensor for each level. gt_boxes: [num_gt, 4] or [batch_size, num_anchors] float Tensor. gt_classes: [num_gt, 1] float or integer Tensor. Returns: box_targets: dict of [num_anchors, 4] or for each level. box_weights: dict of [num_anchors, 1] for each level. class_targets: dict of [num_anchors, 1] for each level. class_weights: dict of [num_anchors, 1] for each level. """ pack = False anchors = anchors_dict if isinstance(anchors, dict): pack = True anchors = tf.concat(tf.nest.flatten(anchors), axis=0) anchors = bounding_box.convert_format( anchors, source=self.anchor_format, target="yxyx" ) gt_boxes = bounding_box.convert_format( gt_boxes, source=self.ground_truth_box_format, target="yxyx" ) # [num_anchors, num_gt] or [batch_size, num_anchors, num_gt] similarity_mat = iou.compute_iou( anchors, gt_boxes, bounding_box_format="yxyx" ) # [num_anchors] or [batch_size, num_anchors] matched_gt_indices, matched_vals = self.box_matcher(similarity_mat) # [num_anchors] or [batch_size, num_anchors] positive_matches = tf.math.equal(matched_vals, 1) # currently SyncOnReadVariable does not support `assign_add` in # cross-replica. # self._positives.update_state( # tf.reduce_sum(tf.cast(positive_matches, tf.float32), axis=-1) # ) negative_matches = tf.math.equal(matched_vals, -1) # [num_anchors, 4] or [batch_size, num_anchors, 4] matched_gt_boxes = target_gather._target_gather( gt_boxes, matched_gt_indices ) # [num_anchors, 4] or [batch_size, num_anchors, 4], used as `y_true` for # regression loss encoded_box_targets = bounding_box._encode_box_to_deltas( anchors, matched_gt_boxes, anchor_format="yxyx", box_format="yxyx", variance=self.box_variance, ) # [num_anchors, 1] or [batch_size, num_anchors, 1] box_sample_weights = tf.cast( positive_matches[..., tf.newaxis], gt_boxes.dtype ) # [num_anchors, 1] or [batch_size, num_anchors, 1] positive_mask = tf.expand_dims(positive_matches, axis=-1) # set all negative and ignored matches to 0, and all positive matches to # 1 [num_anchors, 1] or [batch_size, num_anchors, 1] positive_classes = tf.ones_like(positive_mask, dtype=gt_classes.dtype) negative_classes = tf.zeros_like(positive_mask, dtype=gt_classes.dtype) # [num_anchors, 1] or [batch_size, num_anchors, 1] class_targets = tf.where( positive_mask, positive_classes, negative_classes ) # [num_anchors] or [batch_size, num_anchors] sampled_indicators = sampling.balanced_sample( positive_matches, negative_matches, self.samples_per_image, self.positive_fraction, ) # [num_anchors, 1] or [batch_size, num_anchors, 1] class_sample_weights = tf.cast( sampled_indicators[..., tf.newaxis], gt_classes.dtype ) if pack: encoded_box_targets = self.unpack_targets( encoded_box_targets, anchors_dict ) box_sample_weights = self.unpack_targets( box_sample_weights, anchors_dict ) class_targets = self.unpack_targets(class_targets, anchors_dict) class_sample_weights = self.unpack_targets( class_sample_weights, anchors_dict ) return ( encoded_box_targets, box_sample_weights, class_targets, class_sample_weights, ) def unpack_targets(self, targets, anchors_dict): target_shape = len(targets.get_shape().as_list()) if target_shape != 2 and target_shape != 3: raise ValueError( "unpacking targets must be rank 2 or rank 3, got " f"{target_shape}" ) unpacked_targets = {} count = 0 for level, anchors in anchors_dict.items(): num_anchors_lvl = anchors.get_shape().as_list()[0] if target_shape == 2: unpacked_targets[level] = targets[ count : count + num_anchors_lvl, ... ] else: unpacked_targets[level] = targets[ :, count : count + num_anchors_lvl, ... ] count += num_anchors_lvl return unpacked_targets def get_config(self): config = { "anchor_format": self.anchor_format, "ground_truth_box_format": self.ground_truth_box_format, "positive_threshold": self.positive_threshold, "negative_threshold": self.negative_threshold, "samples_per_image": self.samples_per_image, "positive_fraction": self.positive_fraction, "box_variance": self.box_variance, } return config
keras-cv/keras_cv/layers/object_detection/rpn_label_encoder.py/0
{ "file_path": "keras-cv/keras_cv/layers/object_detection/rpn_label_encoder.py", "repo_id": "keras-cv", "token_count": 4127 }
61
# Copyright 2022 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf from keras_cv.layers import preprocessing from keras_cv.tests.test_case import TestCase class AugMixTest(TestCase): def test_return_shapes(self): layer = preprocessing.AugMix([0, 255]) # RGB xs = tf.ones((2, 512, 512, 3)) xs = layer(xs) ys_segmentation_masks = tf.ones((2, 512, 512, 3)) ys_segmentation_masks = layer(ys_segmentation_masks) self.assertEqual(xs.shape, (2, 512, 512, 3)) self.assertEqual(ys_segmentation_masks.shape, (2, 512, 512, 3)) # greyscale xs = tf.ones((2, 512, 512, 1)) xs = layer(xs) ys_segmentation_masks = tf.ones((2, 512, 512, 1)) ys_segmentation_masks = layer(ys_segmentation_masks) self.assertEqual(xs.shape, (2, 512, 512, 1)) self.assertEqual(ys_segmentation_masks.shape, (2, 512, 512, 1)) def test_in_single_image_and_mask(self): layer = preprocessing.AugMix([0, 255]) # RGB xs = tf.cast( tf.ones((512, 512, 3)), dtype=tf.float32, ) xs = layer(xs) ys_segmentation_masks = tf.cast( tf.ones((512, 512, 3)), dtype=tf.float32, ) ys_segmentation_masks = layer(ys_segmentation_masks) self.assertEqual(xs.shape, (512, 512, 3)) self.assertEqual(ys_segmentation_masks.shape, (512, 512, 3)) # greyscale xs = tf.cast( tf.ones((512, 512, 1)), dtype=tf.float32, ) xs = layer(xs) ys_segmentation_masks = tf.cast( tf.ones((512, 512, 1)), dtype=tf.float32, ) ys_segmentation_masks = layer(ys_segmentation_masks) self.assertEqual(xs.shape, (512, 512, 1)) self.assertEqual(ys_segmentation_masks.shape, (512, 512, 1)) def test_non_square_images_and_masks(self): layer = preprocessing.AugMix([0, 255]) # RGB xs = tf.ones((2, 256, 512, 3)) xs = layer(xs) ys_segmentation_masks = tf.ones((2, 256, 512, 3)) ys_segmentation_masks = layer(ys_segmentation_masks) self.assertEqual(xs.shape, (2, 256, 512, 3)) self.assertEqual(ys_segmentation_masks.shape, (2, 256, 512, 3)) # greyscale xs = tf.ones((2, 256, 512, 1)) xs = layer(xs) ys_segmentation_masks = tf.ones((2, 256, 512, 1)) ys_segmentation_masks = layer(ys_segmentation_masks) self.assertEqual(xs.shape, (2, 256, 512, 1)) self.assertEqual(ys_segmentation_masks.shape, (2, 256, 512, 1)) def test_single_input_args(self): layer = preprocessing.AugMix([0, 255]) # RGB xs = tf.ones((2, 512, 512, 3)) xs = layer(xs) ys_segmentation_masks = tf.ones((2, 512, 512, 3)) ys_segmentation_masks = layer(ys_segmentation_masks) self.assertEqual(xs.shape, (2, 512, 512, 3)) self.assertEqual(ys_segmentation_masks.shape, (2, 512, 512, 3)) # greyscale xs = tf.ones((2, 512, 512, 1)) xs = layer(xs) ys_segmentation_masks = tf.ones((2, 512, 512, 1)) ys_segmentation_masks = layer(ys_segmentation_masks) self.assertEqual(xs.shape, (2, 512, 512, 1)) self.assertEqual(ys_segmentation_masks.shape, (2, 512, 512, 1)) def test_many_augmentations(self): layer = preprocessing.AugMix([0, 255], chain_depth=[25, 26]) # RGB xs = tf.ones((2, 512, 512, 3)) xs = layer(xs) ys_segmentation_masks = tf.ones((2, 512, 512, 3)) ys_segmentation_masks = layer(ys_segmentation_masks) self.assertEqual(xs.shape, (2, 512, 512, 3)) self.assertEqual(ys_segmentation_masks.shape, (2, 512, 512, 3)) # greyscale xs = tf.ones((2, 512, 512, 1)) xs = layer(xs) ys_segmentation_masks = tf.ones((2, 512, 512, 1)) ys_segmentation_masks = layer(ys_segmentation_masks) self.assertEqual(xs.shape, (2, 512, 512, 1)) self.assertEqual(ys_segmentation_masks.shape, (2, 512, 512, 1))
keras-cv/keras_cv/layers/preprocessing/aug_mix_test.py/0
{ "file_path": "keras-cv/keras_cv/layers/preprocessing/aug_mix_test.py", "repo_id": "keras-cv", "token_count": 2242 }
62
# Copyright 2022 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pytest import tensorflow as tf import keras_cv from keras_cv.backend import ops from keras_cv.layers.preprocessing.grid_mask import GridMask from keras_cv.tests.test_case import TestCase class GridMaskTest(TestCase): def test_return_shapes(self): xs = tf.ones((2, 512, 512, 3)) layer = GridMask(ratio_factor=0.1, rotation_factor=(-0.2, 0.3)) xs = layer(xs, training=True) self.assertEqual(xs.shape, (2, 512, 512, 3)) def test_gridmask_call_results_one_channel(self): xs = tf.cast( tf.stack( [3 * tf.ones((40, 40, 1)), 2 * tf.ones((40, 40, 1))], axis=0, ), dtype=tf.float32, ) fill_value = 0.0 layer = GridMask( ratio_factor=0.3, rotation_factor=(0.2, 0.3), fill_mode="constant", fill_value=fill_value, ) xs = layer(xs, training=True) # Some pixels should be replaced with fill_value self.assertTrue( np.any(ops.convert_to_numpy(xs[0]) == float(fill_value)) ) self.assertTrue(np.any(ops.convert_to_numpy(xs[0]) == 3.0)) self.assertTrue( np.any(ops.convert_to_numpy(xs[1]) == float(fill_value)) ) self.assertTrue(np.any(ops.convert_to_numpy(xs[1]) == 2.0)) def test_non_square_image(self): xs = tf.cast( tf.stack( [2 * tf.ones((1024, 512, 1)), tf.ones((1024, 512, 1))], axis=0, ), dtype=tf.float32, ) fill_value = 100.0 layer = GridMask( ratio_factor=0.6, rotation_factor=0.3, fill_mode="constant", fill_value=fill_value, ) xs = layer(xs, training=True) # Some pixels should be replaced with fill_value self.assertTrue( np.any(ops.convert_to_numpy(xs[0]) == float(fill_value)) ) self.assertTrue(np.any(ops.convert_to_numpy(xs[0]) == 2.0)) self.assertTrue( np.any(ops.convert_to_numpy(xs[1]) == float(fill_value)) ) self.assertTrue(np.any(ops.convert_to_numpy(xs[1]) == 1.0)) @pytest.mark.tf_only def test_in_tf_function(self): xs = tf.cast( tf.stack( [2 * tf.ones((100, 100, 1)), tf.ones((100, 100, 1))], axis=0 ), dtype=tf.float32, ) fill_value = 255.0 layer = GridMask( ratio_factor=keras_cv.ConstantFactorSampler(0.5), rotation_factor=0.5, fill_mode="constant", fill_value=fill_value, ) @tf.function def augment(x): return layer(x, training=True) xs = augment(xs) # Some pixels should be replaced with fill_value self.assertTrue( np.any(ops.convert_to_numpy(xs[0]) == float(fill_value)) ) self.assertTrue(np.any(ops.convert_to_numpy(xs[0]) == 2.0)) self.assertTrue( np.any(ops.convert_to_numpy(xs[1]) == float(fill_value)) ) self.assertTrue(np.any(ops.convert_to_numpy(xs[1]) == 1.0)) def test_in_single_image(self): xs = tf.cast( tf.ones((512, 512, 1)), dtype=tf.float32, ) layer = GridMask( ratio_factor=(0.5, 0.5), fill_mode="constant", fill_value=0.0 ) xs = layer(xs, training=True) self.assertTrue(np.any(ops.convert_to_numpy(xs) == 0.0)) self.assertTrue(np.any(ops.convert_to_numpy(xs) == 1.0))
keras-cv/keras_cv/layers/preprocessing/grid_mask_test.py/0
{ "file_path": "keras-cv/keras_cv/layers/preprocessing/grid_mask_test.py", "repo_id": "keras-cv", "token_count": 2110 }
63
# Copyright 2022 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf from keras_cv.api_export import keras_cv_export from keras_cv.backend import keras from keras_cv.layers import preprocessing from keras_cv.layers.preprocessing.base_image_augmentation_layer import ( BaseImageAugmentationLayer, ) @keras_cv_export("keras_cv.layers.RandomAugmentationPipeline") class RandomAugmentationPipeline(BaseImageAugmentationLayer): """RandomAugmentationPipeline constructs a pipeline based on provided arguments. The implemented policy does the following: for each input provided in `call`(), the policy first inputs a random number, if the number is < rate, the policy then selects a random layer from the provided list of `layers`. It then calls the `layer()` on the inputs. This is done `augmentations_per_image` times. This layer can be used to create custom policies resembling `RandAugment` or `AutoAugment`. Usage: ```python # construct a list of layers layers = keras_cv.layers.RandAugment.get_standard_policy( value_range=(0, 255), magnitude=0.75, magnitude_stddev=0.3 ) layers = layers[:4] # slice out some layers you don't want for whatever reason layers = layers + [keras_cv.layers.GridMask()] # create the pipeline. pipeline = keras_cv.layers.RandomAugmentationPipeline( layers=layers, augmentations_per_image=3 ) augmented_images = pipeline(images) ``` Args: layers: a list of `keras.Layers`. These are randomly inputs during augmentation to augment the inputs passed in `call()`. The layers passed should subclass `BaseImageAugmentationLayer`. Passing `layers=[]` would result in a no-op. augmentations_per_image: the number of layers to apply to each inputs in the `call()` method. rate: the rate at which to apply each augmentation. This is applied on a per augmentation bases, so if `augmentations_per_image=3` and `rate=0.5`, the odds an image will receive no augmentations is 0.5^3, or 0.5*0.5*0.5. auto_vectorize: whether to use `tf.vectorized_map` or `tf.map_fn` to apply the augmentations. This offers a significant performance boost, but can only be used if all the layers provided to the `layers` argument support auto vectorization. seed: Integer. Used to create a random seed. """ def __init__( self, layers, augmentations_per_image, rate=1.0, auto_vectorize=False, seed=None, **kwargs, ): super().__init__(**kwargs, seed=seed) self.augmentations_per_image = augmentations_per_image self.rate = rate self.layers = list(layers) self.auto_vectorize = auto_vectorize self.seed = seed self._random_choice = preprocessing.RandomChoice( layers=layers, auto_vectorize=auto_vectorize, seed=seed ) def _augment(self, inputs): if self.layers == []: return inputs result = inputs for _ in range(self.augmentations_per_image): skip_augment = self._random_generator.uniform( shape=(), minval=0.0, maxval=1.0, dtype=tf.float32 ) result = tf.cond( skip_augment > self.rate, lambda: result, lambda: self._random_choice(result), ) return result def get_config(self): config = super().get_config() config.update( { "augmentations_per_image": self.augmentations_per_image, "auto_vectorize": self.auto_vectorize, "rate": self.rate, "layers": self.layers, "seed": self.seed, } ) return config @classmethod def from_config(cls, config): layers = config.pop("layers", None) if layers: if isinstance(layers[0], dict): layers = keras.utils.deserialize_keras_object(layers) config["layers"] = layers return cls(**config)
keras-cv/keras_cv/layers/preprocessing/random_augmentation_pipeline.py/0
{ "file_path": "keras-cv/keras_cv/layers/preprocessing/random_augmentation_pipeline.py", "repo_id": "keras-cv", "token_count": 1946 }
64
# Copyright 2022 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import tensorflow as tf from absl.testing import parameterized from keras_cv import bounding_box from keras_cv.backend import ops from keras_cv.layers import preprocessing from keras_cv.tests.test_case import TestCase class RandomCropAndResizeTest(TestCase): height, width = 300, 300 batch_size = 4 target_size = (224, 224) seed = 42 def test_train_augments_image(self): # Checks if original and augmented images are different input_image_shape = (self.batch_size, self.height, self.width, 3) image = tf.random.uniform(shape=input_image_shape, seed=self.seed) layer = preprocessing.RandomCropAndResize( target_size=self.target_size, aspect_ratio_factor=(3 / 4, 4 / 3), crop_area_factor=(0.8, 1.0), seed=self.seed, ) output = layer(image, training=True) input_image_resized = tf.image.resize(image, self.target_size) self.assertNotAllClose(output, input_image_resized) def test_grayscale(self): input_image_shape = (self.batch_size, self.height, self.width, 1) image = tf.random.uniform(shape=input_image_shape) layer = preprocessing.RandomCropAndResize( target_size=self.target_size, aspect_ratio_factor=(3 / 4, 4 / 3), crop_area_factor=(0.8, 1.0), ) output = layer(image, training=True) input_image_resized = tf.image.resize(image, self.target_size) self.assertAllEqual(output.shape, (4, 224, 224, 1)) self.assertNotAllClose(output, input_image_resized) @parameterized.named_parameters( ("Not tuple or list", dict()), ("Length not equal to 2", [1, 2, 3]), ("Members not int", (2.3, 4.5)), ("Single integer", 5), ) def test_target_size_errors(self, target_size): with self.assertRaisesRegex( ValueError, "`target_size` must be tuple of two integers. " "Received target_size=(.*)", ): _ = preprocessing.RandomCropAndResize( target_size=target_size, aspect_ratio_factor=(3 / 4, 4 / 3), crop_area_factor=(0.8, 1.0), ) @parameterized.named_parameters( ("Not tuple or list", dict()), ("Single integer", 5), ("Single float", 5.0), ) def test_aspect_ratio_factor_errors(self, aspect_ratio_factor): with self.assertRaisesRegex( ValueError, "`aspect_ratio_factor` must be tuple of two positive floats or " "keras_cv.core.FactorSampler instance. " "Received aspect_ratio_factor=(.*)", ): _ = preprocessing.RandomCropAndResize( target_size=(224, 224), aspect_ratio_factor=aspect_ratio_factor, crop_area_factor=(0.8, 1.0), ) @parameterized.named_parameters( ("Not tuple or list", dict()), ("Single integer", 5), ("Single float", 5.0), ) def test_crop_area_factor_errors(self, crop_area_factor): with self.assertRaisesRegex( ValueError, "`crop_area_factor` must be tuple of two positive floats less than " "or equal to 1 or keras_cv.core.FactorSampler instance. " "Received crop_area_factor=(.*)", ): _ = preprocessing.RandomCropAndResize( target_size=(224, 224), aspect_ratio_factor=(3 / 4, 4 / 3), crop_area_factor=crop_area_factor, ) def test_augment_sparse_segmentation_mask(self): num_classes = 8 input_image_shape = (1, self.height, self.width, 3) mask_shape = (1, self.height, self.width, 1) image = tf.random.uniform(shape=input_image_shape, seed=self.seed) mask = tf.constant( np.random.randint(2, size=mask_shape) * (num_classes - 1) ) inputs = {"images": image, "segmentation_masks": mask} # Crop-only to exactly 1/2 of the size layer = preprocessing.RandomCropAndResize( target_size=(150, 150), aspect_ratio_factor=(1, 1), crop_area_factor=(1, 1), seed=self.seed, ) input_mask_resized = tf.image.crop_and_resize( mask, [[0, 0, 1, 1]], [0], (150, 150), "nearest" ) output = layer(inputs, training=True) self.assertAllClose(output["segmentation_masks"], input_mask_resized) # Crop to an arbitrary size and make sure we don't do bad interpolation layer = preprocessing.RandomCropAndResize( target_size=(233, 233), aspect_ratio_factor=(3 / 4, 4 / 3), crop_area_factor=(0.8, 1.0), seed=self.seed, ) output = layer(inputs, training=True) self.assertAllInSet( ops.convert_to_numpy(output["segmentation_masks"]), [0, 7] ) def test_augment_one_hot_segmentation_mask(self): num_classes = 8 input_image_shape = (1, self.height, self.width, 3) mask_shape = (1, self.height, self.width, 1) image = tf.random.uniform(shape=input_image_shape, seed=self.seed) mask = tf.one_hot( tf.squeeze( np.random.randint(2, size=mask_shape) * (num_classes - 1), axis=-1, ), num_classes, ) inputs = {"images": image, "segmentation_masks": mask} # Crop-only to exactly 1/2 of the size layer = preprocessing.RandomCropAndResize( target_size=(150, 150), aspect_ratio_factor=(1, 1), crop_area_factor=(1, 1), seed=self.seed, ) input_mask_resized = tf.image.crop_and_resize( mask, [[0, 0, 1, 1]], [0], (150, 150), "nearest" ) output = layer(inputs, training=True) self.assertAllClose(output["segmentation_masks"], input_mask_resized) def test_augment_bounding_box_single(self): image = tf.zeros([20, 20, 3]) boxes = { "boxes": tf.convert_to_tensor([[0, 0, 1, 1]]), "classes": tf.convert_to_tensor([0]), } input = {"images": image, "bounding_boxes": boxes} layer = preprocessing.RandomCropAndResize( target_size=(10, 10), crop_area_factor=(0.5**2, 0.5**2), aspect_ratio_factor=(1.0, 1.0), bounding_box_format="rel_xyxy", ) output = layer(input, training=True) expected_output = { "boxes": tf.convert_to_tensor([[0, 0, 1, 1]], dtype=tf.float32), "classes": tf.convert_to_tensor([0], dtype=tf.float32), } output["bounding_boxes"] = bounding_box.to_dense( output["bounding_boxes"] ) self.assertAllClose( expected_output["boxes"], output["bounding_boxes"]["boxes"] ) self.assertAllClose( expected_output["classes"], output["bounding_boxes"]["classes"] ) def test_augment_boxes_batched_input(self): image = tf.zeros([20, 20, 3]) boxes = { "boxes": tf.convert_to_tensor( [ [[0, 0, 1, 1], [0, 0, 1, 1]], [[0, 0, 1, 1], [0, 0, 1, 1]], ] ), "classes": tf.convert_to_tensor([[0, 0], [0, 0]]), } input = {"images": [image, image], "bounding_boxes": boxes} layer = preprocessing.RandomCropAndResize( target_size=(18, 18), crop_area_factor=(0.5**2, 0.5**2), aspect_ratio_factor=(1.0, 1.0), bounding_box_format="rel_xyxy", ) output = layer(input, training=True) expected_output = { "boxes": tf.convert_to_tensor( [ [[0, 0, 1, 1], [0, 0, 1, 1]], [[0, 0, 1, 1], [0, 0, 1, 1]], ] ), "classes": tf.convert_to_tensor([[0, 0], [0, 0]]), } output["bounding_boxes"] = bounding_box.to_dense( output["bounding_boxes"] ) self.assertAllClose( expected_output["boxes"], output["bounding_boxes"]["boxes"] ) self.assertAllClose( expected_output["classes"], output["bounding_boxes"]["classes"] ) def test_augment_boxes_ragged(self): image = tf.zeros([2, 20, 20, 3]) boxes = { "boxes": tf.ragged.constant( [[[0, 0, 1, 1], [0, 0, 1, 1]], [[0, 0, 1, 1]]], dtype=tf.float32 ), "classes": tf.ragged.constant([[0, 0], [0]]), } input = {"images": image, "bounding_boxes": boxes} layer = preprocessing.RandomCropAndResize( target_size=(18, 18), crop_area_factor=(0.5**2, 0.5**2), aspect_ratio_factor=(1.0, 1.0), bounding_box_format="rel_xyxy", ) output = layer(input, training=True) # the result boxes will still have the entire image in them expected_output = { "boxes": tf.ragged.constant( [[[0, 0, 1, 1], [0, 0, 1, 1]], [[0, 0, 1, 1]]], dtype=tf.float32 ), "classes": tf.ragged.constant([[0, 0], [0]]), } expected_output = bounding_box.to_dense(expected_output) output["bounding_boxes"] = bounding_box.to_dense( output["bounding_boxes"] ) self.assertAllClose( expected_output["boxes"], output["bounding_boxes"]["boxes"] ) self.assertAllClose( expected_output["classes"], output["bounding_boxes"]["classes"] )
keras-cv/keras_cv/layers/preprocessing/random_crop_and_resize_test.py/0
{ "file_path": "keras-cv/keras_cv/layers/preprocessing/random_crop_and_resize_test.py", "repo_id": "keras-cv", "token_count": 5074 }
65
# Copyright 2023 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf from keras_cv.api_export import keras_cv_export from keras_cv.layers.preprocessing.vectorized_base_image_augmentation_layer import ( # noqa: E501 VectorizedBaseImageAugmentationLayer, ) from keras_cv.utils import preprocessing @keras_cv_export("keras_cv.layers.RandomSharpness") class RandomSharpness(VectorizedBaseImageAugmentationLayer): """Randomly performs the sharpness operation on given images. The sharpness operation first performs a blur operation, then blends between the original image and the blurred image. This operation makes the edges of an image less sharp than they were in the original image. References: - [PIL](https://pillow.readthedocs.io/en/stable/reference/ImageEnhance.html) Args: factor: A tuple of two floats, a single float or `keras_cv.FactorSampler`. `factor` controls the extent to which the image sharpness is impacted. `factor=0.0` makes this layer perform a no-op operation, while a value of 1.0 uses the sharpened result entirely. Values between 0 and 1 result in linear interpolation between the original image and the sharpened image. Values should be between `0.0` and `1.0`. If a tuple is used, a `factor` is sampled between the two values for every image augmented. If a single float is used, a value between `0.0` and the passed float is sampled. In order to ensure the value is always the same, please pass a tuple with two identical floats: `(0.5, 0.5)`. value_range: the range of values the incoming images will have. Represented as a two number tuple written [low, high]. This is typically either `[0, 1]` or `[0, 255]` depending on how your preprocessing pipeline is set up. """ # noqa: E501 def __init__( self, factor, value_range, seed=None, **kwargs, ): super().__init__(seed=seed, **kwargs) self.value_range = value_range self.factor = preprocessing.parse_factor(factor) self.seed = seed def get_random_transformation_batch(self, batch_size, **kwargs): return self.factor( shape=(batch_size, 1, 1, 1), dtype=self.compute_dtype ) def augment_images(self, images, transformations, **kwargs): images = preprocessing.transform_value_range( images, original_range=self.value_range, target_range=(0, 255), dtype=self.compute_dtype, ) original_images = images # [1 1 1] # [1 5 1] # [1 1 1] # all divided by 13 is the default 3x3 gaussian smoothing kernel. # Correlating or Convolving with this filter is equivalent to performing # a gaussian blur. kernel = ( tf.constant( [[1, 1, 1], [1, 5, 1], [1, 1, 1]], dtype=self.compute_dtype, shape=[3, 3, 1, 1], ) / 13.0 ) # Tile across channel dimension. channels = tf.shape(images)[-1] kernel = tf.tile(kernel, [1, 1, channels, 1]) strides = [1, 1, 1, 1] smoothed_image = tf.nn.depthwise_conv2d( images, kernel, strides, padding="VALID", dilations=[1, 1] ) smoothed_image = tf.clip_by_value(smoothed_image, 0.0, 255.0) # For the borders of the resulting image, fill in the values of the # original image. mask = tf.ones_like(smoothed_image) padded_mask = tf.pad(mask, [[0, 0], [1, 1], [1, 1], [0, 0]]) padded_smoothed_image = tf.pad( smoothed_image, [[0, 0], [1, 1], [1, 1], [0, 0]] ) result = tf.where( tf.equal(padded_mask, 1), padded_smoothed_image, original_images ) # Blend the final result. result = preprocessing.blend(original_images, result, transformations) result = preprocessing.transform_value_range( result, original_range=(0, 255), target_range=self.value_range, dtype=self.compute_dtype, ) return result def augment_bounding_boxes(self, bounding_boxes, transformations, **kwargs): return bounding_boxes def augment_labels(self, labels, transformations, **kwargs): return labels def augment_segmentation_masks( self, segmentation_masks, transformations, **kwargs ): return segmentation_masks def augment_keypoints(self, keypoints, transformations, **kwargs): return keypoints def augment_ragged_image(self, image, transformation, **kwargs): images = tf.expand_dims(image, axis=0) new_transformation = tf.expand_dims(transformation, axis=0) output = self.augment_images(images, new_transformation) return tf.squeeze(output, axis=0) def get_config(self): config = super().get_config() config.update( { "factor": self.factor, "value_range": self.value_range, "seed": self.seed, } ) return config
keras-cv/keras_cv/layers/preprocessing/random_sharpness.py/0
{ "file_path": "keras-cv/keras_cv/layers/preprocessing/random_sharpness.py", "repo_id": "keras-cv", "token_count": 2411 }
66
# Copyright 2023 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf import tree from keras_cv import bounding_box from keras_cv.api_export import keras_cv_export from keras_cv.backend import config from keras_cv.backend import keras from keras_cv.backend import ops from keras_cv.backend import scope from keras_cv.utils import preprocessing H_AXIS = -3 W_AXIS = -2 IMAGES = "images" LABELS = "labels" TARGETS = "targets" BOUNDING_BOXES = "bounding_boxes" KEYPOINTS = "keypoints" SEGMENTATION_MASKS = "segmentation_masks" IS_DICT = "is_dict" BATCHED = "batched" USE_TARGETS = "use_targets" @keras_cv_export("keras_cv.layers.VectorizedBaseImageAugmentationLayer") class VectorizedBaseImageAugmentationLayer(keras.layers.Layer): """Abstract base layer for vectorized image augmentation. This layer contains base functionalities for preprocessing layers which augment image related data, e.g. image and in the future, label and bounding boxes. The subclasses could avoid making certain mistakes and reduce code duplications. This layer requires you to implement one method: `augment_images()`, which augments one single image during the training. There are a few additional methods that you can implement for added functionality on the layer: `augment_labels()`, which handles label augmentation if the layer supports that. `augment_bounding_boxes()`, which handles the bounding box augmentation, if the layer supports that. `get_random_transformations()`, which should produce a batch of random transformation settings. The transformation object, which must be a batched Tensor or a dictionary where each input is a batched Tensor, will be passed to `augment_images`, `augment_labels` and `augment_bounding_boxes`, to coordinate the randomness behavior, eg, in the RandomFlip layer, the image and bounding_boxes should be changed in the same way. The `call()` method support two formats of inputs: 1. Single image tensor with 3D (HWC) or 4D (NHWC) format. 2. A dict of tensors with stable keys. The supported keys are: `"images"`, `"labels"` and `"bounding_boxes"` at the moment. We might add more keys in future when we support more types of augmentation. The output of the `call()` will be in two formats, which will be the same structure as the inputs. The `call()` will unpack the inputs, forward to the correct function, and pack the output back to the same structure as the inputs. By default, the dense or ragged status of the output will be preserved. However, you can override this behavior by setting `self.force_output_dense_images = True`, `self.force_output_dense_segmentation_masks = True` in your `__init__()` method. When enabled, images and segmentation masks will be converted to dense tensor by `to_tensor()` if ragged. ```python class SubclassLayer(VectorizedBaseImageAugmentationLayer): def __init__(self): super().__init__() self.force_output_dense_images = True self.force_output_dense_segmentation_masks = True ``` Note that since the randomness is also a common functionality, this layer also includes a keras_backend.RandomGenerator, which can be used to produce the random numbers. The random number generator is stored in the `self._random_generator` attribute. """ def __init__(self, seed=None, **kwargs): super().__init__(**kwargs) if seed: self._random_generator = tf.random.Generator.from_seed(seed=seed) else: self._random_generator = tf.random.get_global_generator() self._convert_input_args = False self._allow_non_tensor_positional_args = True @property def force_output_dense_images(self): """Control whether to force outputting of dense images.""" return getattr(self, "_force_output_dense_images", False) @force_output_dense_images.setter def force_output_dense_images(self, force_output_dense_images): self._force_output_dense_images = force_output_dense_images @property def force_output_dense_segmentation_masks(self): """Control whether to force outputting of dense segmentation masks.""" return getattr(self, "_force_output_dense_segmentation_masks", False) @force_output_dense_segmentation_masks.setter def force_output_dense_segmentation_masks( self, force_output_dense_segmentation_masks ): self._force_output_dense_segmentation_masks = ( force_output_dense_segmentation_masks ) def augment_ragged_image(self, image, transformation, **kwargs): """Augment an image from a ragged image batch during training. This method accepts a single Dense image Tensor, and returns a Dense image. The resulting images are then stacked back into a ragged image batch. The behavior of this method should be identical to that of `augment_images()` but is to operate on a batch-wise basis. Args: image: a single image from the batch transformation: a single transformation sampled from `get_random_transformations()`. kwargs: all the other call arguments (i.e. bounding_boxes, labels, etc.). Returns: Augmented image. """ raise NotImplementedError( "A ragged image batch was passed to layer of type " f"`{type(self).__name__}`. This layer does not implement " "`augment_ragged_image()`. If this is a `keras_cv`, open a GitHub " "issue requesting Ragged functionality on the layer titled: " f"'`{type(self).__name__}`: ragged image support'. If this is a " "custom layer, implement the `augment_ragged_image()` method." ) def compute_ragged_image_signature(self, images): """Computes the output image signature for the `augment_image()` function. Must be overridden to return tensors with different shapes than the input images. By default, returns either a `tf.RaggedTensorSpec` matching the input image spec, or a `tf.TensorSpec` matching the input image spec. """ ragged_spec = tf.RaggedTensorSpec( shape=images.shape[1:], ragged_rank=1, dtype=self.compute_dtype, ) return ragged_spec def augment_images(self, images, transformations, **kwargs): """Augment a batch of images during training. Args: images: 4D image input tensor to the layer. Forwarded from `layer.call()`. This should generally have the shape [B, H, W, C]. Forwarded from `layer.call()`. transformations: The transformations object produced by `get_random_transformations`. Used to coordinate the randomness between image, label, bounding box, keypoints, and segmentation mask. Returns: output 4D tensor, which will be forward to `layer.call()`. """ raise NotImplementedError() def augment_labels(self, labels, transformations, **kwargs): """Augment a batch of labels during training. Args: labels: 2D label to the layer. Forwarded from `layer.call()`. transformations: The transformations object produced by `get_random_transformations`. Used to coordinate the randomness between image, label, bounding box, keypoints, and segmentation mask. Returns: output 2D tensor, which will be forward to `layer.call()`. """ raise NotImplementedError() def augment_targets(self, targets, transformations, **kwargs): """Augment a batch of targets during training. Args: targets: 2D label to the layer. Forwarded from `layer.call()`. transformations: The transformations object produced by `get_random_transformations`. Used to coordinate the randomness between image, label, bounding box, keypoints, and segmentation mask. Returns: output 2D tensor, which will be forward to `layer.call()`. """ return self.augment_labels(targets, transformations, **kwargs) def augment_bounding_boxes(self, bounding_boxes, transformations, **kwargs): """Augment bounding boxes for one image during training. Args: bounding_boxes: 3D bounding boxes to the layer. Forwarded from `call()`. transformations: The transformations object produced by `get_random_transformations`. Used to coordinate the randomness between image, label, bounding box, keypoints, and segmentation mask. Returns: output 3D tensor, which will be forward to `layer.call()`. """ raise NotImplementedError() def augment_keypoints(self, keypoints, transformations, **kwargs): """Augment a batch of keypoints for one image during training. Args: keypoints: 3D keypoints input tensor to the layer. Forwarded from `layer.call()`. Shape should be [batch, num_keypoints, 2] in the specified keypoint format. transformations: The transformations object produced by `get_random_transformations`. Used to coordinate the randomness between image, label, bounding box, keypoints, and segmentation mask. Returns: output 3D tensor, which will be forward to `layer.call()`. """ raise NotImplementedError() def augment_segmentation_masks( self, segmentation_masks, transformations, **kwargs ): """Augment a batch of images' segmentation masks during training. Args: segmentation_masks: 4D segmentation mask input tensor to the layer. This should generally have the shape [B, H, W, 1], or in some cases [B, H, W, C] for multilabeled data. Forwarded from `layer.call()`. transformations: The transformations object produced by `get_random_transformations`. Used to coordinate the randomness between image, label, bounding box, keypoints, and segmentation mask. Returns: output 4D tensor containing the augmented segmentation mask, which will be forward to `layer.call()`. """ raise NotImplementedError() def get_random_transformation_batch( self, batch_size, images=None, labels=None, bounding_boxes=None, keypoints=None, segmentation_masks=None, ): """Produce random transformations config for a batch of inputs. This is used to produce same randomness between image/label/bounding_box. Args: batch_size: the batch size of transformations configuration to sample. images: 3D image tensor from inputs. labels: optional 1D label tensor from inputs. bounding_boxes: optional 2D bounding boxes tensor from inputs. segmentation_masks: optional 3D segmentation mask tensor from inputs. Returns: Any type of object, which will be forwarded to `augment_images`, `augment_labels` and `augment_bounding_boxes` as the `transformations` parameter. """ # Required to work with map_fn in the ragged cast. return tf.zeros((batch_size)) def _unwrap_ragged_image_call(self, inputs): images = inputs.get(IMAGES, None) labels = inputs.get(LABELS, None) bounding_boxes = inputs.get(BOUNDING_BOXES, None) keypoints = inputs.get(KEYPOINTS, None) segmentation_masks = inputs.get(SEGMENTATION_MASKS, None) transformation = inputs.get("transformations") images = images.to_tensor() images = self.augment_ragged_image( image=images, label=labels, bounding_boxes=bounding_boxes, keypoints=keypoints, segmentation_mask=segmentation_masks, transformation=transformation, ) return tf.RaggedTensor.from_tensor(images) def _batch_augment(self, inputs): images = inputs.get(IMAGES, None) raw_images = images labels = inputs.get(LABELS, None) bounding_boxes = inputs.get(BOUNDING_BOXES, None) keypoints = inputs.get(KEYPOINTS, None) segmentation_masks = inputs.get(SEGMENTATION_MASKS, None) batch_size = tf.shape(images)[0] transformations = self.get_random_transformation_batch( batch_size, images=images, labels=labels, bounding_boxes=bounding_boxes, keypoints=keypoints, segmentation_masks=segmentation_masks, ) if isinstance(images, tf.RaggedTensor): inputs_for_raggeds = {"transformations": transformations, **inputs} images = tf.map_fn( self._unwrap_ragged_image_call, inputs_for_raggeds, fn_output_signature=self.compute_ragged_image_signature(images), ) else: images = self.augment_images( images, transformations=transformations, bounding_boxes=bounding_boxes, labels=labels, ) if ( isinstance(images, tf.RaggedTensor) and self.force_output_dense_images ): images = images.to_tensor() result = {IMAGES: images} if labels is not None: labels = self.augment_targets( labels, transformations=transformations, bounding_boxes=bounding_boxes, images=images, raw_images=raw_images, ) result[LABELS] = labels if bounding_boxes is not None: bounding_boxes = self.augment_bounding_boxes( bounding_boxes, transformations=transformations, labels=labels, images=images, raw_images=raw_images, ) bounding_boxes = bounding_box.to_ragged(bounding_boxes) result[BOUNDING_BOXES] = bounding_boxes if keypoints is not None: keypoints = self.augment_keypoints( keypoints, transformations=transformations, labels=labels, bounding_boxes=bounding_boxes, images=images, raw_images=raw_images, ) result[KEYPOINTS] = keypoints if segmentation_masks is not None: segmentation_masks = self.augment_segmentation_masks( segmentation_masks, transformations=transformations, labels=labels, bounding_boxes=bounding_boxes, images=images, raw_images=raw_images, ) if ( isinstance(segmentation_masks, tf.RaggedTensor) and self.force_output_dense_segmentation_masks ): segmentation_masks = segmentation_masks.to_tensor() result[SEGMENTATION_MASKS] = segmentation_masks # preserve any additional inputs unmodified by this layer. for key in inputs.keys() - result.keys(): result[key] = inputs[key] return result def call(self, inputs): # try to convert a given backend native tensor to TensorFlow tensor # before passing it over to TFDataScope is_tf_backend = config.backend() == "tensorflow" is_in_tf_graph = not tf.executing_eagerly() contains_ragged = lambda y: any( tree.map_structure( lambda x: isinstance(x, (tf.RaggedTensor, tf.SparseTensor)), tree.flatten(y), ) ) inputs_contain_ragged = contains_ragged(inputs) if not is_tf_backend and not inputs_contain_ragged: inputs = tree.map_structure( lambda x: tf.convert_to_tensor(x), inputs ) with scope.TFDataScope(): inputs = self._ensure_inputs_are_compute_dtype(inputs) inputs, metadata = self._format_inputs(inputs) images = inputs[IMAGES] if images.shape.rank == 3 or images.shape.rank == 4: outputs = self._format_output( self._batch_augment(inputs), metadata ) else: raise ValueError( "Image augmentation layers are expecting inputs to be " "rank 3 (HWC) or 4D (NHWC) tensors. Got shape: " f"{images.shape}" ) # convert the outputs to backend native tensors if none of them # contain RaggedTensors. Note that if the user passed in Raggeds # but the outputs are dense, we still don't want to convert to # backend native tensors. This is to avoid breaking TF data # pipelines that can't easily be ported to become backend # agnostic. if not is_tf_backend and not is_in_tf_graph: if not inputs_contain_ragged and not contains_ragged(outputs): outputs = tree.map_structure( # some layers return None, handle that case when # converting to tensors lambda x: ops.convert_to_tensor(x) if x is not None else x, outputs, ) return outputs def _format_inputs(self, inputs): metadata = {IS_DICT: True, USE_TARGETS: False} if tf.is_tensor(inputs): # single image input tensor metadata[IS_DICT] = False inputs = {IMAGES: inputs} else: # Copy the input dict before we mutate it. inputs = dict(inputs) metadata[BATCHED] = inputs["images"].shape.rank == 4 if inputs["images"].shape.rank == 3: for key in list(inputs.keys()): if key == BOUNDING_BOXES: inputs[BOUNDING_BOXES]["boxes"] = tf.expand_dims( inputs[BOUNDING_BOXES]["boxes"], axis=0 ) inputs[BOUNDING_BOXES]["classes"] = tf.expand_dims( inputs[BOUNDING_BOXES]["classes"], axis=0 ) else: inputs[key] = tf.expand_dims(inputs[key], axis=0) if not isinstance(inputs, dict): raise ValueError( "Expect the inputs to be image tensor or dict. Got " f"inputs={inputs}" ) if BOUNDING_BOXES in inputs: inputs[BOUNDING_BOXES] = self._format_bounding_boxes( inputs[BOUNDING_BOXES] ) if isinstance(inputs, dict) and TARGETS in inputs: # TODO(scottzhu): Check if it only contains the valid keys inputs[LABELS] = inputs[TARGETS] del inputs[TARGETS] metadata[USE_TARGETS] = True return inputs, metadata return inputs, metadata def _format_output(self, output, metadata): if not metadata[BATCHED]: for key in list(output.keys()): if key == BOUNDING_BOXES: output[BOUNDING_BOXES]["boxes"] = tf.squeeze( output[BOUNDING_BOXES]["boxes"], axis=0 ) output[BOUNDING_BOXES]["classes"] = tf.squeeze( output[BOUNDING_BOXES]["classes"], axis=0 ) else: output[key] = tf.squeeze(output[key], axis=0) if not metadata[IS_DICT]: return output[IMAGES] elif metadata[USE_TARGETS]: output[TARGETS] = output[LABELS] del output[LABELS] return output def _ensure_inputs_are_compute_dtype(self, inputs): if not isinstance(inputs, dict): return preprocessing.ensure_tensor( inputs, self.compute_dtype, ) # Copy the input dict before we mutate it. inputs = dict(inputs) inputs[IMAGES] = preprocessing.ensure_tensor( inputs[IMAGES], self.compute_dtype, ) if LABELS in inputs: inputs[LABELS] = preprocessing.ensure_tensor( inputs[LABELS], self.compute_dtype, ) if KEYPOINTS in inputs: inputs[KEYPOINTS] = preprocessing.ensure_tensor( inputs[KEYPOINTS], self.compute_dtype, ) if SEGMENTATION_MASKS in inputs: inputs[SEGMENTATION_MASKS] = preprocessing.ensure_tensor( inputs[SEGMENTATION_MASKS], self.compute_dtype, ) if BOUNDING_BOXES in inputs: inputs[BOUNDING_BOXES]["boxes"] = preprocessing.ensure_tensor( inputs[BOUNDING_BOXES]["boxes"], self.compute_dtype, ) inputs[BOUNDING_BOXES]["classes"] = preprocessing.ensure_tensor( inputs[BOUNDING_BOXES]["classes"], self.compute_dtype, ) return inputs def _format_bounding_boxes(self, bounding_boxes): # We can't catch the case where this is None, sometimes RaggedTensor # drops this dimension. if "classes" not in bounding_boxes: raise ValueError( "Bounding boxes are missing class_id. If you would like to pad " "the bounding boxes with class_id, use: " "`bounding_boxes['classes'] = " "tf.ones_like(bounding_boxes['boxes'])`." ) return bounding_boxes
keras-cv/keras_cv/layers/preprocessing/vectorized_base_image_augmentation_layer.py/0
{ "file_path": "keras-cv/keras_cv/layers/preprocessing/vectorized_base_image_augmentation_layer.py", "repo_id": "keras-cv", "token_count": 9889 }
67
# Copyright 2022 Waymo LLC. # # Licensed under the terms in https://github.com/keras-team/keras-cv/blob/master/keras_cv/layers/preprocessing_3d/waymo/LICENSE # noqa: E501 import numpy as np from keras_cv.layers.preprocessing_3d import base_augmentation_layer_3d from keras_cv.layers.preprocessing_3d.waymo.global_random_dropping_points import ( # noqa: E501 GlobalRandomDroppingPoints, ) from keras_cv.tests.test_case import TestCase POINT_CLOUDS = base_augmentation_layer_3d.POINT_CLOUDS BOUNDING_BOXES = base_augmentation_layer_3d.BOUNDING_BOXES class GlobalDropPointsTest(TestCase): def test_augment_point_clouds_and_bounding_boxes(self): add_layer = GlobalRandomDroppingPoints(drop_rate=0.5) point_clouds = np.random.random(size=(2, 50, 10)).astype("float32") bounding_boxes = np.random.random(size=(2, 10, 7)).astype("float32") inputs = {POINT_CLOUDS: point_clouds, BOUNDING_BOXES: bounding_boxes} outputs = add_layer(inputs) self.assertNotAllClose(inputs, outputs) def test_specific_augment_point_clouds_and_bounding_boxes(self): add_layer = GlobalRandomDroppingPoints(drop_rate=0.5) point_clouds = np.random.random(size=(1, 50, 2)).astype("float32") point_clouds = np.concatenate([point_clouds, point_clouds], axis=0) bounding_boxes = np.random.random(size=(2, 10, 7)).astype("float32") inputs = {POINT_CLOUDS: point_clouds, BOUNDING_BOXES: bounding_boxes} outputs = add_layer(inputs) self.assertNotAllClose(inputs, outputs) # The augmented point clouds in the first frame should be the same as # the augmented point clouds in the second frame. self.assertAllClose(outputs[POINT_CLOUDS][0], outputs[POINT_CLOUDS][1]) def test_not_augment_point_clouds_and_bounding_boxes(self): add_layer = GlobalRandomDroppingPoints(drop_rate=0.0) point_clouds = np.random.random(size=(2, 50, 10)).astype("float32") bounding_boxes = np.random.random(size=(2, 10, 7)).astype("float32") inputs = {POINT_CLOUDS: point_clouds, BOUNDING_BOXES: bounding_boxes} outputs = add_layer(inputs) self.assertAllClose(inputs, outputs) def test_drop_all_point_clouds(self): add_layer = GlobalRandomDroppingPoints(drop_rate=1.0) point_clouds = np.random.random(size=(2, 50, 10)).astype("float32") bounding_boxes = np.random.random(size=(2, 10, 7)).astype("float32") inputs = {POINT_CLOUDS: point_clouds, BOUNDING_BOXES: bounding_boxes} outputs = add_layer(inputs) self.assertAllClose(inputs[POINT_CLOUDS] * 0.0, outputs[POINT_CLOUDS]) def test_exclude_all_points(self): add_layer = GlobalRandomDroppingPoints(drop_rate=1.0, exclude_classes=1) point_clouds = np.random.random(size=(2, 50, 10)).astype("float32") exclude_classes = np.ones(shape=(2, 50, 1)).astype("float32") point_clouds = np.concatenate([point_clouds, exclude_classes], axis=-1) bounding_boxes = np.random.random(size=(2, 10, 7)).astype("float32") inputs = {POINT_CLOUDS: point_clouds, BOUNDING_BOXES: bounding_boxes} outputs = add_layer(inputs) self.assertAllClose(inputs, outputs) def test_exclude_the_first_half_points(self): add_layer = GlobalRandomDroppingPoints( drop_rate=1.0, exclude_classes=[1, 2] ) point_clouds = np.random.random(size=(2, 50, 10)).astype("float32") class_1 = np.ones(shape=(2, 10, 1)).astype("float32") class_2 = np.ones(shape=(2, 15, 1)).astype("float32") * 2 classes = np.concatenate( [class_1, class_2, np.zeros(shape=(2, 25, 1)).astype("float32")], axis=1, ) point_clouds = np.concatenate([point_clouds, classes], axis=-1) bounding_boxes = np.random.random(size=(2, 10, 7)).astype("float32") inputs = {POINT_CLOUDS: point_clouds, BOUNDING_BOXES: bounding_boxes} outputs = add_layer(inputs) self.assertAllClose( inputs[POINT_CLOUDS][:, 25:, :] * 0.0, outputs[POINT_CLOUDS][:, 25:, :], ) self.assertAllClose( inputs[POINT_CLOUDS][:, :25, :], outputs[POINT_CLOUDS][:, :25, :] ) def test_augment_batch_point_clouds_and_bounding_boxes(self): add_layer = GlobalRandomDroppingPoints(drop_rate=0.5) point_clouds = np.random.random(size=(3, 2, 50, 10)).astype("float32") bounding_boxes = np.random.random(size=(3, 2, 10, 7)).astype("float32") inputs = {POINT_CLOUDS: point_clouds, BOUNDING_BOXES: bounding_boxes} outputs = add_layer(inputs) self.assertNotAllClose(inputs, outputs)
keras-cv/keras_cv/layers/preprocessing_3d/waymo/global_random_dropping_points_test.py/0
{ "file_path": "keras-cv/keras_cv/layers/preprocessing_3d/waymo/global_random_dropping_points_test.py", "repo_id": "keras-cv", "token_count": 2057 }
68
# Copyright 2022 Waymo LLC. # # Licensed under the terms in https://github.com/keras-team/keras-cv/blob/master/keras_cv/layers/preprocessing_3d/waymo/LICENSE # noqa: E501 import numpy as np from keras_cv.layers.preprocessing_3d import base_augmentation_layer_3d from keras_cv.layers.preprocessing_3d.waymo.swap_background import ( SwapBackground, ) from keras_cv.tests.test_case import TestCase POINT_CLOUDS = base_augmentation_layer_3d.POINT_CLOUDS BOUNDING_BOXES = base_augmentation_layer_3d.BOUNDING_BOXES ADDITIONAL_POINT_CLOUDS = base_augmentation_layer_3d.ADDITIONAL_POINT_CLOUDS ADDITIONAL_BOUNDING_BOXES = base_augmentation_layer_3d.ADDITIONAL_BOUNDING_BOXES class SwapBackgroundTest(TestCase): def test_augment_point_clouds_and_bounding_boxes(self): add_layer = SwapBackground() # point_clouds: 3D (multi frames) float32 Tensor with shape # [num of frames, num of points, num of point features]. # The first 5 features are [x, y, z, class, range]. point_clouds = np.array( [ [ [0, 1, 2, 3, 4], [10, 1, 2, 3, 4], [0, -1, 2, 3, 4], [100, 100, 2, 3, 4], [20, 20, 21, 1, 0], ] ] * 2 ).astype("float32") # bounding_boxes: 3D (multi frames) float32 Tensor with shape # [num of frames, num of boxes, num of box features]. # The first 8 features are [x, y, z, dx, dy, dz, phi, box class]. bounding_boxes = np.array( [ [ [0, 0, 0, 4, 4, 4, 0, 1], [20, 20, 20, 1, 1, 1, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] ] * 2 ).astype("float32") additional_point_clouds = np.array( [ [ [0, 2, 1, 3, 4], [0, 0, 2, 0, 2], [0, 11, 2, 3, 4], [100, 101, 2, 3, 4], [10, 10, 10, 10, 10], ] ] * 2 ).astype("float32") additional_bounding_boxes = np.array( [ [ [0, 0, 1, 4, 4, 4, 0, 1], [100, 100, 2, 5, 5, 5, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] ] * 2 ).astype("float32") inputs = { POINT_CLOUDS: point_clouds, BOUNDING_BOXES: bounding_boxes, ADDITIONAL_POINT_CLOUDS: additional_point_clouds, ADDITIONAL_BOUNDING_BOXES: additional_bounding_boxes, } outputs = add_layer(inputs) # The following points in additional_point_clouds. # [0, 2, 1, 3, 4], -> kept because it is in additional_point_clouds # [0, 0, 1, 4, 4, 4, 0, 1]. # [0, 0, 2, 0, 2] -> removed because it is a background point (not in # any bounding_boxes and additional_point_clouds). # [0, 11, 2, 3, 4] -> removed because it is a background point (not in # any bounding_boxes and additional_point_clouds). # [100, 101, 2, 3, 4] -> kept because it is in additional_point_clouds # [100, 100, 2, 5, 5, 5, 0, 1]. # [10, 10, 10, 10, 10] -> removed because it is a background point (not # in any bounding_boxes and additional_point_clouds). # The following points in point_clouds. # [0, 1, 2, 3, 4] -> removed because it is in bounding_boxes # [0, 0, 0, 4, 4, 4, 0, 1]. # [10, 1, 2, 3, 4] -> kept because it is a background point (not in any # bounding_boxes and additional_point_clouds). # [0, -1, 2, 3, 4] -> removed because it overlaps with # additional_bounding_boxes [0, 0, 1, 4, 4, 4, 0, 1]. # [100, 100, 2, 3, 4] -> removed because it overlaps with # additional_bounding_boxes [100, 100, 2, 5, 5, 5, 0, 1]. # [20, 20, 21, 1, 0] -> kept because it is a background point (not in # any bounding_boxes and additional_point_clouds). augmented_point_clouds = np.array( [ [ [0, 2, 1, 3, 4], [100, 101, 2, 3, 4], [10, 1, 2, 3, 4], [20, 20, 21, 1, 0], [0, 0, 0, 0, 0], ] ] * 2 ).astype("float32") augmented_bounding_boxes = np.array( [ [ [0, 0, 1, 4, 4, 4, 0, 1], [100, 100, 2, 5, 5, 5, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] ] * 2 ).astype("float32") self.assertAllClose( inputs[ADDITIONAL_POINT_CLOUDS], outputs[ADDITIONAL_POINT_CLOUDS] ) self.assertAllClose( inputs[ADDITIONAL_BOUNDING_BOXES], outputs[ADDITIONAL_BOUNDING_BOXES], ) self.assertAllClose(outputs[POINT_CLOUDS], augmented_point_clouds) self.assertAllClose(outputs[BOUNDING_BOXES], augmented_bounding_boxes) def test_augment_batch_point_clouds_and_bounding_boxes(self): add_layer = SwapBackground() # point_clouds: 3D (multi frames) float32 Tensor with shape # [num of frames, num of points, num of point features]. # The first 5 features are [x, y, z, class, range]. point_clouds = np.array( [ [ [ [0, 1, 2, 3, 4], [10, 1, 2, 3, 4], [0, -1, 2, 3, 4], [100, 100, 2, 3, 4], [20, 20, 21, 1, 0], ] ] * 2 ] * 3 ).astype("float32") # bounding_boxes: 3D (multi frames) float32 Tensor with shape # [num of frames, num of boxes, num of box features]. # The first 8 features are [x, y, z, dx, dy, dz, phi, box class]. bounding_boxes = np.array( [ [ [ [0, 0, 0, 4, 4, 4, 0, 1], [20, 20, 20, 1, 1, 1, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] ] * 2 ] * 3 ).astype("float32") additional_point_clouds = np.array( [ [ [ [0, 2, 1, 3, 4], [0, 0, 2, 0, 2], [0, 11, 2, 3, 4], [100, 101, 2, 3, 4], [10, 10, 10, 10, 10], ] ] * 2 ] * 3 ).astype("float32") additional_bounding_boxes = np.array( [ [ [ [0, 0, 1, 4, 4, 4, 0, 1], [100, 100, 2, 5, 5, 5, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] ] * 2 ] * 3 ).astype("float32") inputs = { POINT_CLOUDS: point_clouds, BOUNDING_BOXES: bounding_boxes, ADDITIONAL_POINT_CLOUDS: additional_point_clouds, ADDITIONAL_BOUNDING_BOXES: additional_bounding_boxes, } outputs = add_layer(inputs) # The following points in additional_point_clouds. # [0, 2, 1, 3, 4], -> kept because it is in additional_point_clouds # [0, 0, 1, 4, 4, 4, 0, 1]. # [0, 0, 2, 0, 2] -> removed because it is a background point (not in # any bounding_boxes and additional_point_clouds). # [0, 11, 2, 3, 4] -> removed because it is a background point (not in # any bounding_boxes and additional_point_clouds). # [100, 101, 2, 3, 4] -> kept because it is in additional_point_clouds # [100, 100, 2, 5, 5, 5, 0, 1]. # [10, 10, 10, 10, 10] -> removed because it is a background point (not # in any bounding_boxes and additional_point_clouds). # The following points in point_clouds. # [0, 1, 2, 3, 4] -> removed because it is in bounding_boxes\ # [0, 0, 0, 4, 4, 4, 0, 1]. # [10, 1, 2, 3, 4] -> kept because it is a background point (not in any # bounding_boxes and additional_point_clouds). # [0, -1, 2, 3, 4] -> removed because it overlaps with # additional_bounding_boxes [0, 0, 1, 4, 4, 4, 0, 1]. # [100, 100, 2, 3, 4] -> removed because it overlaps with # additional_bounding_boxes [100, 100, 2, 5, 5, 5, 0, 1]. # [20, 20, 21, 1, 0] -> kept because it is a background point (not in # any bounding_boxes and additional_point_clouds). augmented_point_clouds = np.array( [ [ [ [0, 2, 1, 3, 4], [100, 101, 2, 3, 4], [10, 1, 2, 3, 4], [20, 20, 21, 1, 0], [0, 0, 0, 0, 0], ] ] * 2 ] * 3 ).astype("float32") augmented_bounding_boxes = np.array( [ [ [ [0, 0, 1, 4, 4, 4, 0, 1], [100, 100, 2, 5, 5, 5, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] ] * 2 ] * 3 ).astype("float32") self.assertAllClose( inputs[ADDITIONAL_POINT_CLOUDS], outputs[ADDITIONAL_POINT_CLOUDS] ) self.assertAllClose( inputs[ADDITIONAL_BOUNDING_BOXES], outputs[ADDITIONAL_BOUNDING_BOXES], ) self.assertAllClose(outputs[POINT_CLOUDS], augmented_point_clouds) self.assertAllClose(outputs[BOUNDING_BOXES], augmented_bounding_boxes)
keras-cv/keras_cv/layers/preprocessing_3d/waymo/swap_background_test.py/0
{ "file_path": "keras-cv/keras_cv/layers/preprocessing_3d/waymo/swap_background_test.py", "repo_id": "keras-cv", "token_count": 6396 }
69
# Copyright 2023 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from keras_cv.api_export import keras_cv_export from keras_cv.backend import keras from keras_cv.backend import ops class MLP(keras.layers.Layer): """A MLP block with architecture `input_dim -> [hidden_dim] * (num_layers - 1) -> output_dim`. Args: hidden_dim (int): The number of units in the hidden layers. output_dim (int): The number of units in the output layer. num_layers (int): The total number of dense layers to use. activation (str): Activation to use in the hidden layers. Default is `"relu"`. References: - [Segment Anything paper](https://arxiv.org/abs/2304.02643) - [Segment Anything GitHub](https://github.com/facebookresearch/segment-anything) - [Detectron2](https://github.com/facebookresearch/detectron2) """ # noqa: E501 def __init__( self, hidden_dim, output_dim, num_layers, activation="relu", **kwargs ): super().__init__(**kwargs) self.hidden_dim = hidden_dim self.output_dim = output_dim self.num_layers = num_layers self.activation = activation h = [hidden_dim] * (num_layers - 1) self.dense_net = [] for hidden_dim in h: self.dense_net.append(keras.layers.Dense(hidden_dim)) self.dense_net.append(keras.layers.Activation(activation)) self.dense_net.append(keras.layers.Dense(output_dim)) self.dense_net = keras.models.Sequential(self.dense_net) def build(self, input_shape): self.dense_net.build(input_shape) self.built = True def call(self, x): return self.dense_net(x) def get_config(self): config = super().get_config() config.update( { "hidden_dim": self.hidden_dim, "output_dim": self.output_dim, "num_layers": self.num_layers, "activation": self.activation, } ) return config @keras_cv_export( "keras_cv.layers.AddRelativePositionalEmbedding", package="keras_cv.layers" ) class AddRelativePositionalEmbedding(keras.layers.Layer): def __init__(self, input_size, key_dim, **kwargs): super().__init__(**kwargs) self.input_size = input_size self.key_dim = key_dim self.rel_pos_h = self.add_weight( name="rel_pos_h", shape=(2 * self.input_size[0] - 1, self.key_dim), initializer="zeros", trainable=True, ) self.rel_pos_w = self.add_weight( name="rel_pos_w", shape=(2 * self.input_size[1] - 1, self.key_dim), initializer="zeros", trainable=True, ) self.built = True def _get_rel_pos(self, query_size, key_size, rel_pos): """ Get relative positional embeddings according to the relative positions of query and key sizes. Args: query_size (int): The number of features of the queries. key_size (int): The number of features of the keys. rel_pos (tensor): Relative positional embedding tensor. Returns: tensor: Extracted positional embeddings according to relative positions. """ max_rel_dist = 2 * max(query_size, key_size) - 1 if ops.shape(rel_pos)[0] != max_rel_dist: rel_pos_resized = ops.image.resize( image=ops.reshape( rel_pos, (1, ops.shape(rel_pos)[0], ops.shape(rel_pos)[1], 1), ), size=(max_rel_dist, ops.shape(rel_pos)[1]), interpolation="bilinear", ) rel_pos_resized = ops.squeeze(rel_pos_resized, axis=(0, -1)) return rel_pos_resized else: rel_pos_resized = rel_pos query_coordinates = ops.cast( ops.arange(query_size), dtype=self.compute_dtype )[:, None] * (max(key_size / query_size, 1.0)) key_coordinates = ops.cast( ops.arange(key_size), dtype=self.compute_dtype )[None, :] * (max(query_size / key_size, 1.0)) relative_coordinates = (query_coordinates - key_coordinates) + ( key_size - 1 ) * max(query_size / key_size, 1.0) relative_coordinates = ops.cast(relative_coordinates, dtype="int32") return ops.take(rel_pos_resized, relative_coordinates, 0) def call(self, attention_map, queries, query_size, key_size): """ Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`. Args: attention_map (tensor): Attention map. queries (tensor): Queries in the attention layer with shape `(B, q_h * q_w, C)`. query_size (tuple[int, int]): Spatial sequence size of queries with `(q_h, q_w)`. key_size (tuple[int, int]): Spatial sequence size of keys with `(k_h, k_w)`. Returns: tensor: attention map with added relative positional embeddings. References: - https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa: E501 """ query_height, query_width = query_size[0], query_size[1] key_height, key_width = key_size[0], key_size[1] rel_heights = self._get_rel_pos( query_height, key_height, self.rel_pos_h ) rel_widths = self._get_rel_pos(query_width, key_width, self.rel_pos_w) shape = ops.shape(queries) B, C = shape[0], shape[2] rel_queries = ops.reshape(queries, (B, query_height, query_width, C)) rel_heights = ops.einsum("bhwc,hkc->bhwk", rel_queries, rel_heights) rel_widths = ops.einsum("bhwc,wkc->bhwk", rel_queries, rel_widths) attention_map = ops.reshape( attention_map, (B, query_height, query_width, key_height, key_width) ) attention_map = attention_map + rel_heights[..., :, None] attention_map = attention_map + rel_widths[..., None, :] attention_map = ops.reshape( attention_map, (B, query_height * query_width, key_height * key_width), ) return attention_map def get_config(self): config = super().get_config() config.update({"input_size": self.input_size, "key_dim": self.key_dim}) return config @keras_cv_export( "keras_cv.layers.MultiHeadAttentionWithRelativePE", package="keras_cv.layers", ) class MultiHeadAttentionWithRelativePE(keras.layers.Layer): """Multi-head Attention block with relative position embeddings. Args: num_heads (int): Number of attention heads. key_dim (int): Size of each attention head for query, key, and value. use_bias (bool, optional): Whether to use bias when projecting the queries, keys, and values. Defaults to `True`. use_rel_pos (bool, optional): Whether to use relative positional embeddings or not. Defaults to `False`. input_size (tuple[int, int], optional): Size of the input image. Must be provided when using relative positional embeddings. Defaults to `None`. Raises: ValueError: When `input_size = None` with `use_rel_pos = True`. References: - [Segment Anything paper](https://arxiv.org/abs/2304.02643) - [Segment Anything GitHub](https://github.com/facebookresearch/segment-anything) - [Detectron2](https://github.com/facebookresearch/detectron2) """ # noqa: E501 def __init__( self, num_heads, key_dim, use_bias=True, use_rel_pos=False, input_size=None, **kwargs ): super().__init__(**kwargs) self.num_heads = num_heads self.key_dim = key_dim self.scale = self.key_dim**-0.5 self.use_bias = use_bias self.input_size = input_size self.use_rel_pos = use_rel_pos self.qkv = keras.layers.Dense( key_dim * self.num_heads * 3, use_bias=self.use_bias ) self.projection = keras.layers.Dense(key_dim * self.num_heads) if self.use_rel_pos: if input_size is None: raise ValueError( "Input size must be provided if using relative " "positional encoding." ) self.add_decomposed_reative_pe = AddRelativePositionalEmbedding( self.input_size, self.key_dim ) def build(self, input_shape=None): self.qkv.build([self.key_dim * self.num_heads]) self.projection.build([self.key_dim * self.num_heads]) self.built = True def compute_output_shape(self, input_shape): return input_shape def call(self, x): shape = ops.shape(x) B, H, W, C = shape[0], shape[1], shape[2], shape[3] qkv = ops.transpose( ops.reshape( self.qkv(x), (B, H * W, 3, self.num_heads, self.key_dim) ), axes=(2, 0, 3, 1, 4), ) qkv = ops.reshape(qkv, (3, B * self.num_heads, H * W, self.key_dim)) queries, keys, values = ops.unstack(qkv, axis=0) attention_map = (queries * self.scale) @ ops.transpose( keys, axes=(0, 2, 1) ) if self.use_rel_pos: attention_map = self.add_decomposed_reative_pe( attention_map, queries=queries, query_size=(H, W), key_size=(H, W), ) attention_map = ops.softmax(attention_map, axis=-1) x = ops.reshape( attention_map @ values, (B, self.num_heads, H, W, self.key_dim) ) x = ops.transpose(x, axes=(0, 2, 3, 1, 4)) x = ops.reshape(x, (B, H, W, C)) x = self.projection(x) return x def get_config(self): config = super().get_config() config.update( { "num_heads": self.num_heads, "key_dim": self.key_dim, "use_bias": self.use_bias, "use_rel_pos": self.use_rel_pos, "input_size": self.input_size, } ) return config @keras_cv_export( "keras_cv.layers.WindowPartitioning", package="keras_cv.layers" ) class WindowPartitioning(keras.layers.Layer): def __init__(self, window_size, **kwargs): super().__init__(**kwargs) self.window_size = window_size self.built = True def partition(self, x): shape = ops.shape(x) B, H, W, C = shape[0], shape[1], shape[2], shape[3] pad_height = ( self.window_size - H % self.window_size ) % self.window_size pad_width = (self.window_size - W % self.window_size) % self.window_size if pad_height > 0 or pad_width > 0: x = ops.pad(x, ((0, 0), (0, pad_height), (0, pad_width), (0, 0))) H_padded, W_padded = H + pad_height, W + pad_width x = ops.reshape( x, ( B, H_padded // self.window_size, self.window_size, W_padded // self.window_size, self.window_size, C, ), ) windows = ops.reshape( ops.transpose(x, axes=(0, 1, 3, 2, 4, 5)), (-1, self.window_size, self.window_size, C), ) return windows, (H_padded, W_padded) def unpartition(self, windows, HW_padded, HW): H_padded, W_padded = HW_padded H, W = HW B = ops.shape(windows)[0] // ( (H_padded // self.window_size) * (W_padded // self.window_size) ) x = ops.reshape( windows, ( B, H_padded // self.window_size, W_padded // self.window_size, self.window_size, self.window_size, -1, ), ) x = ops.reshape( ops.transpose(x, axes=(0, 1, 3, 2, 4, 5)), (B, H_padded, W_padded, -1), ) return x[:, :H, :W, :] def get_config(self): config = super().get_config() config.update({"window_size": self.window_size}) return config @keras_cv_export( "keras_cv.layers.WindowedTransformerEncoder", package="keras_cv.layers" ) class WindowedTransformerEncoder(keras.layers.Layer): """Transformer blocks with support of window attention and residual propagation blocks. Args: project_dim (int): the dimensionality of the projection of the encoder, and output of the `MultiHeadAttention`. mlp_dim (int): the intermediate dimensionality of the MLP head before projecting to `project_dim`. num_heads (int): the number of heads for the `MultiHeadAttention` layer. use_bias (bool, optional): Whether to use bias to project the keys, queries, and values in the attention layer. Defaults to `True`. use_rel_pos (bool, optional): Whether to use relative positional emcodings in the attention layer. Defaults to `False`. window_size (int, optional): Window size for windowed attention. Defaults to `0`. input_size (tuple[int, int], optional): Height and width of the input image as a tuple of integers. Must be provided when using relative positional embeddings. Defaults to `None`. activation (str, optional): the activation function to apply in the MLP head - should be a function. Defaults to `"gelu"`. layer_norm_epsilon (float, optional): The epsilon to use in the layer normalization layers. Defaults to `1e-6`. References: - [Segment Anything paper](https://arxiv.org/abs/2304.02643) - [Segment Anything GitHub](https://github.com/facebookresearch/segment-anything) - [Detectron2](https://github.com/facebookresearch/detectron2) """ # noqa: E501 def __init__( self, project_dim, mlp_dim, num_heads, use_bias=True, use_rel_pos=False, window_size=0, input_size=None, activation="gelu", layer_norm_epsilon=1e-6, **kwargs ): super().__init__(**kwargs) self.project_dim = project_dim self.mlp_dim = mlp_dim self.num_heads = num_heads self.use_bias = use_bias self.input_size = input_size self.activation = activation self.layer_norm_epsilon = layer_norm_epsilon self.window_size = window_size self.use_rel_pos = use_rel_pos self.layer_norm1 = keras.layers.LayerNormalization( epsilon=self.layer_norm_epsilon ) self.layer_norm2 = keras.layers.LayerNormalization( epsilon=self.layer_norm_epsilon ) self.attention = MultiHeadAttentionWithRelativePE( num_heads=self.num_heads, key_dim=self.project_dim // self.num_heads, use_bias=use_bias, use_rel_pos=use_rel_pos, input_size=( input_size if window_size == 0 else (window_size, window_size) ), ) self.mlp_block = MLP( mlp_dim, project_dim, num_layers=2, activation="gelu", ) self.window_partitioning = WindowPartitioning(window_size) def build(self, input_shape=None): self.layer_norm1.build([None, None, None, self.project_dim]) self.layer_norm2.build([None, None, None, self.project_dim]) self.attention.build() self.mlp_block.build([None, None, None, self.project_dim]) self.built = True def compute_output_shape(self, input_shape): return input_shape def call(self, x): shortcut = x x = self.layer_norm1(x) # Window Partition if self.window_size > 0: H, W = ops.shape(x)[1], ops.shape(x)[2] x, HW_padded = self.window_partitioning.partition(x) x = self.attention(x) # Reverse Window Partition if self.window_size > 0: x = self.window_partitioning.unpartition( x, HW_padded=HW_padded, HW=(H, W) ) x = shortcut + x x = x + self.mlp_block(self.layer_norm2(x)) return x def get_config(self): config = super().get_config() config.update( { "project_dim": self.project_dim, "mlp_dim": self.mlp_dim, "num_heads": self.num_heads, "use_bias": self.use_bias, "use_rel_pos": self.use_rel_pos, "window_size": self.window_size, "input_size": self.input_size, "activation": self.activation, "layer_norm_epsilon": self.layer_norm_epsilon, } ) return config @keras_cv_export( "keras_cv.layers.ViTDetPatchingAndEmbedding", package="keras_cv.layers" ) class ViTDetPatchingAndEmbedding(keras.layers.Layer): """Image to Patch Embedding using only a conv layer (without layer normalization). Args: kernel_size (tuple[int, int], optional): Kernel size of the projection layer. Defaults to `(16, 16)`. strides (tuple, optional): Strides of the projection layer. Defaults to `(16, 16)`. embed_dim (int, optional): Number of filters to use in the projection layer i.e. projection size. Defaults to `768`. References: - [Segment Anything paper](https://arxiv.org/abs/2304.02643) - [Segment Anything GitHub](https://github.com/facebookresearch/segment-anything) - [Detectron2](https://github.com/facebookresearch/detectron2) """ # noqa: E501 def __init__( self, kernel_size=(16, 16), strides=(16, 16), embed_dim=768, **kwargs ): super().__init__(**kwargs) self.projection = keras.layers.Conv2D( embed_dim, kernel_size=kernel_size, strides=strides ) self.kernel_size = kernel_size self.strides = strides self.embed_dim = embed_dim def build(self, input_shape): self.projection.build(input_shape) self.built = True def compute_output_shape(self, input_shape): return self.projection.compute_output_shape(input_shape) def call(self, x): x = self.projection(x) return x def get_config(self): config = super().get_config() config.update( { "kernel_size": self.kernel_size, "strides": self.strides, "embed_dim": self.embed_dim, } ) return config # TODO: Merge this with the `keras_cv.layers.PatchingAndEmbedding` class once # it has been ported to Keras Core. @keras_cv_export( "keras_cv.layers.AddPositionalEmbedding", package="keras_cv.layers" ) class AddPositionalEmbedding(keras.layers.Layer): def __init__(self, img_size, patch_size, embed_dim, **kwargs): super().__init__(**kwargs) self.img_size = img_size self.patch_size = patch_size self.embed_dim = embed_dim self.pos_embed = self.add_weight( name="pos_embed", shape=( 1, img_size // patch_size, img_size // patch_size, embed_dim, ), initializer="zeros", trainable=True, ) def compute_output_shape(self, input_shape): return input_shape def call(self, x): return x + self.pos_embed def get_confg(self): config = super().get_config() config.update( { "img_size": self.img_size, "patch_size": self.patch_size, "embed_dim": self.embed_dim, } ) return config
keras-cv/keras_cv/layers/vit_det_layers.py/0
{ "file_path": "keras-cv/keras_cv/layers/vit_det_layers.py", "repo_id": "keras-cv", "token_count": 9997 }
70
# Copyright 2022 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from keras_cv.api_export import keras_cv_export from keras_cv.backend import keras from keras_cv.backend import ops @keras_cv_export("keras_cv.losses.BinaryPenaltyReducedFocalCrossEntropy") class BinaryPenaltyReducedFocalCrossEntropy(keras.losses.Loss): """Implements CenterNet modified Focal loss. Compared with `keras.losses.BinaryFocalCrossentropy`, this loss discounts for negative labels that have value less than `positive_threshold`, the larger value the negative label is, the more discount to the final loss. User can choose to divide the number of keypoints outside the loss computation, or by passing in `sample_weight` as 1.0/num_key_points. Args: alpha: a focusing parameter used to compute the focal factor. Defaults to 2.0. Note, this is equivalent to the `gamma` parameter in `keras.losses.BinaryFocalCrossentropy`. beta: a float parameter, penalty exponent for negative labels, defaults to 4.0. from_logits: Whether `y_pred` is expected to be a logits tensor, defaults to `False`. positive_threshold: Anything bigger than this is treated as positive label, defaults to 0.99. positive_weight: single scalar weight on positive examples, defaults to 1.0. negative_weight: single scalar weight on negative examples, defaults to 1.0. Inputs: y_true: [batch_size, ...] float tensor y_pred: [batch_size, ...] float tensor with same shape as y_true. References: - [Objects as Points](https://arxiv.org/pdf/1904.07850.pdf) Eq 1. - [Cornernet: Detecting objects as paired keypoints](https://arxiv.org/abs/1808.01244) for `alpha` and `beta`. """ # noqa: E501 def __init__( self, alpha=2.0, beta=4.0, from_logits=False, positive_threshold=0.99, positive_weight=1.0, negative_weight=1.0, reduction="sum_over_batch_size", name="binary_penalty_reduced_focal_cross_entropy", ): super().__init__(reduction=reduction, name=name) self.alpha = alpha self.beta = beta self.from_logits = from_logits self.positive_threshold = positive_threshold self.positive_weight = positive_weight self.negative_weight = negative_weight def call(self, y_true, y_pred): y_pred = ops.convert_to_tensor(y_pred) y_true = ops.cast(y_true, y_pred.dtype) if self.from_logits: y_pred = ops.sigmoid(y_pred) # TODO(tanzhenyu): Evaluate whether we need clipping after model is # trained. y_pred = ops.clip(y_pred, 1e-4, 0.9999) y_true = ops.clip(y_true, 0.0, 1.0) pos_loss = ops.power(1.0 - y_pred, self.alpha) * ops.log(y_pred) neg_loss = ( ops.power(1.0 - y_true, self.beta) * ops.power(y_pred, self.alpha) * ops.log(1.0 - y_pred) ) positive_mask = y_true > self.positive_threshold loss = ops.where( positive_mask, self.positive_weight * pos_loss, self.negative_weight * neg_loss, ) return -1.0 * loss def get_config(self): config = super().get_config() config.update( { "alpha": self.alpha, "beta": self.beta, "from_logits": self.from_logits, "positive_threshold": self.positive_threshold, "positive_weight": self.positive_weight, "negative_weight": self.negative_weight, } ) return config
keras-cv/keras_cv/losses/penalty_reduced_focal_loss.py/0
{ "file_path": "keras-cv/keras_cv/losses/penalty_reduced_focal_loss.py", "repo_id": "keras-cv", "token_count": 1767 }
71
# Copyright 2023 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Base class for Backbone models.""" from keras_cv.api_export import keras_cv_export from keras_cv.backend import keras from keras_cv.utils.preset_utils import check_preset_class from keras_cv.utils.preset_utils import load_from_preset from keras_cv.utils.python_utils import classproperty from keras_cv.utils.python_utils import format_docstring @keras_cv_export("keras_cv.models.Backbone") class Backbone(keras.Model): """Base class for Backbone models. Backbones are reusable layers of models trained on a standard task such as Imagenet classification that can be reused in other tasks. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._pyramid_level_inputs = {} self._functional_layer_ids = set( id(layer) for layer in self._flatten_layers() ) def __dir__(self): # Temporary fixes for weight saving. This mimics the following PR for # older version of Keras: https://github.com/keras-team/keras/pull/18982 def filter_fn(attr): try: return id(getattr(self, attr)) not in self._functional_layer_ids except: return True return filter(filter_fn, super().__dir__()) def get_config(self): # Don't chain to super here. The default `get_config()` for functional # models is nested and cannot be passed to our Backbone constructors. return { "name": self.name, "trainable": self.trainable, } @classmethod def from_config(cls, config): # The default `from_config()` for functional models will return a # vanilla `keras.Model`. We override it to get a subclass instance back. return cls(**config) @classproperty def presets(cls): """Dictionary of preset names and configs.""" return {} @classproperty def presets_with_weights(cls): """Dictionary of preset names and configs that include weights.""" return {} @classproperty def presets_without_weights(cls): """Dictionary of preset names and configs that don't include weights.""" return { preset: cls.presets[preset] for preset in set(cls.presets) - set(cls.presets_with_weights) } @classmethod def from_preset( cls, preset, load_weights=None, **kwargs, ): """Instantiate {{model_name}} model from preset config and weights. Args: preset: string. Must be one of "{{preset_names}}". If looking for a preset with pretrained weights, choose one of "{{preset_with_weights_names}}". load_weights: Whether to load pre-trained weights into model. Defaults to `None`, which follows whether the preset has pretrained weights available. Examples: ```python # Load architecture and weights from preset model = keras_cv.models.{{model_name}}.from_preset( "{{example_preset_name}}", ) # Load randomly initialized model from preset architecture with weights model = keras_cv.models.{{model_name}}.from_preset( "{{example_preset_name}}", load_weights=False, ``` """ # We support short IDs for official presets, e.g. `"bert_base_en"`. # Map these to a Kaggle Models handle. if preset in cls.presets: preset = cls.presets[preset]["kaggle_handle"] check_preset_class(preset, cls) return load_from_preset( preset, load_weights=load_weights, config_overrides=kwargs, ) def __init_subclass__(cls, **kwargs): # Use __init_subclass__ to set up a correct docstring for from_preset. super().__init_subclass__(**kwargs) # If the subclass does not define from_preset, assign a wrapper so that # each class can have a distinct docstring. if "from_preset" not in cls.__dict__: def from_preset(calling_cls, *args, **kwargs): return super(cls, calling_cls).from_preset(*args, **kwargs) cls.from_preset = classmethod(from_preset) if not cls.presets: cls.from_preset.__func__.__doc__ = """Not implemented. No presets available for this class. """ # Format and assign the docstring unless the subclass has overridden it. if cls.from_preset.__doc__ is None: cls.from_preset.__func__.__doc__ = Backbone.from_preset.__doc__ format_docstring( model_name=cls.__name__, example_preset_name=next(iter(cls.presets_with_weights), ""), preset_names='", "'.join(cls.presets), preset_with_weights_names='", "'.join(cls.presets_with_weights), )(cls.from_preset.__func__) @property def pyramid_level_inputs(self): """Intermediate model outputs for feature extraction. Format is a dictionary with string as key and layer name as value. The string key represents the level of the feature output. A typical feature pyramid has five levels corresponding to scales "P3", "P4", "P5", "P6", "P7" in the backbone. Scale Pn represents a feature map 2^n times smaller in width and height than the input image. Example: ```python { 'P3': 'v2_stack_1_block4_out', 'P4': 'v2_stack_2_block6_out', 'P5': 'v2_stack_3_block3_out', } ``` """ return self._pyramid_level_inputs @pyramid_level_inputs.setter def pyramid_level_inputs(self, value): self._pyramid_level_inputs = value
keras-cv/keras_cv/models/backbones/backbone.py/0
{ "file_path": "keras-cv/keras_cv/models/backbones/backbone.py", "repo_id": "keras-cv", "token_count": 2673 }
72
# Copyright 2023 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from keras_cv.models.backbones.efficientnet_lite.efficientnet_lite_backbone import ( # noqa: E501 EfficientNetLiteBackbone, ) from keras_cv.utils.python_utils import classproperty ALIAS_DOCSTRING = """Instantiates the {name} architecture. Reference: - [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) (ICML 2019) Args: include_rescaling: bool, whether to rescale the inputs. If set to `True`, inputs will be passed through a `Rescaling(1/255.0)` layer. input_shape: optional shape tuple, defaults to (None, None, 3). input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. Usage: ```python input_data = np.ones(shape=(8, 224, 224, 3)) # Randomly initialized backbone model = {name}Backbone() output = model(input_data) ``` """ # noqa: E501 class EfficientNetLiteB0Backbone(EfficientNetLiteBackbone): def __new__( cls, include_rescaling=True, input_shape=(None, None, 3), input_tensor=None, **kwargs, ): # Pack args in kwargs kwargs.update( { "include_rescaling": include_rescaling, "input_shape": input_shape, "input_tensor": input_tensor, } ) return EfficientNetLiteBackbone.from_preset( "efficientnetlite_b0", **kwargs ) @classproperty def presets(cls): """Dictionary of preset names and configurations.""" return {} @classproperty def presets_with_weights(cls): """Dictionary of preset names and configurations that include weights.""" return {} class EfficientNetLiteB1Backbone(EfficientNetLiteBackbone): def __new__( cls, include_rescaling=True, input_shape=(None, None, 3), input_tensor=None, **kwargs, ): # Pack args in kwargs kwargs.update( { "include_rescaling": include_rescaling, "input_shape": input_shape, "input_tensor": input_tensor, } ) return EfficientNetLiteBackbone.from_preset( "efficientnetlite_b1", **kwargs ) @classproperty def presets(cls): """Dictionary of preset names and configurations.""" return {} @classproperty def presets_with_weights(cls): """Dictionary of preset names and configurations that include weights.""" return {} class EfficientNetLiteB2Backbone(EfficientNetLiteBackbone): def __new__( cls, include_rescaling=True, input_shape=(None, None, 3), input_tensor=None, **kwargs, ): # Pack args in kwargs kwargs.update( { "include_rescaling": include_rescaling, "input_shape": input_shape, "input_tensor": input_tensor, } ) return EfficientNetLiteBackbone.from_preset( "efficientnetlite_b2", **kwargs ) @classproperty def presets(cls): """Dictionary of preset names and configurations.""" return {} @classproperty def presets_with_weights(cls): """Dictionary of preset names and configurations that include weights.""" return {} class EfficientNetLiteB3Backbone(EfficientNetLiteBackbone): def __new__( cls, include_rescaling=True, input_shape=(None, None, 3), input_tensor=None, **kwargs, ): # Pack args in kwargs kwargs.update( { "include_rescaling": include_rescaling, "input_shape": input_shape, "input_tensor": input_tensor, } ) return EfficientNetLiteBackbone.from_preset( "efficientnetlite_b3", **kwargs ) @classproperty def presets(cls): """Dictionary of preset names and configurations.""" return {} @classproperty def presets_with_weights(cls): """Dictionary of preset names and configurations that include weights.""" return {} class EfficientNetLiteB4Backbone(EfficientNetLiteBackbone): def __new__( cls, include_rescaling=True, input_shape=(None, None, 3), input_tensor=None, **kwargs, ): # Pack args in kwargs kwargs.update( { "include_rescaling": include_rescaling, "input_shape": input_shape, "input_tensor": input_tensor, } ) return EfficientNetLiteBackbone.from_preset( "efficientnetlite_b4", **kwargs ) @classproperty def presets(cls): """Dictionary of preset names and configurations.""" return {} @classproperty def presets_with_weights(cls): """Dictionary of preset names and configurations that include weights.""" return {} setattr( EfficientNetLiteB0Backbone, "__doc__", ALIAS_DOCSTRING.format(name="EfficientNetLiteB0"), ) setattr( EfficientNetLiteB1Backbone, "__doc__", ALIAS_DOCSTRING.format(name="EfficientNetLiteB1"), ) setattr( EfficientNetLiteB2Backbone, "__doc__", ALIAS_DOCSTRING.format(name="EfficientNetLiteB2"), ) setattr( EfficientNetLiteB3Backbone, "__doc__", ALIAS_DOCSTRING.format(name="EfficientNetLiteB3"), ) setattr( EfficientNetLiteB4Backbone, "__doc__", ALIAS_DOCSTRING.format(name="EfficientNetLiteB4"), )
keras-cv/keras_cv/models/backbones/efficientnet_lite/efficientnet_lite_aliases.py/0
{ "file_path": "keras-cv/keras_cv/models/backbones/efficientnet_lite/efficientnet_lite_aliases.py", "repo_id": "keras-cv", "token_count": 2848 }
73
# Copyright 2023 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import pytest from absl.testing import parameterized from keras_cv.backend import keras from keras_cv.backend import ops from keras_cv.models.backbones.efficientnet_v2.efficientnet_v2_aliases import ( EfficientNetV2SBackbone, ) from keras_cv.models.backbones.efficientnet_v2.efficientnet_v2_backbone import ( EfficientNetV2Backbone, ) from keras_cv.tests.test_case import TestCase from keras_cv.utils.train import get_feature_extractor class EfficientNetV2BackboneTest(TestCase): def setUp(self): self.input_batch = np.ones(shape=(8, 224, 224, 3)) def test_valid_call(self): model = EfficientNetV2Backbone( stackwise_kernel_sizes=[3, 3, 3, 3, 3, 3], stackwise_num_repeats=[2, 4, 4, 6, 9, 15], stackwise_input_filters=[24, 24, 48, 64, 128, 160], stackwise_output_filters=[24, 48, 64, 128, 160, 256], stackwise_expansion_ratios=[1, 4, 4, 4, 6, 6], stackwise_squeeze_and_excite_ratios=[0.0, 0.0, 0, 0.25, 0.25, 0.25], stackwise_strides=[1, 2, 2, 2, 1, 2], stackwise_conv_types=[ "fused", "fused", "fused", "unfused", "unfused", "unfused", ], width_coefficient=1.0, depth_coefficient=1.0, include_rescaling=False, ) model(self.input_batch) def test_valid_call_alias_model_with_rescaling(self): model = EfficientNetV2SBackbone(include_rescaling=True) model(self.input_batch) def test_valid_call_with_rescaling(self): model = EfficientNetV2Backbone( stackwise_kernel_sizes=[3, 3, 3, 3, 3, 3], stackwise_num_repeats=[2, 4, 4, 6, 9, 15], stackwise_input_filters=[24, 24, 48, 64, 128, 160], stackwise_output_filters=[24, 48, 64, 128, 160, 256], stackwise_expansion_ratios=[1, 4, 4, 4, 6, 6], stackwise_squeeze_and_excite_ratios=[0.0, 0.0, 0, 0.25, 0.25, 0.25], stackwise_strides=[1, 2, 2, 2, 1, 2], stackwise_conv_types=[ "fused", "fused", "fused", "unfused", "unfused", "unfused", ], width_coefficient=1.0, depth_coefficient=1.0, include_rescaling=True, ) model(self.input_batch) @pytest.mark.large # Saving is slow, so mark these large. def test_saved_model(self): model = EfficientNetV2Backbone( stackwise_kernel_sizes=[3, 3, 3, 3, 3, 3], stackwise_num_repeats=[2, 4, 4, 6, 9, 15], stackwise_input_filters=[24, 24, 48, 64, 128, 160], stackwise_output_filters=[24, 48, 64, 128, 160, 256], stackwise_expansion_ratios=[1, 4, 4, 4, 6, 6], stackwise_squeeze_and_excite_ratios=[0.0, 0.0, 0, 0.25, 0.25, 0.25], stackwise_strides=[1, 2, 2, 2, 1, 2], stackwise_conv_types=[ "fused", "fused", "fused", "unfused", "unfused", "unfused", ], width_coefficient=1.0, depth_coefficient=1.0, include_rescaling=True, ) model_output = model(self.input_batch) save_path = os.path.join( self.get_temp_dir(), "efficientnet_v2_backbone.keras" ) model.save(save_path) restored_model = keras.models.load_model(save_path) # Check we got the real object back. self.assertIsInstance(restored_model, EfficientNetV2Backbone) # Check that output matches. restored_output = restored_model(self.input_batch) self.assertAllClose( ops.convert_to_numpy(model_output), ops.convert_to_numpy(restored_output), ) @pytest.mark.large # Saving is slow, so mark these large. def test_saved_alias_model(self): model = EfficientNetV2SBackbone() model_output = model(self.input_batch) save_path = os.path.join( self.get_temp_dir(), "efficientnet_v2_backbone.keras" ) model.save(save_path) restored_model = keras.models.load_model(save_path) # Check we got the real object back. # Note that these aliases serialized as the base class self.assertIsInstance(restored_model, EfficientNetV2Backbone) # Check that output matches. restored_output = restored_model(self.input_batch) self.assertAllClose( ops.convert_to_numpy(model_output), ops.convert_to_numpy(restored_output), ) def test_feature_pyramid_inputs(self): model = EfficientNetV2SBackbone() backbone_model = get_feature_extractor( model, model.pyramid_level_inputs.values(), model.pyramid_level_inputs.keys(), ) input_size = 256 inputs = keras.Input(shape=[input_size, input_size, 3]) outputs = backbone_model(inputs) levels = ["P1", "P2", "P3", "P4", "P5"] self.assertEquals(list(outputs.keys()), levels) self.assertEquals( outputs["P1"].shape, (None, input_size // 2**1, input_size // 2**1, 24), ) self.assertEquals( outputs["P2"].shape, (None, input_size // 2**2, input_size // 2**2, 48), ) self.assertEquals( outputs["P3"].shape, (None, input_size // 2**3, input_size // 2**3, 64), ) self.assertEquals( outputs["P4"].shape, (None, input_size // 2**4, input_size // 2**4, 160), ) self.assertEquals( outputs["P5"].shape, (None, input_size // 2**5, input_size // 2**5, 1280), ) @parameterized.named_parameters( ("one_channel", 1), ("four_channels", 4), ) def test_application_variable_input_channels(self, num_channels): model = EfficientNetV2Backbone( stackwise_kernel_sizes=[3, 3, 3, 3, 3, 3], stackwise_num_repeats=[2, 4, 4, 6, 9, 15], stackwise_input_filters=[24, 24, 48, 64, 128, 160], stackwise_output_filters=[24, 48, 64, 128, 160, 256], stackwise_expansion_ratios=[1, 4, 4, 4, 6, 6], stackwise_squeeze_and_excite_ratios=[0.0, 0.0, 0, 0.25, 0.25, 0.25], stackwise_strides=[1, 2, 2, 2, 1, 2], stackwise_conv_types=[ "fused", "fused", "fused", "unfused", "unfused", "unfused", ], width_coefficient=1.0, depth_coefficient=1.0, include_rescaling=True, ) self.assertEqual(model.output_shape, (None, None, None, 1280))
keras-cv/keras_cv/models/backbones/efficientnet_v2/efficientnet_v2_backbone_test.py/0
{ "file_path": "keras-cv/keras_cv/models/backbones/efficientnet_v2/efficientnet_v2_backbone_test.py", "repo_id": "keras-cv", "token_count": 3821 }
74
# Copyright 2023 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ResNetV1 model preset configurations.""" backbone_presets_no_weights = { "resnet18": { "metadata": { "description": ( "ResNet model with 18 layers where the batch normalization " "and ReLU activation are applied after the convolution layers " "(v1 style)." ), "params": 11186112, "official_name": "ResNetV1", "path": "resnet_v1", }, "kaggle_handle": "kaggle://keras/resnetv1/keras/resnet18/2", }, "resnet34": { "metadata": { "description": ( "ResNet model with 34 layers where the batch normalization " "and ReLU activation are applied after the convolution layers " "(v1 style)." ), "params": 21301696, "official_name": "ResNetV1", "path": "resnet_v1", }, "kaggle_handle": "kaggle://keras/resnetv1/keras/resnet34/2", }, "resnet50": { "metadata": { "description": ( "ResNet model with 50 layers where the batch normalization " "and ReLU activation are applied after the convolution layers " "(v1 style)." ), "params": 23561152, "official_name": "ResNetV1", "path": "resnet_v1", }, "kaggle_handle": "kaggle://keras/resnetv1/keras/resnet50/2", }, "resnet101": { "metadata": { "description": ( "ResNet model with 101 layers where the batch normalization " "and ReLU activation are applied after the convolution layers " "(v1 style)." ), "params": 42605504, "official_name": "ResNetV1", "path": "resnet_v1", }, "kaggle_handle": "kaggle://keras/resnetv1/keras/resnet101/2", }, "resnet152": { "metadata": { "description": ( "ResNet model with 152 layers where the batch normalization " "and ReLU activation are applied after the convolution layers " "(v1 style)." ), "params": 58295232, "official_name": "ResNetV1", "path": "resnet_v1", }, "kaggle_handle": "kaggle://keras/resnetv1/keras/resnet152/2", }, } backbone_presets_with_weights = { "resnet50_imagenet": { "metadata": { "description": ( "ResNet model with 50 layers where the batch normalization " "and ReLU activation are applied after the convolution layers " "(v1 style). " "Trained on Imagenet 2012 classification task." ), "params": 23561152, "official_name": "ResNetV1", "path": "resnet_v1", }, "kaggle_handle": "kaggle://keras/resnetv1/keras/resnet50_imagenet/2", }, } backbone_presets = { **backbone_presets_no_weights, **backbone_presets_with_weights, }
keras-cv/keras_cv/models/backbones/resnet_v1/resnet_v1_backbone_presets.py/0
{ "file_path": "keras-cv/keras_cv/models/backbones/resnet_v1/resnet_v1_backbone_presets.py", "repo_id": "keras-cv", "token_count": 1743 }
75
# Copyright 2023 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import pytest from keras_cv.backend import keras from keras_cv.backend import ops from keras_cv.models.backbones.vit_det.vit_det_aliases import ViTDetBBackbone from keras_cv.tests.test_case import TestCase class TestViTDetBackbone(TestCase): @pytest.mark.large def test_call(self): model = ViTDetBBackbone() x = np.ones((1, 1024, 1024, 3)) x_out = ops.convert_to_numpy(model(x)) num_parameters = sum( np.prod(tuple(x.shape)) for x in model.trainable_variables ) self.assertEqual(x_out.shape, (1, 64, 64, 256)) self.assertEqual(num_parameters, 89_670_912) @pytest.mark.extra_large def teat_save(self): # saving test model = ViTDetBBackbone() x = np.ones((1, 1024, 1024, 3)) x_out = ops.convert_to_numpy(model(x)) path = os.path.join(self.get_temp_dir(), "model.keras") model.save(path) loaded_model = keras.saving.load_model(path) x_out_loaded = ops.convert_to_numpy(loaded_model(x)) self.assertAllClose(x_out, x_out_loaded) @pytest.mark.extra_large def test_fit(self): model = ViTDetBBackbone() x = np.ones((1, 1024, 1024, 3)) y = np.zeros((1, 64, 64, 256)) model.compile(optimizer="adam", loss="mse", metrics=["mse"]) model.fit(x, y, epochs=1) def test_pyramid_level_inputs_error(self): model = ViTDetBBackbone() with self.assertRaises(NotImplementedError, msg="doesn't compute"): model.pyramid_level_inputs
keras-cv/keras_cv/models/backbones/vit_det/vit_det_backbone_test.py/0
{ "file_path": "keras-cv/keras_cv/models/backbones/vit_det/vit_det_backbone_test.py", "repo_id": "keras-cv", "token_count": 895 }
76
# Copyright 2023 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from keras_cv.models.legacy.convmixer import ConvMixer_512_16 from keras_cv.models.legacy.convmixer import ConvMixer_768_32 from keras_cv.models.legacy.convmixer import ConvMixer_1024_16 from keras_cv.models.legacy.convmixer import ConvMixer_1536_20 from keras_cv.models.legacy.convmixer import ConvMixer_1536_24 from keras_cv.models.legacy.convnext import ConvNeXtBase from keras_cv.models.legacy.convnext import ConvNeXtLarge from keras_cv.models.legacy.convnext import ConvNeXtSmall from keras_cv.models.legacy.convnext import ConvNeXtTiny from keras_cv.models.legacy.convnext import ConvNeXtXLarge from keras_cv.models.legacy.darknet import DarkNet21 from keras_cv.models.legacy.darknet import DarkNet53 from keras_cv.models.legacy.mlp_mixer import MLPMixerB16 from keras_cv.models.legacy.mlp_mixer import MLPMixerB32 from keras_cv.models.legacy.mlp_mixer import MLPMixerL16 from keras_cv.models.legacy.object_detection.faster_rcnn.faster_rcnn import ( FasterRCNN, ) from keras_cv.models.legacy.regnet import RegNetX002 from keras_cv.models.legacy.regnet import RegNetX004 from keras_cv.models.legacy.regnet import RegNetX006 from keras_cv.models.legacy.regnet import RegNetX008 from keras_cv.models.legacy.regnet import RegNetX016 from keras_cv.models.legacy.regnet import RegNetX032 from keras_cv.models.legacy.regnet import RegNetX040 from keras_cv.models.legacy.regnet import RegNetX064 from keras_cv.models.legacy.regnet import RegNetX080 from keras_cv.models.legacy.regnet import RegNetX120 from keras_cv.models.legacy.regnet import RegNetX160 from keras_cv.models.legacy.regnet import RegNetX320 from keras_cv.models.legacy.regnet import RegNetY002 from keras_cv.models.legacy.regnet import RegNetY004 from keras_cv.models.legacy.regnet import RegNetY006 from keras_cv.models.legacy.regnet import RegNetY008 from keras_cv.models.legacy.regnet import RegNetY016 from keras_cv.models.legacy.regnet import RegNetY032 from keras_cv.models.legacy.regnet import RegNetY040 from keras_cv.models.legacy.regnet import RegNetY064 from keras_cv.models.legacy.regnet import RegNetY080 from keras_cv.models.legacy.regnet import RegNetY120 from keras_cv.models.legacy.regnet import RegNetY160 from keras_cv.models.legacy.regnet import RegNetY320 from keras_cv.models.legacy.vgg16 import VGG16 from keras_cv.models.legacy.vgg19 import VGG19 from keras_cv.models.legacy.vit import ViTB16 from keras_cv.models.legacy.vit import ViTB32 from keras_cv.models.legacy.vit import ViTH16 from keras_cv.models.legacy.vit import ViTH32 from keras_cv.models.legacy.vit import ViTL16 from keras_cv.models.legacy.vit import ViTL32 from keras_cv.models.legacy.vit import ViTS16 from keras_cv.models.legacy.vit import ViTS32 from keras_cv.models.legacy.vit import ViTTiny16 from keras_cv.models.legacy.vit import ViTTiny32
keras-cv/keras_cv/models/legacy/__init__.py/0
{ "file_path": "keras-cv/keras_cv/models/legacy/__init__.py", "repo_id": "keras-cv", "token_count": 1203 }
77
# Copyright 2022 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from keras_cv.api_export import keras_cv_export from keras_cv.backend import keras @keras_cv_export("keras_cv.models.retinanet.PredictionHead") class PredictionHead(keras.layers.Layer): """The class/box predictions head. Arguments: output_filters: Number of convolution filters in the final layer. bias_initializer: Bias Initializer for the final convolution layer. Returns: A function representing either the classification or the box regression head depending on `output_filters`. """ def __init__( self, output_filters, bias_initializer, num_conv_layers=3, **kwargs ): super().__init__(**kwargs) self.output_filters = output_filters self.bias_initializer = bias_initializer self.num_conv_layers = num_conv_layers self.conv_layers = [ keras.layers.Conv2D( 256, kernel_size=3, padding="same", kernel_initializer="orthogonal", activation="relu", ) for _ in range(num_conv_layers) ] self.prediction_layer = keras.layers.Conv2D( self.output_filters, kernel_size=3, strides=1, padding="same", kernel_initializer="orthogonal", bias_initializer=self.bias_initializer, ) def call(self, x, training=False): for layer in self.conv_layers: x = layer(x, training=training) x = self.prediction_layer(x, training=training) return x def compute_output_shape(self, input_shape): return tuple(input_shape[:-1]) + (self.output_filters,) def get_config(self): config = { "bias_initializer": keras.initializers.serialize( self.bias_initializer ), "output_filters": self.output_filters, "num_conv_layers": self.num_conv_layers, } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config): config.update( { "bias_initializer": keras.initializers.deserialize( config["bias_initializer"] ) } ) return super().from_config(config) def build(self, input_shape): self.conv_layers[0].build(input_shape) intermediate_shape = tuple(input_shape[:-1]) + (256,) for conv_layer in self.conv_layers[1:]: conv_layer.build(intermediate_shape) self.prediction_layer.build(intermediate_shape) self.built = True
keras-cv/keras_cv/models/object_detection/retinanet/prediction_head.py/0
{ "file_path": "keras-cv/keras_cv/models/object_detection/retinanet/prediction_head.py", "repo_id": "keras-cv", "token_count": 1424 }
78
# Copyright 2023 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy from keras_cv.api_export import keras_cv_export from keras_cv.backend import keras from keras_cv.models import utils from keras_cv.models.backbones.backbone_presets import backbone_presets from keras_cv.models.backbones.resnet_v1.resnet_v1_backbone import ( apply_basic_block as resnet_basic_block, ) from keras_cv.models.segmentation.basnet.basnet_presets import basnet_presets from keras_cv.models.segmentation.basnet.basnet_presets import ( presets_no_weights, ) from keras_cv.models.segmentation.basnet.basnet_presets import ( presets_with_weights, ) from keras_cv.models.task import Task from keras_cv.utils.python_utils import classproperty @keras_cv_export( [ "keras_cv.models.BASNet", "keras_cv.models.segmentation.BASNet", ] ) class BASNet(Task): """ A Keras model implementing the BASNet architecture for semantic segmentation. References: - [BASNet: Boundary-Aware Segmentation Network for Mobile and Web Applications](https://arxiv.org/abs/2101.04704) Args: backbone: `keras.Model`. The backbone network for the model that is used as a feature extractor for BASNet prediction encoder. Currently supported backbones are ResNet18 and ResNet34. Default backbone is `keras_cv.models.ResNet34Backbone()` (Note: Do not specify 'input_shape', 'input_tensor', or 'include_rescaling' within the backbone. Please provide these while initializing the 'BASNet' model.) num_classes: int, the number of classes for the segmentation model. input_shape: optional shape tuple, defaults to (None, None, 3). input_tensor: optional Keras tensor (i.e., output of `layers.Input()`) to use as image input for the model. include_rescaling: bool, whether to rescale the inputs. If set to `True`, inputs will be passed through a `Rescaling(1/255.0)` layer. projection_filters: int, number of filters in the convolution layer projecting low-level features from the `backbone`. prediction_heads: (Optional) List of `keras.layers.Layer` defining the prediction module head for the model. If not provided, a default head is created with a Conv2D layer followed by resizing. refinement_head: (Optional) a `keras.layers.Layer` defining the refinement module head for the model. If not provided, a default head is created with a Conv2D layer. Examples: ```python import keras_cv images = np.ones(shape=(1, 288, 288, 3)) labels = np.zeros(shape=(1, 288, 288, 1)) # Note: Do not specify 'input_shape', 'input_tensor', or # 'include_rescaling' within the backbone. backbone = keras_cv.models.ResNet34Backbone() model = keras_cv.models.segmentation.BASNet( backbone=backbone, num_classes=1, input_shape=[288, 288, 3], include_rescaling=False ) # Evaluate model output = model(images) pred_labels = output[0] # Train model model.compile( optimizer="adam", loss=keras.losses.BinaryCrossentropy(from_logits=False), metrics=["accuracy"], ) model.fit(images, labels, epochs=3) ``` """ # noqa: E501 def __init__( self, backbone, num_classes, input_shape=(None, None, 3), input_tensor=None, include_rescaling=False, projection_filters=64, prediction_heads=None, refinement_head=None, **kwargs, ): if not isinstance(backbone, keras.layers.Layer) or not isinstance( backbone, keras.Model ): raise ValueError( "Argument `backbone` must be a `keras.layers.Layer` instance" f" or `keras.Model`. Received instead" f" backbone={backbone} (of type {type(backbone)})." ) if backbone.input_shape != (None, None, None, 3): raise ValueError( "Do not specify 'input_shape' or 'input_tensor' within the" " 'BASNet' backbone. \nPlease provide 'input_shape' or" " 'input_tensor' while initializing the 'BASNet' model." ) inputs = utils.parse_model_inputs(input_shape, input_tensor) x = inputs if include_rescaling: x = keras.layers.Rescaling(1 / 255.0)(x) if prediction_heads is None: prediction_heads = [] for size in (1, 2, 4, 8, 16, 32, 32): head_layers = [ keras.layers.Conv2D( num_classes, kernel_size=(3, 3), padding="same" ) ] if size != 1: head_layers.append( keras.layers.UpSampling2D( size=size, interpolation="bilinear" ) ) prediction_heads.append(keras.Sequential(head_layers)) if refinement_head is None: refinement_head = keras.Sequential( [ keras.layers.Conv2D( num_classes, kernel_size=(3, 3), padding="same" ), ] ) # Prediction model. predict_model = basnet_predict( x, backbone, projection_filters, prediction_heads ) # Refinement model. refine_model = basnet_rrm( predict_model, projection_filters, refinement_head ) outputs = refine_model.outputs # Combine outputs. outputs.extend(predict_model.outputs) outputs = [ keras.layers.Activation("sigmoid", dtype="float32")(_) for _ in outputs ] # Activations. super().__init__(inputs=inputs, outputs=outputs, **kwargs) self.backbone = backbone self.num_classes = num_classes self.input_tensor = input_tensor self.include_rescaling = include_rescaling self.projection_filters = projection_filters self.prediction_heads = prediction_heads self.refinement_head = refinement_head def get_config(self): return { "backbone": keras.saving.serialize_keras_object(self.backbone), "num_classes": self.num_classes, "input_shape": self.input_shape[1:], "input_tensor": keras.saving.serialize_keras_object( self.input_tensor ), "include_rescaling": self.include_rescaling, "projection_filters": self.projection_filters, "prediction_heads": [ keras.saving.serialize_keras_object(prediction_head) for prediction_head in self.prediction_heads ], "refinement_head": keras.saving.serialize_keras_object( self.refinement_head ), } @classmethod def from_config(cls, config): if "backbone" in config and isinstance(config["backbone"], dict): input_shape = (None, None, 3) if isinstance(config["backbone"]["config"]["input_shape"], list): input_shape = list(input_shape) if config["backbone"]["config"]["input_shape"] != input_shape: config["input_shape"] = config["backbone"]["config"][ "input_shape" ] config["backbone"]["config"]["input_shape"] = input_shape config["backbone"] = keras.layers.deserialize(config["backbone"]) if "input_tensor" in config and isinstance( config["input_tensor"], dict ): config["input_tensor"] = keras.layers.deserialize( config["input_tensor"] ) if "prediction_heads" in config and isinstance( config["prediction_heads"], list ): for i in range(len(config["prediction_heads"])): if isinstance(config["prediction_heads"][i], dict): config["prediction_heads"][i] = keras.layers.deserialize( config["prediction_heads"][i] ) if "refinement_head" in config and isinstance( config["refinement_head"], dict ): config["refinement_head"] = keras.layers.deserialize( config["refinement_head"] ) return super().from_config(config) @classproperty def presets(cls): """Dictionary of preset names and configurations.""" filtered_backbone_presets = copy.deepcopy( { k: v for k, v in backbone_presets.items() if k in ("resnet18", "resnet34") } ) return copy.deepcopy({**filtered_backbone_presets, **basnet_presets}) @classproperty def presets_with_weights(cls): """ Dictionary of preset names and configurations that include weights. """ return copy.deepcopy(presets_with_weights) @classproperty def presets_without_weights(cls): """ Dictionary of preset names and configurations that has no weights. """ return copy.deepcopy(presets_no_weights) @classproperty def backbone_presets(cls): """ Dictionary of preset names and configurations of compatible backbones. """ filtered_backbone_presets = copy.deepcopy( { k: v for k, v in backbone_presets.items() if k in ("resnet18", "resnet34") } ) filtered_presets = copy.deepcopy(filtered_backbone_presets) return filtered_presets def convolution_block(x_input, filters, dilation=1): """ Apply convolution + batch normalization + ReLU activation. Args: x_input: Input keras tensor. filters: int, number of output filters in the convolution. dilation: int, dilation rate for the convolution operation. Defaults to 1. Returns: A tensor with convolution, batch normalization, and ReLU activation applied. """ x = keras.layers.Conv2D( filters, (3, 3), padding="same", dilation_rate=dilation )(x_input) x = keras.layers.BatchNormalization()(x) return keras.layers.Activation("relu")(x) def get_resnet_block(_resnet, block_num): """ Extract and return a specific ResNet block. Args: _resnet: `keras.Model`. ResNet model instance. block_num: int, block number to extract. Returns: A Keras Model representing the specified ResNet block. """ extractor_levels = ["P2", "P3", "P4", "P5"] return keras.models.Model( inputs=_resnet.get_layer(f"v2_stack_{block_num}_block1_1_conv").input, outputs=_resnet.get_layer( _resnet.pyramid_level_inputs[extractor_levels[block_num]] ).output, name=f"resnet_block{block_num + 1}", ) def basnet_predict(x_input, backbone, filters, segmentation_heads): """ BASNet Prediction Module. This module outputs a coarse label map by integrating heavy encoder, bridge, and decoder blocks. Args: x_input: Input keras tensor. backbone: `keras.Model`. The backbone network used as a feature extractor for BASNet prediction encoder. filters: int, the number of filters. segmentation_heads: List of `keras.layers.Layer`, A list of Keras layers serving as the segmentation head for prediction module. Returns: A Keras Model that integrates the encoder, bridge, and decoder blocks for coarse label map prediction. """ num_stages = 6 x = x_input # -------------Encoder-------------- x = keras.layers.Conv2D(filters, kernel_size=(3, 3), padding="same")(x) encoder_blocks = [] for i in range(num_stages): if i < 4: # First four stages are adopted from ResNet backbone. x = get_resnet_block(backbone, i)(x) encoder_blocks.append(x) else: # Last 2 stages consist of three basic resnet blocks. x = keras.layers.MaxPool2D(pool_size=(2, 2), strides=(2, 2))(x) for j in range(3): x = resnet_basic_block( x, filters=x.shape[3], conv_shortcut=False, name=f"v1_basic_block_{i + 1}_{j + 1}", ) encoder_blocks.append(x) # -------------Bridge------------- x = convolution_block(x, filters=filters * 8, dilation=2) x = convolution_block(x, filters=filters * 8, dilation=2) x = convolution_block(x, filters=filters * 8, dilation=2) encoder_blocks.append(x) # -------------Decoder------------- decoder_blocks = [] for i in reversed(range(num_stages)): if i != (num_stages - 1): # Except first, scale other decoder stages. x = keras.layers.UpSampling2D(size=2, interpolation="bilinear")(x) x = keras.layers.concatenate([encoder_blocks[i], x], axis=-1) x = convolution_block(x, filters=filters * 8) x = convolution_block(x, filters=filters * 8) x = convolution_block(x, filters=filters * 8) decoder_blocks.append(x) decoder_blocks.reverse() # Change order from last to first decoder stage. decoder_blocks.append(encoder_blocks[-1]) # Copy bridge to decoder. # -------------Side Outputs-------------- decoder_blocks = [ segmentation_head(decoder_block) # Prediction segmentation head. for segmentation_head, decoder_block in zip( segmentation_heads, decoder_blocks ) ] return keras.models.Model(inputs=[x_input], outputs=decoder_blocks) def basnet_rrm(base_model, filters, segmentation_head): """ BASNet Residual Refinement Module (RRM). This module outputs a fine label map by integrating light encoder, bridge, and decoder blocks. Args: base_model: Keras model used as the base or coarse label map. filters: int, the number of filters. segmentation_head: a `keras.layers.Layer`, A Keras layer serving as the segmentation head for refinement module. Returns: A Keras Model that constructs the Residual Refinement Module (RRM). """ num_stages = 4 x_input = base_model.output[0] # -------------Encoder-------------- x = keras.layers.Conv2D(filters, kernel_size=(3, 3), padding="same")( x_input ) encoder_blocks = [] for _ in range(num_stages): x = convolution_block(x, filters=filters) encoder_blocks.append(x) x = keras.layers.MaxPool2D(pool_size=(2, 2), strides=(2, 2))(x) # -------------Bridge-------------- x = convolution_block(x, filters=filters) # -------------Decoder-------------- for i in reversed(range(num_stages)): x = keras.layers.UpSampling2D(size=2, interpolation="bilinear")(x) x = keras.layers.concatenate([encoder_blocks[i], x], axis=-1) x = convolution_block(x, filters=filters) x = segmentation_head(x) # Refinement segmentation head. # ------------- refined = coarse + residual x = keras.layers.Add()([x_input, x]) # Add prediction + refinement output return keras.models.Model(inputs=base_model.input, outputs=[x])
keras-cv/keras_cv/models/segmentation/basnet/basnet.py/0
{ "file_path": "keras-cv/keras_cv/models/segmentation/basnet/basnet.py", "repo_id": "keras-cv", "token_count": 7091 }
79
# Copyright 2023 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from keras_cv.api_export import keras_cv_export from keras_cv.backend import keras from keras_cv.backend import ops from keras_cv.layers.vit_det_layers import MLP @keras_cv_export( "keras_cv.layers.MultiHeadAttentionWithDownsampling", package="keras_cv.layers", ) class MultiHeadAttentionWithDownsampling(keras.layers.Layer): """Multi-Head Attention with downsampling. An attention layer that allows for downscaling the size of the embedding after projection to queries, keys, and values. This layer first downscales the features of input queries, keys, and values using a dense layer. Multi-head attention is then performed and the attention map is projected back (upscaled) to the number of input features. Args: num_heads (int): Number of attention heads. key_dim (int): Size of each attention head for query, key, and value. downsample_rate (int, optional): The factor by which to downscale the input features i.e. the input features of size `key_dim` are projected down to `key_dim // downsample_rate`. References: - [Segment Anything paper](https://arxiv.org/abs/2304.02643) - [Segment Anything GitHub](https://github.com/facebookresearch/segment-anything) """ # noqa: E501 def __init__(self, num_heads, key_dim, downsample_rate=1, **kwargs): super().__init__(**kwargs) self.num_heads = num_heads self.key_dim = key_dim self.downsample_rate = downsample_rate self.internal_dims = key_dim // downsample_rate # Downsample self.query_proj = keras.layers.Dense( self.internal_dims * self.num_heads ) self.key_proj = keras.layers.Dense(self.internal_dims * self.num_heads) self.value_proj = keras.layers.Dense( self.internal_dims * self.num_heads ) # Upsample self.out_proj = keras.layers.Dense(self.key_dim * self.num_heads) def build(self, input_shape=None): self.query_proj.build([None, None, self.num_heads * self.key_dim]) self.key_proj.build([None, None, self.num_heads * self.key_dim]) self.value_proj.build([None, None, self.num_heads * self.key_dim]) self.out_proj.build([None, None, self.internal_dims * self.num_heads]) self.built = True def __separate_heads(self, x): shape = ops.shape(x) B, N, C = shape[0], shape[1], shape[2] x = ops.reshape(x, (B, N, self.num_heads, C // self.num_heads)) return ops.transpose(x, axes=(0, 2, 1, 3)) def __recombine_heads(self, x): shape = ops.shape(x) B, N_H, N_T, C_PH = shape[0], shape[1], shape[2], shape[3] x = ops.transpose(x, axes=(0, 2, 1, 3)) return ops.reshape(x, (B, N_T, N_H * C_PH)) def call(self, query, value, key): query = self.query_proj(query) key = self.key_proj(key) value = self.value_proj(value) # Separate into heads query = self.__separate_heads(query) key = self.__separate_heads(key) value = self.__separate_heads(value) # Attention C_PH = ops.shape(query)[-1] out = query @ ops.transpose(key, (0, 1, 3, 2)) out = out / ops.sqrt(ops.cast(C_PH, dtype=self.compute_dtype)) out = ops.softmax(out, axis=-1) # Get output attention_map = out @ value attention_map = self.__recombine_heads(attention_map) return self.out_proj(attention_map) def get_config(self): config = super().get_config() config.update( { "num_heads": self.num_heads, "key_dim": self.key_dim, "downsample_rate": self.downsample_rate, } ) return config @keras_cv_export( "keras_cv.layers.TwoWayMultiHeadAttention", package="keras_cv.layers" ) class TwoWayMultiHeadAttention(keras.layers.Layer): """Two-way multi-head attention layer. Args: num_heads (int): Number of attention heads. key_dim (int): Size of each attention head for query, key, and value. mlp_dim (int): Number of hidden dims to use in the mlp block. skip_first_layer_pe (bool): A boolean indicating whether to skip the first layer positional embeddings. attention_downsample_rate (int, optional): The downsample rate to use in the attention layers. Defaults to 2. activation (str, optional): The activation for the mlp block's output layer. Defaults to "relu". References: - [Segment Anything paper](https://arxiv.org/abs/2304.02643) - [Segment Anything GitHub](https://github.com/facebookresearch/segment-anything) """ # noqa: E501 def __init__( self, num_heads, key_dim, mlp_dim, skip_first_layer_pe, attention_downsample_rate=2, activation="relu", **kwargs, ): super().__init__(**kwargs) self.num_heads = num_heads self.key_dim = key_dim self.mlp_dim = mlp_dim self.skip_first_layer_pe = skip_first_layer_pe self.attention_downsample_rate = attention_downsample_rate self.activation = activation self.self_attention = MultiHeadAttentionWithDownsampling( num_heads=num_heads, key_dim=key_dim ) self.layer_norm1 = keras.layers.LayerNormalization(epsilon=1e-5) self.cross_attention_token_to_image = ( MultiHeadAttentionWithDownsampling( num_heads=num_heads, key_dim=key_dim, downsample_rate=attention_downsample_rate, ) ) self.layer_norm2 = keras.layers.LayerNormalization(epsilon=1e-5) self.mlp_block = MLP( mlp_dim, key_dim * num_heads, num_layers=2, activation=activation, ) self.layer_norm3 = keras.layers.LayerNormalization(epsilon=1e-5) self.cross_attention_image_to_token = ( MultiHeadAttentionWithDownsampling( num_heads=num_heads, key_dim=key_dim, downsample_rate=attention_downsample_rate, ) ) self.layer_norm4 = keras.layers.LayerNormalization(epsilon=1e-5) def build(self, input_shape=None): self.self_attention.build() self.layer_norm1.build([None, None, self.num_heads * self.key_dim]) self.cross_attention_token_to_image.build() self.layer_norm2.build([None, None, self.num_heads * self.key_dim]) self.mlp_block.build([None, None, self.num_heads * self.key_dim]) self.layer_norm3.build([None, None, self.num_heads * self.key_dim]) self.cross_attention_image_to_token.build() self.layer_norm4.build([None, None, self.num_heads * self.key_dim]) self.built = True def call(self, queries, keys, query_pe, key_pe): if self.skip_first_layer_pe: queries = self.self_attention( query=queries, value=queries, key=queries ) else: queries_with_pe = queries + query_pe attention_map = self.self_attention( query=queries_with_pe, key=queries_with_pe, value=queries ) queries = queries + attention_map queries = self.layer_norm1(queries) queries_with_pe = queries + query_pe keys_with_pe = keys + key_pe attention_map = self.cross_attention_token_to_image( query=queries_with_pe, key=keys_with_pe, value=keys ) queries = queries + attention_map queries = self.layer_norm2(queries) mlp_out = self.mlp_block(queries) queries = queries + mlp_out queries = self.layer_norm3(queries) queries_with_pe = queries + query_pe keys_with_pe = keys + key_pe attention_map = self.cross_attention_image_to_token( query=keys_with_pe, key=queries_with_pe, value=queries ) keys = keys + attention_map keys = self.layer_norm4(keys) return queries, keys def get_config(self): config = super().get_config() config.update( { "num_heads": self.num_heads, "key_dim": self.key_dim, "mlp_dim": self.mlp_dim, "skip_first_layer_pe": self.skip_first_layer_pe, "attention_downsample_rate": self.attention_downsample_rate, "activation": self.activation, } ) return config @keras_cv_export( "keras_cv.layers.RandomFrequencyPositionalEmbeddings", package="keras_cv.layers", ) class RandomFrequencyPositionalEmbeddings(keras.layers.Layer): """Positional encoding using random spatial frequencies. This layer maps coordinates/points in 2D space to positional encodings using random spatial frequencies. Args: num_positional_features (int): Number of positional features in the output. scale (float): The standard deviation of the random frequencies. References: - [Segment Anything paper](https://arxiv.org/abs/2304.02643) - [Segment Anything GitHub](https://github.com/facebookresearch/segment-anything) """ # noqa: E501 def __init__(self, num_positional_features, scale, **kwargs): super().__init__(**kwargs) self.num_positional_features = num_positional_features self.scale = scale self.positional_encoding_gaussian_matrix = self.add_weight( name="positional_encoding_gaussian_matrix", shape=(2, self.num_positional_features), dtype=self.variable_dtype, trainable=False, initializer=keras.initializers.get("normal"), ) def build(self, input_shape=None): self.built = True def __positional_encodings(self, coords): coords = coords * 2 - 1 coords = coords @ ops.cast( self.positional_encoding_gaussian_matrix, dtype=self.compute_dtype ) coords = coords * (2 * math.pi) return ops.concatenate([ops.sin(coords), ops.cos(coords)], axis=-1) def call(self, size): return self.encode_image(size) def encode_image(self, size): """Generate a positional encoding for an image of any given size. Args: size (tuple[int, int]): The size of the image. Returns: tensor: Positional encoding of the image. """ H, W = size grid = ops.ones(shape=(H, W), dtype=self.compute_dtype) y_embed = ops.cumsum(grid, axis=0) - 0.5 x_embed = ops.cumsum(grid, axis=1) - 0.5 y_embed = y_embed / ops.cast(H, self.compute_dtype) x_embed = x_embed / ops.cast(W, self.compute_dtype) return self.__positional_encodings( ops.stack([x_embed, y_embed], axis=-1) ) def encode_coordinates(self, coords_input, image_size): """Positionally encode points that are not normalized to `[0, 1]`. Args: coords_input (tensor): 2D coordinates/points to map. image_size (tuple[int, int]): Height and width of the image being prompted. Returns: tensor: Positional encodings of the normalized coordinates. """ coords_normalized = ops.stack( [ coords_input[..., 0] / image_size[1], coords_input[..., 1] / image_size[0], ], axis=-1, ) return self.__positional_encodings(coords_normalized) def get_config(self): config = super().get_config() config.update( { "num_positional_features": self.num_positional_features, "scale": self.scale, } ) return config
keras-cv/keras_cv/models/segmentation/segment_anything/sam_layers.py/0
{ "file_path": "keras-cv/keras_cv/models/segmentation/segment_anything/sam_layers.py", "repo_id": "keras-cv", "token_count": 5681 }
80
<jupyter_start><jupyter_code>!pip install --upgrade tensorflow !pip install "git+https://github.com/DavidLandup0/keras-cv@vit" import math import sys import os import pandas as pd import tensorflow as tf import keras_cv import matplotlib.pyplot as plt import numpy as np config_names = { # JAX name : KCV name, layer_nums "Ti/16": ("ViTTiny16", 12), "S/16": ("ViTS16", 12), "B/16": ("ViTB16", 12), "L/16": ("ViTL16", 24), "S/32": ("ViTS32", 12), "B/32": ("ViTB32", 12), } # Choose model to convert model_to_convert = list(config_names.items())[0] model_to_convert model = eval( f"keras_cv.models.{model_to_convert[1][0]}(include_rescaling=False, include_top=True, num_classes=1000, weights=None, input_shape=(224, 224, 3))" ) with tf.io.gfile.GFile("gs://vit_models/augreg/index.csv") as f: df = pd.read_csv(f) df.head() model_df = df.query( f'ds=="i21k" & adapt_resolution==224 & adapt_ds=="imagenet2012" & name=="{model_to_convert[0]}"' ).sort_values("adapt_final_test", ascending=False) model_df.head() best_model_i1k_checkpoint = str(model_df.iloc[0]["adapt_filename"]) model_df.iloc[0]["adapt_filename"], model_df.iloc[0]["adapt_final_test"] filename = best_model_i1k_checkpoint path = f"gs://vit_models/augreg/{filename}.npz" print(f"{tf.io.gfile.stat(path).length / 1024 / 1024:.1f} MiB - {path}") local_path = path.split("//")[-1].split("/")[-1] local_path !gsutil cp {path} . with open(local_path, "rb") as f: params_jax = np.load(f) params_jax = dict(zip(params_jax.keys(), params_jax.values())) from pprint import pformat print(pformat(list(params_jax.keys()))) jax_params_to_kcv_params = { "Transformer/posembed_input/pos_embedding": "patch_embedding/embedding/embeddings", "embedding/bias": "patch_embedding_1/dense_26/bias", "embedding/kernel": "patch_embedding_1/dense_26/kernel", "cls": "patch_embedding_1/class_token", "Transformer/encoderblock_0/LayerNorm_0/scale": "transformer_encoder_12/layer_normalization_25/gamma", "Transformer/encoderblock_0/LayerNorm_0/bias": "transformer_encoder_12/layer_normalization_25/beta", "Transformer/encoderblock_0/LayerNorm_2/scale": "transformer_encoder_12/layer_normalization_26/gamma", "Transformer/encoderblock_0/LayerNorm_2/bias": "transformer_encoder_12/layer_normalization_26/beta", "Transformer/encoderblock_0/MultiHeadDotProductAttention_1/query/kernel": "transformer_encoder_12/multi_head_attention_12/query/kernel", "Transformer/encoderblock_0/MultiHeadDotProductAttention_1/query/bias": "transformer_encoder_12/multi_head_attention_12/query/bias", "Transformer/encoderblock_0/MultiHeadDotProductAttention_1/key/kernel": "transformer_encoder_12/multi_head_attention_12/key/kernel", "Transformer/encoderblock_0/MultiHeadDotProductAttention_1/key/bias": "transformer_encoder_12/multi_head_attention_12/key/bias", "Transformer/encoderblock_0/MultiHeadDotProductAttention_1/value/kernel": "transformer_encoder_12/multi_head_attention_12/value/kernel", "Transformer/encoderblock_0/MultiHeadDotProductAttention_1/value/bias": "transformer_encoder_12/multi_head_attention_12/value/bias", "Transformer/encoderblock_0/MultiHeadDotProductAttention_1/out/kernel": "transformer_encoder_12/multi_head_attention_12/attention_output/kernel", "Transformer/encoderblock_0/MultiHeadDotProductAttention_1/out/bias": "transformer_encoder_12/multi_head_attention_12/attention_output/bias", "Transformer/encoderblock_0/MlpBlock_3/Dense_0/kernel": "transformer_encoder_12/dense_27/kernel", "Transformer/encoderblock_0/MlpBlock_3/Dense_0/bias": "transformer_encoder_12/dense_27/bias", "Transformer/encoderblock_0/MlpBlock_3/Dense_1/kernel": "transformer_encoder_12/dense_28/kernel", "Transformer/encoderblock_0/MlpBlock_3/Dense_1/bias": "transformer_encoder_12/dense_28/bias", # ... other transformer blocks "Transformer/encoder_norm/scale": "layer_normalization_49/gamma", "Transformer/encoder_norm/bias": "layer_normalization_49/beta", } model.layers model.summary() # Check shapes for the class token and embedding layers print(params_jax["cls"].shape) print(params_jax["embedding/kernel"].shape) print(params_jax["embedding/bias"].shape) print(params_jax["Transformer/posembed_input/pos_embedding"].shape) for w in model.layers[1].weights: print(w.name, w.shape) # Copy PatchingAndEmbedding layer model.layers[1].weights[0].assign(tf.Variable(params_jax["cls"])) model.layers[1].weights[1].assign(tf.Variable(params_jax["embedding/kernel"])) model.layers[1].weights[2].assign(tf.Variable(params_jax["embedding/bias"])) model.layers[1].weights[3].assign( tf.Variable( params_jax["Transformer/posembed_input/pos_embedding"].squeeze() ) ) # Check transformer block shapes between JAX and KCV print(params_jax["Transformer/encoderblock_4/LayerNorm_0/scale"].shape) print(params_jax["Transformer/encoderblock_4/LayerNorm_0/bias"].shape) print(params_jax["Transformer/encoderblock_4/LayerNorm_2/scale"].shape) print(params_jax[f"Transformer/encoderblock_4/LayerNorm_2/bias"].shape) print( params_jax[ f"Transformer/encoderblock_4/MultiHeadDotProductAttention_1/query/kernel" ].shape ) print( params_jax[ f"Transformer/encoderblock_4/MultiHeadDotProductAttention_1/query/bias" ].shape ) print( params_jax[ f"Transformer/encoderblock_4/MultiHeadDotProductAttention_1/key/kernel" ].shape ) print( params_jax[ f"Transformer/encoderblock_4/MultiHeadDotProductAttention_1/key/bias" ].shape ) print( params_jax[ f"Transformer/encoderblock_4/MultiHeadDotProductAttention_1/value/kernel" ].shape ) print( params_jax[ f"Transformer/encoderblock_4/MultiHeadDotProductAttention_1/value/bias" ].shape ) print( params_jax[ f"Transformer/encoderblock_4/MultiHeadDotProductAttention_1/out/kernel" ].shape ) print( params_jax[ f"Transformer/encoderblock_4/MultiHeadDotProductAttention_1/out/bias" ].shape ) print(params_jax[f"Transformer/encoderblock_4/MlpBlock_3/Dense_0/kernel"].shape) print(params_jax[f"Transformer/encoderblock_4/MlpBlock_3/Dense_0/bias"].shape) print(params_jax[f"Transformer/encoderblock_4/MlpBlock_3/Dense_1/kernel"].shape) print(params_jax[f"Transformer/encoderblock_4/MlpBlock_3/Dense_1/bias"].shape) for w in model.layers[4].weights: print(w.name, w.shape) # Copy Transformer Encoders for i in range(model_to_convert[1][1]): model.layers[3 + i].weights[0].assign( tf.Variable( params_jax[f"Transformer/encoderblock_{i}/LayerNorm_0/scale"] ) ) model.layers[3 + i].weights[1].assign( tf.Variable( params_jax[f"Transformer/encoderblock_{i}/LayerNorm_0/bias"] ) ) model.layers[3 + i].weights[2].assign( tf.Variable( params_jax[f"Transformer/encoderblock_{i}/LayerNorm_2/scale"] ) ) model.layers[3 + i].weights[3].assign( tf.Variable( params_jax[f"Transformer/encoderblock_{i}/LayerNorm_2/bias"] ) ) model.layers[3 + i].weights[4].assign( tf.Variable( params_jax[ f"Transformer/encoderblock_{i}/MultiHeadDotProductAttention_1/query/kernel" ] ) ) model.layers[3 + i].weights[5].assign( tf.Variable( params_jax[ f"Transformer/encoderblock_{i}/MultiHeadDotProductAttention_1/query/bias" ] ) ) model.layers[3 + i].weights[6].assign( tf.Variable( params_jax[ f"Transformer/encoderblock_{i}/MultiHeadDotProductAttention_1/key/kernel" ] ) ) model.layers[3 + i].weights[7].assign( tf.Variable( params_jax[ f"Transformer/encoderblock_{i}/MultiHeadDotProductAttention_1/key/bias" ] ) ) model.layers[3 + i].weights[8].assign( tf.Variable( params_jax[ f"Transformer/encoderblock_{i}/MultiHeadDotProductAttention_1/value/kernel" ] ) ) model.layers[3 + i].weights[9].assign( tf.Variable( params_jax[ f"Transformer/encoderblock_{i}/MultiHeadDotProductAttention_1/value/bias" ] ) ) model.layers[3 + i].weights[10].assign( tf.Variable( params_jax[ f"Transformer/encoderblock_{i}/MultiHeadDotProductAttention_1/out/kernel" ] ) ) model.layers[3 + i].weights[11].assign( tf.Variable( params_jax[ f"Transformer/encoderblock_{i}/MultiHeadDotProductAttention_1/out/bias" ].reshape(model.layers[3 + i].weights[11].shape) ) ) model.layers[3 + i].weights[12].assign( tf.Variable( params_jax[ f"Transformer/encoderblock_{i}/MlpBlock_3/Dense_0/kernel" ] ) ) model.layers[3 + i].weights[13].assign( tf.Variable( params_jax[f"Transformer/encoderblock_{i}/MlpBlock_3/Dense_0/bias"] ) ) model.layers[3 + i].weights[14].assign( tf.Variable( params_jax[ f"Transformer/encoderblock_{i}/MlpBlock_3/Dense_1/kernel" ] ) ) model.layers[3 + i].weights[15].assign( tf.Variable( params_jax[f"Transformer/encoderblock_{i}/MlpBlock_3/Dense_1/bias"] ) ) print(params_jax["Transformer/encoder_norm/scale"].shape) print(params_jax["Transformer/encoder_norm/bias"].shape) for w in model.layers[15].weights: print(w.name, w.shape) # Copy layer norm before class head model.layers[15].weights[0].assign( tf.Variable(params_jax["Transformer/encoder_norm/scale"]) ) model.layers[15].weights[1].assign( tf.Variable(params_jax["Transformer/encoder_norm/bias"]) ) print(params_jax["head/kernel"].shape) print(params_jax["head/bias"].shape) for w in model.layers[17].weights: print(w.name, w.shape) # Copy haed kernel and bias model.layers[17].weights[0].assign(tf.Variable(params_jax["head/kernel"])) model.layers[17].weights[1].assign(tf.Variable(params_jax["head/bias"])) import matplotlib.pyplot as plt import cv2 import numpy as np import PIL import urllib def url_to_array(url): req = urllib.request.urlopen(url) arr = np.array(bytearray(req.read()), dtype=np.int8) arr = cv2.imdecode(arr, -1) arr = cv2.cvtColor(arr, cv2.COLOR_BGR2RGB) arr = cv2.resize(arr, (224, 224)) return arr def preprocess_image(image, label): image_resized = tf.image.resize(image, (224, 224)) image_resized = tf.cast(image_resized, tf.float32) image_resized = (image_resized - 127.5) / 127.5 return image_resized, label cat = "https://upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Cat_November_2010-1a.jpg/1200px-Cat_November_2010-1a.jpg" cat_img = url_to_array(cat) cat_img, _ = preprocess_image(cat_img, None) cat_img = tf.expand_dims(cat_img, 0) !wget https://storage.googleapis.com/bit_models/ilsvrc2012_wordnet_lemmas.txt -O ilsvrc2012_wordnet_lemmas.txt with open("ilsvrc2012_wordnet_lemmas.txt", "r") as f: lines = f.readlines() imagenet_int_to_str = [line.rstrip() for line in lines] predictions = model.predict(cat_img) top_5 = tf.math.top_k(predictions, k=5, sorted=False) top_5 pred = np.argmax(predictions) imagenet_int_to_str[int(pred)] dog_url = "https://hips.hearstapps.com/hmg-prod.s3.amazonaws.com/images/dog-puppy-on-garden-royalty-free-image-1586966191.jpg?crop=1.00xw:0.669xh;0,0.190xh&resize=640:*" dog_img = url_to_array(dog_url) dog_img, _ = preprocess_image(dog_img, None) dog_img = tf.expand_dims(dog_img, 0) predictions = model.predict(dog_img) pred = np.argmax(predictions) imagenet_int_to_str[int(pred)] model.compile( "adam", "sparse_categorical_crossentropy", metrics=["accuracy", keras.metrics.SparseTopKCategoricalAccuracy(5)], ) import tensorflow_datasets as tfds (test_set), info = tfds.load( "imagenet_v2", split=["test"], as_supervised=True, with_info=True ) test_set = ( test_set[0] .shuffle(len(test_set[0])) .map(preprocess_image) .batch(32) .prefetch(tf.data.AUTOTUNE) ) for entry, label in test_set.take(1): print(label) model.evaluate(test_set) model.save(f"{model_to_convert[1][0]}.h5")<jupyter_output><empty_output>
keras-cv/keras_cv/tools/checkpoint_conversion/ViT_weight_conversion.ipynb/0
{ "file_path": "keras-cv/keras_cv/tools/checkpoint_conversion/ViT_weight_conversion.ipynb", "repo_id": "keras-cv", "token_count": 5612 }
81
# Copyright 2023 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import inspect import json import os from keras_cv.backend import keras try: import kagglehub except ImportError: kagglehub = None KAGGLE_PREFIX = "kaggle://" GS_PREFIX = "gs://" def get_file(preset, path): """Download a preset file in necessary and return the local path.""" if not isinstance(preset, str): raise ValueError( f"A preset identifier must be a string. Received: preset={preset}" ) if preset.startswith(KAGGLE_PREFIX): if kagglehub is None: raise ImportError( "`from_preset()` requires the `kagglehub` package. " "Please install with `pip install kagglehub`." ) # Insert the kaggle framework into the handle. kaggle_handle = preset.removeprefix(KAGGLE_PREFIX) num_segments = len(kaggle_handle.split("/")) if num_segments not in (4, 5): raise ValueError( "Unexpected kaggle preset handle. Kaggle model handles " "should have the form " "kaggle://{org}/{model}/keras/{variant}[/{version}]. " "For example, " "'kaggle://keras/retinanet/keras/retinanet_base_en'. " f"Received: preset={preset}" ) return kagglehub.model_download(kaggle_handle, path) elif preset.startswith(GS_PREFIX): url = os.path.join(preset, path) url = url.replace(GS_PREFIX, "https://storage.googleapis.com/") subdir = preset.replace(GS_PREFIX, "gs_") subdir = subdir.replace("/", "_").replace("-", "_") filename = os.path.basename(path) subdir = os.path.join(subdir, os.path.dirname(path)) return keras.utils.get_file( filename, url, cache_subdir=os.path.join("models", subdir), ) elif os.path.exists(preset): # Assume a local filepath. return os.path.join(preset, path) else: raise ValueError( "Unknown preset identifier. A preset must be a one of:\n" "1) a built in preset identifier like `'mobilenet_v3_small'`\n" "2) a Kaggle Models handle like `'kaggle://keras/mobilenetv3/keras/mobilenet_v3_small'`\n" # noqa: E501 "3) a path to a local preset directory like `'./mobilenet_v3_small`\n" # noqa: E501 "Use `print(cls.presets.keys())` to view all built-in presets for " "API symbol `cls`.\n" f"Received: preset='{preset}'" ) def recursive_pop(config, key): """Remove a key from a nested config object""" config.pop(key, None) for value in config.values(): if isinstance(value, dict): recursive_pop(value, key) if isinstance(value, list): for v in value: if isinstance(v, dict): recursive_pop(v, key) def save_to_preset( layer, preset, save_weights=True, config_filename="config.json", weights_filename="model.weights.h5", ): """Save a KerasCV layer to a preset directory.""" os.makedirs(preset, exist_ok=True) # Optionally save weights. save_weights = save_weights and hasattr(layer, "save_weights") if save_weights: weights_path = os.path.join(preset, weights_filename) layer.save_weights(weights_path) # Save a serialized Keras object. config_path = os.path.join(preset, config_filename) config = keras.saving.serialize_keras_object(layer) # Include references to weights. config["weights"] = weights_filename if save_weights else None recursive_pop(config, "compile_config") recursive_pop(config, "build_config") with open(config_path, "w") as config_file: config_file.write(json.dumps(config, indent=4)) from keras_cv import __version__ as keras_cv_version keras_version = keras.version() if hasattr(keras, "version") else None # Save any associated metadata. if config_filename == "config.json": metadata = { "keras_version": keras_version, "keras_cv_version": keras_cv_version, "parameter_count": layer.count_params(), "date_saved": datetime.datetime.now().strftime("%Y-%m-%d@%H:%M:%S"), } metadata_path = os.path.join(preset, "metadata.json") with open(metadata_path, "w") as metadata_file: metadata_file.write(json.dumps(metadata, indent=4)) def load_from_preset( preset, load_weights=None, input_shape=None, config_file="config.json", config_overrides={}, ): """Load a KerasCV layer to a preset directory.""" # Load a serialized Keras object. config_path = get_file(preset, config_file) with open(config_path) as config_file: config = json.load(config_file) config["config"] = {**config["config"], **config_overrides} layer = keras.saving.deserialize_keras_object(config) if input_shape is not None: layer.build(input_shape) # Check load_weights flag does not violate preset config. if load_weights is True and config["weights"] is None: raise ValueError( f"The specified preset `{preset}` does not include weights. " "Please remove the `load_weights` flag when calling " "`from_preset()` on this preset." ) # Default to loading weights if available. if load_weights is not False and config["weights"] is not None: weights_path = get_file(preset, config["weights"]) if hasattr(layer, "_layer_checkpoint_dependencies"): legacy_load_weights(layer, weights_path) else: layer.load_weights(weights_path) return layer def check_preset_class( preset, classes, config_file="config.json", ): """Validate a preset is being loaded on the correct class.""" config_path = get_file(preset, config_file) try: with open(config_path) as config_file: config = json.load(config_file) except: raise ValueError( f"The specified preset `{preset}` is unknown. " "Please check documentation to ensure the correct preset " "handle is being used." ) cls = keras.saving.get_registered_object(config["registered_name"]) if not isinstance(classes, (tuple, list)): classes = (classes,) # Subclass checking and alias checking if not any(issubclass(cls, obj) for obj in classes) and not any( issubclass(alias, cls) for alias in classes ): raise ValueError( f"Unexpected class in preset `'{preset}'`. " "When calling `from_preset()` on a class object, the preset class " f"much match allowed classes. Allowed classes are `{classes}`. " f"Received: `{cls}`." ) return cls def legacy_load_weights(layer, weights_path): # Hacky fix for TensorFlow 2.13 and 2.14 when loading a `.weights.h5` file. # We find the `Functional` class, and temporarily remove the # `_layer_checkpoint_dependencies` property, which on older version of # TensorFlow complete broke the variable paths for functional models. functional_cls = None for cls in inspect.getmro(layer.__class__): if cls.__name__ == "Functional": functional_cls = cls property = functional_cls._layer_checkpoint_dependencies functional_cls._layer_checkpoint_dependencies = {} layer.load_weights(weights_path) functional_cls._layer_checkpoint_dependencies = property
keras-cv/keras_cv/utils/preset_utils.py/0
{ "file_path": "keras-cv/keras_cv/utils/preset_utils.py", "repo_id": "keras-cv", "token_count": 3378 }
82
# Copyright 2023 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from keras_cv import utils from keras_cv.api_export import keras_cv_export from keras_cv.utils import assert_matplotlib_installed from keras_cv.visualization.plot_image_gallery import plot_image_gallery def reshape_masks(segmentation_masks): rank = len(segmentation_masks.shape) if rank == 3: # (B, H, W) return segmentation_masks[..., np.newaxis] elif rank == 4: # (B, H, W, num_channels) OR (B, H, W, 1) if segmentation_masks.shape[-1] == 1: # Repeat the masks 3 times in order to build 3 channel # segmentation masks. return segmentation_masks.repeat(repeats=3, axis=-1) else: return np.argmax(segmentation_masks, axis=-1).repeat( repeats=3, axis=-1 ) def transform_segmentation_masks(segmentation_masks, num_classes, value_range): segmentation_masks = utils.to_numpy(segmentation_masks) segmentation_masks = reshape_masks(segmentation_masks=segmentation_masks) # Interpolate the segmentation masks from the range of (0, num_classes) # to the value range provided. segmentation_masks = utils.transform_value_range( segmentation_masks, original_range=(0, num_classes), target_range=value_range, ) return segmentation_masks @keras_cv_export("keras_cv.visualization.plot_segmentation_mask_gallery") def plot_segmentation_mask_gallery( images, value_range, num_classes, y_true=None, y_pred=None, rows=3, cols=3, **kwargs ): """Plots a gallery of images with corresponding segmentation masks. Args: images: a Tensor or NumPy array containing images to show in the gallery. The images should be batched and of shape (B, H, W, C). value_range: value range of the images. Common examples include `(0, 255)` and `(0, 1)`. num_classes: number of segmentation classes. y_true: (Optional) a Tensor or NumPy array representing the ground truth segmentation masks. The ground truth segmentation maps should be batched. y_pred: (Optional) a Tensor or NumPy array representing the predicted segmentation masks. The predicted segmentation masks should be batched. kwargs: keyword arguments to propagate to `keras_cv.visualization.plot_image_gallery()`. Usage: ```python train_ds = tfds.load( "oxford_iiit_pet", split="train", with_info=False, shuffle_files=True ) def unpackage_tfds_inputs(inputs): image = inputs["image"] segmentation_mask = inputs["segmentation_mask"] return image, segmentation_mask train_ds = train_ds.map(unpackage_tfds_inputs).ragged_batch(16) images, segmentation_masks = next(iter(train_ds.take(1))) keras_cv.visualization.plot_segmentation_mask_gallery( images, value_range=(0, 255), num_classes=3, # The number of classes for the oxford iiit pet dataset y_true=segmentation_masks, y_pred=None, scale=3, rows=2, cols=2, ) ``` ![Example segmentation mask gallery](https://i.imgur.com/aRkmJ1Q.png) """ assert_matplotlib_installed("plot_segmentation_mask_gallery") plotted_images = utils.to_numpy(images) # Initialize a list to collect the segmentation masks that will be # concatenated to the images for visualization. masks_to_contatenate = [plotted_images] if y_true is not None: plotted_y_true = transform_segmentation_masks( segmentation_masks=y_true, num_classes=num_classes, value_range=value_range, ) masks_to_contatenate.append(plotted_y_true) if y_pred is not None: plotted_y_pred = transform_segmentation_masks( segmentation_masks=y_pred, num_classes=num_classes, value_range=value_range, ) masks_to_contatenate.append(plotted_y_pred) # Concatenate the images and the masks together. plotted_images = np.concatenate(masks_to_contatenate, axis=2) plot_image_gallery( plotted_images, value_range, rows=rows, cols=cols, **kwargs )
keras-cv/keras_cv/visualization/plot_segmentation_mask_gallery.py/0
{ "file_path": "keras-cv/keras_cv/visualization/plot_segmentation_mask_gallery.py", "repo_id": "keras-cv", "token_count": 1954 }
83
import sys import keras from absl import flags import keras_cv flags.DEFINE_string("weights_path", None, "Path of weights to load") flags.DEFINE_string( "output_weights_path", None, "Path of notop weights to store" ) flags.DEFINE_string("model_name", None, "Name of the KerasCV.model") FLAGS = flags.FLAGS FLAGS(sys.argv) if not FLAGS.weights_path.endswith(".h5"): raise ValueError("Weights path must end in .h5") model = eval( f"keras_cv.models.{FLAGS.model_name}(include_rescaling=True, " f"include_top=True, num_classes=1000, weights=FLAGS.weights_path)" ) without_top = keras.models.Model(model.input, model.layers[-3].output) without_top.save_weights(FLAGS.output_weights_path) # Because the usage of keras_cv is in an eval() call, the linter is angry. # We include this to avoid an unused import warning keras_cv.models
keras-cv/shell/weights/remove_top.py/0
{ "file_path": "keras-cv/shell/weights/remove_top.py", "repo_id": "keras-cv", "token_count": 309 }
84
# Applications Kerasの応用は事前学習した重みを利用可能な深層学習のモデルです. これらのモデルは予測,特徴量抽出そしてfine-tuningのために利用できます. モデルをインスタンス化すると重みは自動的にダウンロードされます.重みは`~/.keras/models/`に格納されます. ## 利用可能なモデル ### ImageNetで学習した重みをもつ画像分類のモデル: - [Xception](#xception) - [VGG16](#vgg16) - [VGG19](#vgg19) - [ResNet, ResNetV2](#resnet) - [InceptionV3](#inceptionv3) - [InceptionResNetV2](#inceptionresnetv2) - [MobileNet](#mobilenet) - [MobileNetV2](#mobilenetv2) - [DenseNet](#densenet) - [NASNet](#nasnet) これら全てのアーキテクチャは全てのバックエンド(TensorFlowやTheano,CNTK)と互換性があり,モデルはインスタンス化する時はKerasの設定ファイル`~/.keras/keras.json`に従って画像のデータフォーマットが設定されます. 例えば,`image_dim_ordering=channels_last`とした際は,このリポジトリからロードされるモデルは,TensorFlowの次元の順序"Height-Width-Depth"にしたがって構築されます. 注意: - `Keras < 2.2.0`ではXceptionモデルはTensorFlowでのみ利用可能です.これは`SeparableConvolution`レイヤーに依存しているからです. - `Keras < 2.1.5`ではMobileNetモデルはTensorFlowでのみ利用可能です.これは`DepthwiseConvolution`レイヤーに依存しているからです. ----- ## 画像分類モデルの使用例 ### Classify ImageNet classes with ResNet50 ```python from keras.applications.resnet50 import ResNet50 from keras.preprocessing import image from keras.applications.resnet50 import preprocess_input, decode_predictions import numpy as np model = ResNet50(weights='imagenet') img_path = 'elephant.jpg' img = image.load_img(img_path, target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) preds = model.predict(x) # decode the results into a list of tuples (class, description, probability) # (one such list for each sample in the batch) print('Predicted:', decode_predictions(preds, top=3)[0]) # Predicted: [(u'n02504013', u'Indian_elephant', 0.82658225), (u'n01871265', u'tusker', 0.1122357), (u'n02504458', u'African_elephant', 0.061040461)] ``` ### Extract features with VGG16 ```python from keras.applications.vgg16 import VGG16 from keras.preprocessing import image from keras.applications.vgg16 import preprocess_input import numpy as np model = VGG16(weights='imagenet', include_top=False) img_path = 'elephant.jpg' img = image.load_img(img_path, target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) features = model.predict(x) ``` ### Extract features from an arbitrary intermediate layer with VGG19 ```python from keras.applications.vgg19 import VGG19 from keras.preprocessing import image from keras.applications.vgg19 import preprocess_input from keras.models import Model import numpy as np base_model = VGG19(weights='imagenet') model = Model(inputs=base_model.input, outputs=base_model.get_layer('block4_pool').output) img_path = 'elephant.jpg' img = image.load_img(img_path, target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) block4_pool_features = model.predict(x) ``` ### Fine-tune InceptionV3 on a new set of classes ```python from keras.applications.inception_v3 import InceptionV3 from keras.preprocessing import image from keras.models import Model from keras.layers import Dense, GlobalAveragePooling2D from keras import backend as K # create the base pre-trained model base_model = InceptionV3(weights='imagenet', include_top=False) # add a global spatial average pooling layer x = base_model.output x = GlobalAveragePooling2D()(x) # let's add a fully-connected layer x = Dense(1024, activation='relu')(x) # and a logistic layer -- let's say we have 200 classes predictions = Dense(200, activation='softmax')(x) # this is the model we will train model = Model(inputs=base_model.input, outputs=predictions) # first: train only the top layers (which were randomly initialized) # i.e. freeze all convolutional InceptionV3 layers for layer in base_model.layers: layer.trainable = False # compile the model (should be done *after* setting layers to non-trainable) model.compile(optimizer='rmsprop', loss='categorical_crossentropy') # train the model on the new data for a few epochs model.fit_generator(...) # at this point, the top layers are well trained and we can start fine-tuning # convolutional layers from inception V3. We will freeze the bottom N layers # and train the remaining top layers. # let's visualize layer names and layer indices to see how many layers # we should freeze: for i, layer in enumerate(base_model.layers): print(i, layer.name) # we chose to train the top 2 inception blocks, i.e. we will freeze # the first 249 layers and unfreeze the rest: for layer in model.layers[:249]: layer.trainable = False for layer in model.layers[249:]: layer.trainable = True # we need to recompile the model for these modifications to take effect # we use SGD with a low learning rate from keras.optimizers import SGD model.compile(optimizer=SGD(lr=0.0001, momentum=0.9), loss='categorical_crossentropy') # we train our model again (this time fine-tuning the top 2 inception blocks # alongside the top Dense layers model.fit_generator(...) ``` ### Build InceptionV3 over a custom input tensor ```python from keras.applications.inception_v3 import InceptionV3 from keras.layers import Input # this could also be the output a different Keras model or layer input_tensor = Input(shape=(224, 224, 3)) # this assumes K.image_data_format() == 'channels_last' model = InceptionV3(input_tensor=input_tensor, weights='imagenet', include_top=True) ``` ----- # Documentation for individual models | Model | Size | Top-1 Accuracy | Top-5 Accuracy | Parameters | Depth | | ----- | ----: | --------------: | --------------: | ----------: | -----: | | [Xception](#xception) | 88 MB | 0.790 | 0.945| 22,910,480 | 126 | | [VGG16](#vgg16) | 528 MB| 0.715 | 0.901 | 138,357,544 | 23 | [VGG19](#vgg19) | 549 MB | 0.727 | 0.910 | 143,667,240 | 26 | [ResNet50](#resnet) | 98 MB | 0.749 | 0.921 | 25,636,712 | - | | [ResNet101](#resnet) | 171 MB | 0.764 | 0.928 | 44,707,176 | - | | [ResNet152](#resnet) | 232 MB | 0.766 | 0.931 | 60,419,944 | - | | [ResNet50V2](#resnet) | 98 MB | 0.760 | 0.930 | 25,613,800 | - | | [ResNet101V2](#resnet) | 171 MB | 0.772 | 0.938 | 44,675,560 | - | | [ResNet152V2](#resnet) | 232 MB | 0.780 | 0.942 | 60,380,648 | - | | [InceptionV3](#inceptionv3) | 92 MB | 0.788 | 0.944 | 23,851,784 | 159 | | [InceptionResNetV2](#inceptionresnetv2) | 215 MB | 0.804 | 0.953 | 55,873,736 | 572 | | [MobileNet](#mobilenet) | 17 MB | 0.665 | 0.871 | 4,253,864 | 88 | [DenseNet121](#densenet) | 33 MB | 0.745 | 0.918 | 8,062,504 | 121 | [DenseNet169](#densenet) | 57 MB | 0.759 | 0.928 | 14,307,880 | 169 | [DenseNet201](#densenet) | 80 MB | 0.770 | 0.933 | 20,242,984 | 201 トップ1とトップ5の精度はImageNetの検証データセットを参照しています. ----- ## Xception ```python keras.applications.xception.Xception(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000) ``` ImageNetで事前学習した重みを利用可能なXception V1モデル. ImageNetにおいて,このモデルのtop-1のvalidation accuracyは0.790で,top-5のvalidation accuracyは0.945です. データフォーマットは`'channels_last'`(height, width, channels)のみサポートしています. デフォルトの入力サイズは299x299. ### 引数 - include_top: ネットワークの出力層側にある全結合層を含むかどうか. - weights: `None` (ランダム初期化) か `'imagenet'` (ImageNetで学習した重み) のどちらか一方. - input_tensor: モデルの入力画像として利用するためのオプションのKerasテンソル (つまり,`layers.Input()`の出力) - input_shape: オプショナルなshapeのタプル,`include_top`がFalseの場合のみ指定可能 (そうでないときは入力のshapeは`(299, 299, 3)`).正確に3つの入力チャンネルをもつ必要があり,width と height は71以上にする必要があります.例えば`(150, 150, 3)`は有効な値です. - pooling: 特徴量抽出のためのオプショナルなpooling mode,`include_top`が`False`の場合のみ指定可能. - `None`:モデルの出力が,最後のconvolutional layerの4階テンソルであることを意味しています. - `'avg'`:最後のconvolutional layerの出力にglobal average poolingが適用されることで,モデルの出力が2階テンソルになることを意味しています. - `'max'`:global max poolingが適用されることを意味します. - classes: 画像のクラス分類のためのオプショナルなクラス数,`include_top`が`True`かつ`weights`が指定されていない場合のみ指定可能. ### 戻り値 Kerasの`Model`インスタンス. ### 参考文献 - [Xception: Deep Learning with Depthwise Separable Convolutions](https://arxiv.org/abs/1610.02357) ### ライセンス この重みは私達自身が学習したもので,MITライセンスの下で公開されています. ----- ## VGG16 ```python keras.applications.vgg16.VGG16(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000) ``` ImageNetで事前学習した重みを利用可能なVGG16モデル. `'channels_first'`データフォーマット (channels, height, width) か`'channels_last'`データフォーマット (height, width, channels)の両方で構築可能です. デフォルトの入力サイズは224x224. ### 引数 - include_top: ネットワークの出力層側にある3つの全結合層を含むかどうか. - weights: `None` (ランダム初期化) か `'imagenet'` (ImageNetで学習した重み) のどちらか一方. - input_tensor: モデルの入力画像として利用するためのオプションのKerasテンソル (つまり,`layers.Input()`の出力) - input_shape: オプショナルなshapeのタプル,`include_top`が`False`の場合のみ指定可能 (そうでないときは入力のshapeは`(224, 224, 3)` (`'channels_last'`データフォーマットのとき) か `(3, 224, 224)` (`'channels_first'`データフォーマットのとき) ).正確に3つの入力チャンネルをもつ必要があり,width と height は48以上にする必要があります.例えば`(200, 200, 3)`は有効値. - pooling: 特徴量抽出のためのオプショナルなpooling mode,`include_top`が`False`の場合のみ指定可能. - `None`:モデルの出力が,最後のconvolutional layerの4階テンソルであることを意味しています. - `'avg'`:最後のconvolutional layerの出力にglobal average poolingが適用されることで,モデルの出力が2階テンソルになることを意味しています. - `'max'`:global max poolingが適用されることを意味します. - classes: 画像のクラス分類のためのオプショナルなクラス数,`include_top`が`True`かつ`weights`が指定されていない場合のみ指定可能. ### 戻り値 Kerasの`Model`インスタンス. ### 参考文献 - [Very Deep Convolutional Networks for Large-Scale Image Recognition](https://arxiv.org/abs/1409.1556): please cite this paper if you use the VGG models in your work. ### ライセンス この重みは[Oxford大学のVGG](http://www.robots.ox.ac.uk/~vgg/research/very_deep/)により[Creative Commons Attribution License](https://creativecommons.org/licenses/by/4.0/)の下で公開されたものを移植しています. ----- ## VGG19 ```python keras.applications.vgg19.VGG19(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000) ``` ImageNetで事前学習した重みを利用可能なVGG19モデル. `'channels_first'`データフォーマット (channels, height, width) か`'channels_last'`データフォーマット (height, width, channels)の両方で構築可能です. デフォルトの入力サイズは224x224. ### 引数 - include_top: ネットワークの出力層側にある3つの全結合層を含むかどうか. - weights: `None` (ランダム初期化) か `'imagenet'` (ImageNetで学習した重み) の一方. - input_tensor: モデルの入力画像として利用するためのオプションのKerasテンソル (つまり,`layers.Input()`の出力) - input_shape: オプショナルなshapeのタプル,`include_top`がFalseの場合のみ指定可能 (そうでないときは入力のshapeは`(224, 224, 3)` (`'channels_last'`データフォーマットのとき) か `(3, 224, 224)` (`'channels_first'`データフォーマットのとき) ).正確に3つの入力チャンネルをもつ必要があり,width と height は48以上にする必要があります.例えば`(200, 200, 3)`は有効値. - pooling: 特徴量抽出のためのオプショナルなpooling mode,`include_top`が`False`の場合のみ指定可能. - `None`:モデルの出力が,最後のconvolutional layerの4階テンソルであることを意味しています. - `'avg'`:最後のconvolutional layerの出力にglobal average poolingが適用されることで,モデルの出力が2階テンソルになることを意味しています. - `'max'`:global max poolingが適用されることを意味します. - classes: 画像のクラス分類のためのオプショナルなクラス数,`include_top`が`True`かつ`weights`が指定されていない場合のみ指定可能. ### 戻り値 Kerasの`Model`インスタンス. ### 参考文献 - [Very Deep Convolutional Networks for Large-Scale Image Recognition](https://arxiv.org/abs/1409.1556) ### ライセンス この重みは[Oxford大学のVGG](http://www.robots.ox.ac.uk/~vgg/research/very_deep/)により[Creative Commons Attribution License](https://creativecommons.org/licenses/by/4.0/)の下で公開されたものを移植しています. ----- ## ResNet ```python keras.applications.resnet.ResNet50(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000) keras.applications.resnet.ResNet101(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000) keras.applications.resnet.ResNet152(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000) keras.applications.resnet_v2.ResNet50V2(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000) keras.applications.resnet_v2.ResNet101V2(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000) keras.applications.resnet_v2.ResNet152V2(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000) ``` ImageNetで事前学習した重みを利用可能なResNet, ResNetV2モデル. `'channels_first'`データフォーマット (channels, height, width) か`'channels_last'`データフォーマット (height, width, channels)の両方で構築可能です. デフォルトの入力サイズは224x224. ### 引数 - include_top: ネットワークの出力層側にある全結合層を含むかどうか. - weights: `None` (ランダム初期化) か `'imagenet'` (ImageNetで学習した重み) の一方. - input_tensor: モデルの入力画像として利用するためのオプションのKerasテンソル (つまり,`layers.Input()`の出力) - input_shape: オプショナルなshapeのタプル,`include_top`がFalseの場合のみ指定可能 (そうでないときは入力のshapeは`(224, 224, 3)` (`'channels_last'`データフォーマットのとき) か `(3, 224, 224)` (`'channels_first'`データフォーマットのとき) ).正確に3つの入力チャンネルをもつ必要があり,width と height は197以上にする必要があります.例えば`(200, 200, 3)`は有効値. - pooling: 特徴量抽出のためのオプショナルなpooling mode,`include_top`が`False`の場合のみ指定可能. - `None`:モデルの出力が,最後のconvolutional layerの4階テンソルであることを意味しています. - `'avg'`:最後のconvolutional layerの出力にglobal average poolingが適用されることで,モデルの出力が2階テンソルになることを意味しています. - `'max'`:global max poolingが適用されることを意味します. - classes: 画像のクラス分類のためのオプショナルなクラス数,`include_top`が`True`かつ`weights`が指定されていない場合のみ指定可能. ### 戻り値 Kerasの`Model`インスタンス. ### 参考文献 - `ResNet`: [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) - `ResNetV2`: [Identity Mappings in Deep Residual Networks](https://arxiv.org/abs/1603.05027) ### ライセンス これらの重みは以下のライセンスの元で公開されたものを移植しています: - `ResNet`: [The original repository of Kaiming He](https://github.com/KaimingHe/deep-residual-networks) under the [MIT license](https://github.com/KaimingHe/deep-residual-networks/blob/master/LICENSE). - `ResNetV2`: [Facebook](https://github.com/facebook/fb.resnet.torch) under the [BSD license](https://github.com/facebook/fb.resnet.torch/blob/master/LICENSE). ----- ## InceptionV3 ```python keras.applications.inception_v3.InceptionV3(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000) ``` ImageNetで事前学習した重みを利用可能なInception V3モデル. `'channels_first'`データフォーマット (channels, height, width) か`'channels_last'`データフォーマット (height, width, channels)の両方で構築可能です. デフォルトの入力サイズは299x299. ### 引数 - include_top: ネットワークの出力層側にある全結合層を含むかどうか. - weights: `None` (ランダム初期化) か `'imagenet'` (ImageNetで学習した重み) の一方. - input_tensor: モデルの入力画像として利用するためのオプションのKerasテンソル (つまり,`layers.Input()`の出力) - input_shape: オプショナルなshapeのタプル,`include_top`がFalseの場合のみ指定可能 (そうでないときは入力のshapeは`(299, 299, 3)` (`'channels_last'`データフォーマットのとき) か `(3, 299, 299)` (`'channels_first'`データフォーマットのとき) ).正確に3つの入力チャンネルをもつ必要があり,width と height は139以上にする必要があります.例えば`(150, 150, 3)`は有効値. - pooling: 特徴量抽出のためのオプショナルなpooling mode,`include_top`が`False`の場合のみ指定可能. - `None`:モデルの出力が,最後のconvolutional layerの4階テンソルであることを意味しています. - `'avg'`:最後のconvolutional layerの出力にglobal average poolingが適用されることで,モデルの出力が2階テンソルになることを意味しています. - `'max'`:global max poolingが適用されることを意味します. - classes: 画像のクラス分類のためのオプショナルなクラス数,`include_top`が`True`かつ`weights`が指定されていない場合のみ指定可能. ### 戻り値 Kerasの`Model`インスタンス. ### 参考文献 - [Rethinking the Inception Architecture for Computer Vision](http://arxiv.org/abs/1512.00567) ### ライセンス この重みは [Apacheライセンス](https://github.com/tensorflow/models/blob/master/LICENSE)の下で公開されています. ----- ## InceptionResNetV2 ```python keras.applications.inception_resnet_v2.InceptionResNetV2(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000) ``` ImageNetで事前学習したInception-ResNet V2モデル. `'channels_first'`データフォーマット (channels, height, width) か`'channels_last'`データフォーマット (height, width, channels)の両方で構築可能です. デフォルトの入力サイズは299x299. ### 引数 - include_top: ネットワークの出力層側にある全結合層を含むかどうか. - weights: `None` (ランダム初期化) か `'imagenet'` (ImageNetで学習した重み) の一方. - input_tensor: モデルの入力画像として利用するためのオプションのKerasテンソル (つまり,`layers.Input()`の出力) - input_shape: オプショナルなshapeのタプル,`include_top`がFalseの場合のみ指定可能 (そうでないときは入力のshapeは`(299, 299, 3)` (`'channels_last'`データフォーマットのとき) か `(3, 299, 299)` (`'channels_first'`データフォーマットのとき) ).正確に3つの入力チャンネルをもつ必要があり,width と height は139以上にする必要があります.例えば`(150, 150, 3)`は有効値. - pooling: 特徴量抽出のためのオプショナルなpooling mode,`include_top`が`False`の場合のみ指定可能. - `None`:モデルの出力が,最後のconvolutional layerの4階テンソルであることを意味しています. - `'avg'`:最後のconvolutional layerの出力にglobal average poolingが適用されることで,モデルの出力が2階テンソルになることを意味しています. - `'max'`:global max poolingが適用されることを意味します. - classes: 画像のクラス分類のためのオプショナルなクラス数,`include_top`が`True`かつ`weights`が指定されていない場合のみ指定可能. ### 戻り値 Kerasのモデルインスタンス. ### 参考文献 - [Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning](https://arxiv.org/abs/1602.07261) ### ライセンス この重みは [Apacheライセンス](https://github.com/tensorflow/models/blob/master/LICENSE)の下で公開されています. ----- ## MobileNet ```python keras.applications.mobilenet.MobileNet(input_shape=None, alpha=1.0, depth_multiplier=1, dropout=1e-3, include_top=True, weights='imagenet', input_tensor=None, pooling=None, classes=1000) ``` ImageNetで事前学習したMobileNetモデル. データフォーマットが`'channels_last'` (height, width, channels)の時のみサポートされることに注意してください. `load_model`からMobileNetモデルをロードするには,カスタムオブジェクトの`relu6`をインポートし,`custom_objects`パラメータに渡してください. 例 ```python model = load_model('mobilenet.h5', custom_objects={ 'relu6': mobilenet.relu6}) ``` デフォルトの入力サイズは224x224. ### 引数 - input_shape: オプショナルなshapeのタプル,`include_top`が`False`の場合のみ指定可能 (そうでないときは入力のshapeは`(224, 224, 3)` (`'channels_last'`データフォーマットのとき) か `(3, 224, 224)` (`'channels_first'`データフォーマットのとき) ).正確に3つの入力チャンネルをもつ必要があり,width と height は32以上にする必要があります.例えば`(200, 200, 3)`は有効値. - alpha: ネットワークの幅の制御. - `alpha` < 1.0の場合,各レイヤーのフィルタ数を比例して減少させます. - `alpha` > 1.0の場合,各レイヤーのフィルタ層を比例して増加させます. - `alpha` = 1の場合,論文のデフォルトのフィルタ数が各レイヤーで使われます. - depth_multiplier: 深さ方向の畳み込みための深さ乗数(resolution multiplierとも呼ばれます) - dropout: ドロップアウト率 - include_top: ネットワークの出力層側にある全結合層を含むかどうか. - weights: `None` (ランダム初期化) か `'imagenet'` (ImageNetで学習した重み) の一方. - input_tensor: モデルの入力画像として利用するためのオプションのKerasテンソル (つまり,`layers.Input()`の出力) - pooling: 特徴量抽出のためのオプショナルなpooling mode,`include_top`が`False`の場合のみ指定可能. - `None`:モデルの出力が,最後のconvolutional layerの4階テンソルであることを意味しています. - `'avg'`:最後のconvolutional layerの出力にglobal average poolingが適用されることで,モデルの出力が2階テンソルになることを意味しています. - `'max'`:global max poolingが適用されることを意味します. - classes: 画像のクラス分類のためのオプショナルなクラス数,`include_top`が`True`かつ`weights`が指定されていない場合のみ指定可能. ### 戻り値 Kerasの`Model`インスタンス. ### 参考文献 - [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/pdf/1704.04861.pdf) ### ライセンス この重みは [Apacheライセンス](https://github.com/tensorflow/models/blob/master/LICENSE)の下で公開されています. ----- ## DenseNet ```python keras.applications.densenet.DenseNet121(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000) keras.applications.densenet.DenseNet169(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000) keras.applications.densenet.DenseNet201(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000) ``` ImageNetで事前学習したDenseNetモデル. このモデルは`'channels_first'`データフォーマット(channels, height, width)と`'channels_last'`データフォーマット(height, width, channels)の両方で構築可能です. デフォルトの入力サイズは224x224. ### 引数 - blocks: 4つのdenseレイヤーために構築するブロックの個数. - include_top: ネットワークの出力層側にある全結合層を含むかどうか. - weights: `None`(ランダム初期化),'imagenet'(ImageNetでの事前学習),ロードする重みのファイルへのパスのいずれか. - input_tensor: モデルの入力画像として利用するためのオプションのKerasテンソル(つまり,`layers.Input()`の出力) - input_shape: オプショナルなshapeのタプル,`include_top`が`False`の場合のみ指定可能 (そうでないときは入力のshapeは`(224, 224, 3)` (`'channels_last'`データフォーマットのとき) か `(3, 224, 224)` (`'channels_first'`データフォーマットのとき) ).正確に3つの入力チャンネルをもつ必要があります. - pooling: 特徴量抽出のためのオプショナルなpooling mode,`include_top`が`False`の場合のみ指定可能. - `None`:モデルの出力が,最後のconvolutional layerの4階テンソルであることを意味しています. - `'avg'`:最後のconvolutional layerの出力にglobal average poolingが適用されることで,モデルの出力が2階テンソルになることを意味しています. - `'max'`:global max poolingが適用されることを意味します. - classes: 画像のクラス分類のためのオプショナルなクラス数,`include_top`が`True`かつ`weights`が指定されていない場合のみ指定可能. ### 戻り値 Kerasのモデルインスタンス. ### 参考文献 - [Densely Connected Convolutional Networks](https://arxiv.org/abs/1608.06993) (CVPR 2017 Best Paper Award) ### ライセンス この重みは[三条項BSDライセンス](https://github.com/liuzhuang13/DenseNet/blob/master/LICENSE)の下で公開されています. ----- ## NASNet ```python keras.applications.nasnet.NASNetLarge(input_shape=None, include_top=True, weights='imagenet', input_tensor=None, pooling=None, classes=1000) keras.applications.nasnet.NASNetMobile(input_shape=None, include_top=True, weights='imagenet', input_tensor=None, pooling=None, classes=1000) ``` ImageNetで事前学習したNeural Architecture Search Network (NASNet)モデル. デフォルトの入力サイズは,NASNetLargeモデルは331x331,NASNetMobileモデルは224x224. ### 引数 - input_shape: オプショナルなshapeのタプル,`include_top`が`False`の場合のみ指定可能(そうでないときの入力のshapeは,NASNetMobileなら`(224, 224, 3)`(`'channels_last'`データフォーマットのとき)または`(3, 224, 224)`(`'channels_first'`データフォーマットのとき),NASNetLargeなら`(331, 331, 3)`(`'channels_last'`データフォーマットのとき)または`(3, 331, 331)`(`'channels_first'`データフォーマットのとき)).正確に3つの入力チャンネルをもつ必要があり,width と height は32以上にする必要があります.例えば`(200, 200, 3)`は有効値. - include_top: ネットワークの出力層側にある全結合層を含むかどうか. - weights: `None`(ランダム初期化)か`'imagenet'`(ImageNetで学習した重み)の一方. - input_tensor: モデルの入力画像として利用するためのオプションのKerasテンソル(つまり,`layers.Input()`の出力) - pooling: 特徴量抽出のためのオプショナルなpooling mode,`include_top`が`False`の場合のみ指定可能. - `None`:モデルの出力が,最後のconvolutional layerの4階テンソルであることを意味しています. - `'avg'`:最後のconvolutional layerの出力にglobal average poolingが適用されることで,モデルの出力が2階テンソルになることを意味しています. - `'max'`:global max poolingが適用されることを意味します. - classes: 画像のクラス分類のためのオプショナルなクラス数,`include_top`が`True`かつ`weights`が指定されていない場合のみ指定可能. ### 戻り値 Kerasの`Model`インスタンス. ### 参考文献 - [Learning Transferable Architectures for Scalable Image Recognition](https://arxiv.org/abs/1707.07012) ### ライセンス この重みは [Apacheライセンス](https://github.com/tensorflow/models/blob/master/LICENSE)の下で公開されています. ----- ## MobileNetV2 ```python keras.applications.mobilenet_v2.MobileNetV2(input_shape=None, alpha=1.0, depth_multiplier=1, include_top=True, weights='imagenet', input_tensor=None, pooling=None, classes=1000) ``` ImageNetで事前学習したMobileNetV2モデル. データフォーマットが`'channels_last'` (height, width, channels)の時のみサポートされることに注意してください. `load_model`からMobileNetV2モデルをロードするには,カスタムオブジェクトの`relu6`をインポートし,`custom_objects`パラメータに渡してください. 例 ```python model = load_model('mobilenet_v2.h5', custom_objects={ 'relu6': mobilenetv2.relu6}) ``` デフォルトの入力サイズは224x224. ### 引数 - input_shape: オプショナルなshapeのタプル,入力画像の解像度が(224, 224, 3)でないときは指定すべきです. (224, 224, 3)のように正確に3つの入力チャネルが必要です.input_tensorからinput_shapeが推論できるならこのオプションは省くこともできます.入力するinput_tensorとinput_shapeを決めてそれらの値がマッチしていればinput_shapeが用いられ,shapeがマッチしなければエラーを送出します.例えば`(160, 160, 3)`は妥当な値です. - alpha: ネットワークの幅の制御.MobileNetV2の論文ではwidth multiplierとして知られています. - `alpha` < 1.0の場合,各レイヤーのフィルタ数を比例して減少させます. - `alpha` > 1.0の場合,各レイヤーのフィルタ層を比例して増加させます. - `alpha` = 1の場合,論文のデフォルトのフィルタ数が各レイヤーで使われます. - depth_multiplier: 深さ方向の畳み込みための深さ乗数(resolution multiplierとも呼ばれます) - include_top: ネットワークの出力層側にある全結合層を含むかどうか. - weights: `None`(ランダム初期化)か,`'imagenet'`(ImageNetで学習した重み)か,ロードする重みファイルへのパスのいずれか. - input_tensor: モデルの入力画像として利用するためのオプションのKerasテンソル (つまり,`layers.Input()`の出力) - pooling: 特徴量抽出のためのオプショナルなpooling mode,`include_top`が`False`の場合のみ指定可能. - `None`:モデルの出力が,最後のconvolutional layerの4階テンソルであることを意味しています. - `'avg'`:最後のconvolutional layerの出力にglobal average poolingが適用されることで,モデルの出力が2階テンソルになることを意味しています. - `'max'`:global max poolingが適用されることを意味します. - classes: 画像のクラス分類のためのオプショナルなクラス数,`include_top`がTrueかつ`weights`が指定されていない場合のみ指定可能. ### 戻り値 Kerasのモデルインスタンス. ### 参考文献 - [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) ### ライセンス この重みは [Apacheライセンス](https://github.com/tensorflow/models/blob/master/LICENSE)の下で公開されています.
keras-docs-ja/sources/applications.md/0
{ "file_path": "keras-docs-ja/sources/applications.md", "repo_id": "keras-docs-ja", "token_count": 14984 }
85
<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/local.py#L15)</span> ### LocallyConnected1D ```python keras.layers.local.LocallyConnected1D(filters, kernel_size, strides=1, padding='valid', data_format=None, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None) ``` 1次元入力に対応したLocally-connectedレイヤーです. `LocallyConnected1D`は`Conv1D`と似た動作をします.しかし,重みが共有されない,つまり入力のパッチごとに異なるフィルタが適用される点が違います. __例__ ```python # apply a unshared weight convolution 1d of length 3 to a sequence with # 10 timesteps, with 64 output filters model = Sequential() model.add(LocallyConnected1D(64, 3, input_shape=(10, 32))) # now model.output_shape == (None, 8, 64) # add a new conv1d on top model.add(LocallyConnected1D(32, 3)) # now model.output_shape == (None, 6, 32) ``` __引数__ - __filters__: 整数,使用するカーネルの数を指定(出力の次元). - __kernel_size__: 整数,または一つの整数からなるタプル/リスト.1次元畳み込みのウィンドウ長を指定します. - __strides__: 整数,または一つの整数からなるタプル/リスト.畳み込みのストライド長を指定します.dilation_rate value != 1 とすると,strides value != 1を指定することはできません. - __padding__: 現在`"valid"`(大文字,小文字は区別されない)のみサポートされます.将来`"same"`がサポートされる予定です. - __activation__: 使用する活性化関数の名前([activations](../activations.md)を参照).指定がない場合,活性化は適用されない(つまり"線形"活性`a(x) = x`となる). - __use_bias__: 真理値で,バイアスベクトルを加えるかどうかを指定します. - __kernel_initializer__: カーネルの重み行列の初期値を指定します.([initializers](../initializers.md)を参照) - __bias_initializer__: バイアスベクトルの初期値を指定します.([initializers](../initializers.md)を参照). - __kernel_regularizer__: カーネルの重み行列に適用させるRegularizerを指定します.([regularizer](../regularizers.md)を参照) - __bias_regularizer__: バイアスベクトルに適用させるRegularizerを指定します.([regularizer](../regularizers.md)を参照) - __activity_regularizer__: ネットワーク出力(同ネットワークの「活性化」)に適用させるRegularizerを指定します.([regularizer](../regularizers.md)を参照) - __kernel_constraint__: カーネルの重み行列に適用させるConstraintsを指定します.([constraints](../constraints.md)を参照) - __bias_constraint__: バイアスベクトルに適用させるConstraintsを指定します.([constraints](../constraints.md)を参照) __入力のshape__ 入力は`(batch_size, steps, input_dim)`の3階テンソルです. __出力のshape__ 出力は`(batch_size, new_steps, filters)`の3階テンソルです. `steps`値はパディングやストライドにより変わることがあります. ---- <span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/local.py#L179)</span> ### LocallyConnected2D ```python keras.layers.local.LocallyConnected2D(filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None) ``` 2次元入力に対応したLocally-connectedレイヤーです. `LocallyConnected2D`は`Conv2D`と似た動作をします.しかし,重みが共有されない,つまり入力のパッチごとに異なるフィルタが適用される点が違います. __例__ ```python # apply a 3x3 unshared weights convolution with 64 output filters on a 32x32 image # with `data_format="channels_last"`: model = Sequential() model.add(LocallyConnected2D(64, (3, 3), input_shape=(32, 32, 3))) # now model.output_shape == (None, 30, 30, 64) # notice that this layer will consume (30*30)*(3*3*3*64) + (30*30)*64 parameters # add a 3x3 unshared weights convolution on top, with 32 output filters: model.add(LocallyConnected2D(32, (3, 3))) # now model.output_shape == (None, 28, 28, 32) ``` __引数__ - __filters__: 整数,使用するカーネルの数を指定(出力の次元). - __kernel_size__: 畳み込みカーネルの幅と高さを指定します.タプル/リストでカーネルの幅と高さをそれぞれ指定でき,整数の場合は正方形のカーネルになります. - __strides__: カーネルのストライドを指定します. 二つの整数からなるタプル/リストで縦と横のストライドをそれぞれ指定でき,整数の場合は幅と高さが同一のストライドになります. - __padding__: 現在`"valid"`(大文字,小文字は区別されない)のみサポートされます.将来`"same"`がサポートされる予定です. - __data_format__: `channels_last`(デフォルト)か`channels_first`を指定します.`channels_last`の場合,入力のshapeは`(batch, height, width, channels)`となり,`channels_first`の場合は`(batch, channels, height, width)`となります.デフォルトはKerasの設定ファイル`~/.keras/keras.json`の`image_data_format`の値です.一度も値を変更していなければ,`channels_last`になります. - __activation__: 使用する活性化関数の名前([activations](../activations.md)を参照). 指定がない場合,活性化は適用されない(つまり"線形"活性`a(x) = x`となる). - __use_bias__: 真理値で,バイアスベクトルを加えるかどうかを指定します. - __kernel_initializer__: カーネルの重み行列の初期値を指定します.([initializers](../initializers.md)を参照) - __bias_initializer__: バイアスベクトルの初期値を指定します.([initializers](../initializers.md)を参照). - __kernel_regularizer__: カーネルの重み行列に適用させるRegularizerを指定します.([regularizer](../regularizers.md)を参照) - __bias_regularizer__: バイアスベクトルに適用させるRegularizerを指定します.([regularizer](../regularizers.md)を参照) - __activity_regularizer__: ネットワーク出力(同ネットワークの「活性化」)に適用させるRegularizerを指定します.([regularizer](../regularizers.md)を参照) - __kernel_constraint__: カーネルの重み行列に適用させるConstraintsを指定します.([constraints](../constraints.md)を参照) - __bias_constraint__: バイアスベクトルに適用させるConstraintsを指定します.([constraints](../constraints.md)を参照) __入力のshape__ `data_format='channels_first'`の場合,入力は`(samples, channels, rows, cols)`の4階テンソルです. `data_format='channels_last'`の場合,入力は`(samples, rows, cols, channels)`の4階テンソルです. __出力のshape__ `data_format='channels_first'`の場合,出力は`(samples, filters, new_rows, new_cols)`の4階テンソルです. `data_format='channels_last'`の場合,出力は`(samples, new_rows, new_cols, filters)`の4階テンソルです. `rows`と`cols`値はパディングにより変わることがあります.
keras-docs-ja/sources/layers/local.md/0
{ "file_path": "keras-docs-ja/sources/layers/local.md", "repo_id": "keras-docs-ja", "token_count": 3528 }
86
## Text Preprocessing ## Tokenizer ```python keras.preprocessing.text.Tokenizer(num_words=None, filters='!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n', lower=True, split=' ', char_level=False, oov_token=None, document_count=0) ``` テキストをトークン化するユーティリティクラス. このクラスは,各テキストを整数の列(各整数はは辞書におけるトークンのインデックス)または単語のカウントやtf-idfなどに基づいて各トークンをバイナリとした係数からなるベクトルに変換することで,テキストコーパスをベクトル化します. テキストをベクトル化する,または/かつ,テキストをシーケンス(= データセット中でランクi(1から始まる)の単語がインデックスiを持つ単語インデックスのリスト)に変換するクラス. __引数__ - __num_words__: 利用する単語の最大数で単語の頻度に基づきます.一般的には`num_words-1`が用いられます. - __filters__: テキストからフィルタする文字の要素からなる文字列.デフォルトでは全ての句読点に加えてタブや改行,マイナス,`'`文字です. - __lower__: 真理値.テキストを小文字にするかどうか. - __split__: 文字列.単語を分割するセパレータ. - __char_level__: Trueなら,全文字はトークンとして扱われます. - __oov_token__: 与えられた場合,単語のインデックスに付与され,text_to_sequenceが呼ばれた時に語彙にない単語を入れ替えるために使われます. デフォルトでは全ての句読点は削除され,(`'`文字は含まれるかもしれませんが)スペースで区切られた単語の列に変換されます.これらの列はトークンのリストに分割されます.これらは更にインデックス化またはベクトル化されます. `0`はどの単語にも割り当てられない予約済みのインデックスです. --- ## hashing_trick ```python keras.preprocessing.text.hashing_trick(text, n, hash_function=None, filters='!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n', lower=True, split=' ') ``` テキストを固定長のハッシュ空間におけるインデックスの系列に変換します. __引数__ - __text__: 入力テキスト(文字列). - __n__: ハッシュ空間の次元数. - __hash_function__: デフォルトはpythonの`hash`関数で,'md5'か文字列を整数に変換する任意の関数にもできます.'hash'は安定したハッシュ関数ではないことに注意してください.そのため,実行ごとに一貫しません.一方で'md5'は安定なハッシュ関数です. - __filters__: 句読点などフィルタする文字を含むリスト(あるいはコレクション).デフォルトは基本的な句読点,タブ,改行を含む`!"#$%&()*+,-./:;<=>?@[\]^_`{|}~\t\n`です. - __lower__: 真理値.テキストを小文字にするかどうか. - __split__: 文字列.単語を分割するセパレータ. __戻り値__ 単語のインデックスを表す整数のリスト(単一性を保証しない). `0`はどの単語にも割り当てられない予約済みのインデックスです. ハッシュ関数の衝突の可能性があるため,2つ以上の単語が同じインデックスに割り当てられるかもしれません.この衝突の[可能性](https://en.wikipedia.org/wiki/Birthday_problem#Probability_table)はハッシュ空間の次元と固有のオブジェクトの数に関係しています. --- ## one_hot ```python keras.preprocessing.text.one_hot(text, n, filters='!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n', lower=True, split=' ') ``` 文章を単語インデックス(語彙数n)のリストにone-hotエンコードします. ハッシュ関数として`hash`を使用する`hashing_trick`のラッパーです.単語の単一性の保証はしません. __引数__ - __text__: 入力テキスト(文字列). - __n__: 整数.語彙数. - __filters__: 句読点などフィルタする文字を含むリスト(あるいはコレクション).デフォルトは基本的な句読点,タブ,改行を含む`!"#$%&()*+,-./:;<=>?@[\]^_`{|}~\t\n`です. - __lower__: 真理値.テキストを小文字にするかどうか. - __split__: 文字列.単語を分割するセパレータ. __戻り値__ [1, n]の整数から構成されるリスト.各整数は単語をエンコードします(単一性は保証されません). --- ## text_to_word_sequence ```python keras.preprocessing.text.text_to_word_sequence(text, filters='!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n', lower=True, split=' ') ``` 文章を単語(またはトークン)のリストに分割します. - __引数__ - __text__: 入力テキスト(文字列). - __filters__: 句読点のようなフィルタする文字を含むリスト(あるいは連結文字列).デフォルトは基本的な句読点,タブ,改行を含む`!"#$%&()*+,-./:;<=>?@[\]^_`{|}~\t\n`です. - __lower__: 真理値.テキストを小文字にするかどうか. - __split__: 文字列.単語を分割するセパレータ. __戻り値__ 単語(またはトークン)のリスト.
keras-docs-ja/sources/preprocessing/text.md/0
{ "file_path": "keras-docs-ja/sources/preprocessing/text.md", "repo_id": "keras-docs-ja", "token_count": 2691 }
87
<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/advanced_activations.py#L19)</span> ### LeakyReLU ```python keras.layers.LeakyReLU(alpha=0.3) ``` Leaky Rectified Linear Unit 활성화 함수입니다. 유닛이 활성화되지 않는 경우 작은 그래디언트를 허용합니다. Leaky ReLU는 다음과 같습니다. - `x < 0`인 경우, `f(x) = alpha * x` - `x >= 0`인 경우, `f(x) = x` __입력 형태__ 입력값의 형태는 임의로 지정됩니다. `LeakyReLU`을 모델의 첫 번째 층으로 사용하는 경우 키워드 인자로 `input_shape` 인자<sub>argument</sub>(샘플 축<sub>axis</sub>을 제외한 `int` 튜플)를 지정해야 합니다. __출력 형태__ 입력 형태와 동일합니다. __인자__ - __alpha__: 음이 아닌 `float`. `x < 0`인 경우의 기울기 계수. __참고__ - [Rectifier Nonlinearities Improve Neural Network Acoustic Models]( https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf) ---- <span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/advanced_activations.py#L59)</span> ### PReLU ```python keras.layers.PReLU(alpha_initializer='zeros', alpha_regularizer=None, alpha_constraint=None, shared_axes=None) ``` Parametric Rectified Linear Unit 활성화 함수입니다. PReLU는 다음과 같습니다. - `x < 0`인 경우, `f(x) = alpha * x` - `x >= 0`인 경우, `f(x) = x` `alpha`는 x와 동일한 형태를 가진 학습된 배열입니다. __입력 형태__ 입력값의 형태는 임의로 지정됩니다. `PReLU`를 모델의 첫 번째 층으로 사용하는 경우 키워드 인자로 `input_shape` 인자(샘플 축을 제외한 `int` 튜플)를 지정해야 합니다. __출력 형태__ 입력 형태와 동일합니다. __인자__ - __alpha_initializer__: 가중치<sub>weights</sub>를 위한 초기화 함수<sub>initializer</sub>. - __alpha_regularizer__: 가중치를 위한 규제 함수<sub>regularizer</sub>. - __alpha_constraint__: 가중치의 제약<sub>constraint</sub>. - __shared_axes__: 활성화 함수에서 학습 가능한 파라미터들을 공유할 축. 예를 들어, 만일 입력 특징 맵<sub>feature map</sub>들이 2D 합성곱<sub>convolution</sub>으로부터 생성되어 `(batch, height, width, channels)`의 형태를 가진다면, `shared_axes=[1, 2]`로 설정하여 각 필터가 하나의 매개 변수 세트를 공유하도록 할 수 있습니다. __참고__ - [Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification](https://arxiv.org/abs/1502.01852) ---- <span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/advanced_activations.py#L153)</span> ### ELU ```python keras.layers.ELU(alpha=1.0) ``` Exponential Linear Unit 활성화 함수입니다. ELU는 다음과 같습니다. - `x < 0`인 경우, `f(x) = alpha * (exp(x) - 1)` - `x >= 0`인 경우, `f(x) = x` __입력 형태__ 입력값의 형태는 임의로 지정됩니다. `ELU` 모델의 첫 번째 층으로 사용하는 경우 키워드 인자로 `input_shape` 인자(샘플 축을 제외한 `int` 튜플)를 지정해야 합니다. __출력 형태__ 입력 형태와 동일합니다. __인자__ - __alpha__: `x < 0`인 경우 곱할 배수<sub>factor</sub>. __참고__ - [Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)](https://arxiv.org/abs/1511.07289v1) ---- <span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/advanced_activations.py#L193)</span> ### ThresholdedReLU ```python keras.layers.ThresholdedReLU(theta=1.0) ``` Thresholded Rectified Linear Unit 활성화 함수입니다. Thresholded ReLU는 다음과 같습니다. - `x > theta`인 경우, `f(x) = x` - `x <= theta`인 경우, `f(x) = 0` __입력 형태__ 입력값의 형태는 임의로 지정됩니다. `ThresholdedReLU`를 모델의 첫 번째 층으로 사용하는 경우 키워드 인자로 `input_shape` 인자(샘플 축을 제외한 `int` 튜플)를 지정해야 합니다. __출력 형태__ 입력 형태와 동일합니다. __인자__ - __theta__: 음이 아닌 `float`. 활성화가 일어나는 임계값. __참고__ - [Zero-Bias Autoencoders and the Benefits of Co-Adapting Features]( https://arxiv.org/abs/1402.3337) ---- <span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/advanced_activations.py#L233)</span> ### Softmax ```python keras.layers.Softmax(axis=-1) ``` Softmax 활성화 함수입니다. __입력 형태__ 입력값의 형태는 임의로 지정됩니다. `Softmax`를 모델의 첫 번째 층으로 사용하는 경우 키워드 인자로 `input_shape` 인자(샘플 축을 제외한 `int` 튜플)를 지정해야 합니다. __출력 형태__ 입력 형태와 동일합니다. __인자__ - __axis__: `int`. softmax 정규화<sub>normalization</sub>가 적용되는 축. ---- <span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/advanced_activations.py#L265)</span> ### ReLU ```python keras.layers.ReLU(max_value=None, negative_slope=0.0, threshold=0.0) ``` Rectified Linear Unit 활성화 함수입니다. 인자들의 기본값을 사용하면 원소별로<sub>element-wise</sub> 연산된 `max(x, 0)`를 반환합니다. 다른 인자를 사용하면 다음과 같습니다. - `x >= max_value`인 경우, `f(x) = max_value` - `threshold <= x < max_value`인 경우, `f(x) = x` - 나머지 경우, `f(x) = negative_slope * (x - threshold)`. __입력 형태__ 입력값의 형태는 임의로 지정됩니다. `ReLU`를 모델의 첫 번째 층으로 사용하는 경우 키워드 인자로 `input_shape` 인자(샘플 축을 제외한 `int` 튜플)를 지정해야 합니다. __출력 형태__ 입력 형태와 동일합니다. __인자__ - __max_value__: 음이 아닌 `float`. 활성화 함수의 최댓값. - __negative_slope__: 음이 아닌 `float`. `x < 0`인 경우의 기울기 계수. - __threshold__: `float`. 임계값이 정해진 활성화 함수인 경우, 임계값.
keras-docs-ko/sources/layers/advanced-activations.md/0
{ "file_path": "keras-docs-ko/sources/layers/advanced-activations.md", "repo_id": "keras-docs-ko", "token_count": 4003 }
88
# 在 bAbI 数据集上训练一个记忆网络。 参考文献: - Jason Weston, Antoine Bordes, Sumit Chopra, Tomas Mikolov, Alexander M. Rush, ["Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks"](http://arxiv.org/abs/1502.05698) - Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, Rob Fergus, ["End-To-End Memory Networks"](http://arxiv.org/abs/1503.08895) 120 轮迭代后,在 'single_supporting_fact_10k' 任务上达到了 98.6% 的准确率。 每轮迭代时间: 3s on CPU (core i7). ```python from __future__ import print_function from keras.models import Sequential, Model from keras.layers.embeddings import Embedding from keras.layers import Input, Activation, Dense, Permute, Dropout from keras.layers import add, dot, concatenate from keras.layers import LSTM from keras.utils.data_utils import get_file from keras.preprocessing.sequence import pad_sequences from functools import reduce import tarfile import numpy as np import re def tokenize(sent): '''返回包含标点符号的句子的标记。 >>> tokenize('Bob dropped the apple. Where is the apple?') ['Bob', 'dropped', 'the', 'apple', '.', 'Where', 'is', 'the', 'apple', '?'] ''' return [x.strip() for x in re.split(r'(\W+)?', sent) if x.strip()] def parse_stories(lines, only_supporting=False): '''解析 bAbi 任务格式中提供的故事 如果 only_supporting 为 true, 则只保留支持答案的句子。 ''' data = [] story = [] for line in lines: line = line.decode('utf-8').strip() nid, line = line.split(' ', 1) nid = int(nid) if nid == 1: story = [] if '\t' in line: q, a, supporting = line.split('\t') q = tokenize(q) if only_supporting: # 只选择相关的子故事 supporting = map(int, supporting.split()) substory = [story[i - 1] for i in supporting] else: # 提供所有子故事 substory = [x for x in story if x] data.append((substory, q, a)) story.append('') else: sent = tokenize(line) story.append(sent) return data def get_stories(f, only_supporting=False, max_length=None): '''给定文件名,读取文件,检索故事, 然后将句子转换为一个独立故事。 如果提供了 max_length, 任何长于 max_length 的故事都将被丢弃。 ''' data = parse_stories(f.readlines(), only_supporting=only_supporting) flatten = lambda data: reduce(lambda x, y: x + y, data) data = [(flatten(story), q, answer) for story, q, answer in data if not max_length or len(flatten(story)) < max_length] return data def vectorize_stories(data): inputs, queries, answers = [], [], [] for story, query, answer in data: inputs.append([word_idx[w] for w in story]) queries.append([word_idx[w] for w in query]) answers.append(word_idx[answer]) return (pad_sequences(inputs, maxlen=story_maxlen), pad_sequences(queries, maxlen=query_maxlen), np.array(answers)) try: path = get_file('babi-tasks-v1-2.tar.gz', origin='https://s3.amazonaws.com/text-datasets/' 'babi_tasks_1-20_v1-2.tar.gz') except: print('Error downloading dataset, please download it manually:\n' '$ wget http://www.thespermwhale.com/jaseweston/babi/tasks_1-20_v1-2' '.tar.gz\n' '$ mv tasks_1-20_v1-2.tar.gz ~/.keras/datasets/babi-tasks-v1-2.tar.gz') raise challenges = { # QA1 任务,10,000 样本 'single_supporting_fact_10k': 'tasks_1-20_v1-2/en-10k/qa1_' 'single-supporting-fact_{}.txt', # QA2 任务,1000 样本 'two_supporting_facts_10k': 'tasks_1-20_v1-2/en-10k/qa2_' 'two-supporting-facts_{}.txt', } challenge_type = 'single_supporting_fact_10k' challenge = challenges[challenge_type] print('Extracting stories for the challenge:', challenge_type) with tarfile.open(path) as tar: train_stories = get_stories(tar.extractfile(challenge.format('train'))) test_stories = get_stories(tar.extractfile(challenge.format('test'))) vocab = set() for story, q, answer in train_stories + test_stories: vocab |= set(story + q + [answer]) vocab = sorted(vocab) # 保留 0 以留作 pad_sequences 进行 masking vocab_size = len(vocab) + 1 story_maxlen = max(map(len, (x for x, _, _ in train_stories + test_stories))) query_maxlen = max(map(len, (x for _, x, _ in train_stories + test_stories))) print('-') print('Vocab size:', vocab_size, 'unique words') print('Story max length:', story_maxlen, 'words') print('Query max length:', query_maxlen, 'words') print('Number of training stories:', len(train_stories)) print('Number of test stories:', len(test_stories)) print('-') print('Here\'s what a "story" tuple looks like (input, query, answer):') print(train_stories[0]) print('-') print('Vectorizing the word sequences...') word_idx = dict((c, i + 1) for i, c in enumerate(vocab)) inputs_train, queries_train, answers_train = vectorize_stories(train_stories) inputs_test, queries_test, answers_test = vectorize_stories(test_stories) print('-') print('inputs: integer tensor of shape (samples, max_length)') print('inputs_train shape:', inputs_train.shape) print('inputs_test shape:', inputs_test.shape) print('-') print('queries: integer tensor of shape (samples, max_length)') print('queries_train shape:', queries_train.shape) print('queries_test shape:', queries_test.shape) print('-') print('answers: binary (1 or 0) tensor of shape (samples, vocab_size)') print('answers_train shape:', answers_train.shape) print('answers_test shape:', answers_test.shape) print('-') print('Compiling...') # 占位符 input_sequence = Input((story_maxlen,)) question = Input((query_maxlen,)) # 编码器 # 将输入序列编码为向量的序列 input_encoder_m = Sequential() input_encoder_m.add(Embedding(input_dim=vocab_size, output_dim=64)) input_encoder_m.add(Dropout(0.3)) # 输出: (samples, story_maxlen, embedding_dim) # 将输入编码为的向量的序列(向量尺寸为 query_maxlen) input_encoder_c = Sequential() input_encoder_c.add(Embedding(input_dim=vocab_size, output_dim=query_maxlen)) input_encoder_c.add(Dropout(0.3)) # 输出: (samples, story_maxlen, query_maxlen) # 将问题编码为向量的序列 question_encoder = Sequential() question_encoder.add(Embedding(input_dim=vocab_size, output_dim=64, input_length=query_maxlen)) question_encoder.add(Dropout(0.3)) # 输出: (samples, query_maxlen, embedding_dim) # 编码输入序列和问题(均已索引化)为密集向量的序列 input_encoded_m = input_encoder_m(input_sequence) input_encoded_c = input_encoder_c(input_sequence) question_encoded = question_encoder(question) # 计算第一个输入向量和问题向量序列的『匹配』('match') # 尺寸: `(samples, story_maxlen, query_maxlen)` match = dot([input_encoded_m, question_encoded], axes=(2, 2)) match = Activation('softmax')(match) # 将匹配矩阵与第二个输入向量序列相加 response = add([match, input_encoded_c]) # (samples, story_maxlen, query_maxlen) response = Permute((2, 1))(response) # (samples, query_maxlen, story_maxlen) # 拼接匹配矩阵和问题向量序列 answer = concatenate([response, question_encoded]) # 原始论文使用一个矩阵乘法来进行归约操作。 # 我们在此选择使用 RNN。 answer = LSTM(32)(answer) # (samples, 32) # 一个正则化层 - 可能还需要更多层 answer = Dropout(0.3)(answer) answer = Dense(vocab_size)(answer) # (samples, vocab_size) # 输出词汇表的一个概率分布 answer = Activation('softmax')(answer) # 构建最终模型 model = Model([input_sequence, question], answer) model.compile(optimizer='rmsprop', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # 训练 model.fit([inputs_train, queries_train], answers_train, batch_size=32, epochs=120, validation_data=([inputs_test, queries_test], answers_test)) ```
keras-docs-zh/sources/examples/babi_memnn.md/0
{ "file_path": "keras-docs-zh/sources/examples/babi_memnn.md", "repo_id": "keras-docs-zh", "token_count": 3917 }
89
# 还原字符级序列到序列模型以生成预测。 该脚本载入由 [lstm_seq2seq.py](/examples/lstm_seq2seq/) 保存的 ```s2s.h5``` 模型,并从中生成序列。 它假设其未作任何改变(例如,```latent_dim```、输入数据和模型结构均不变)。 有关模型结构细节以及如何训练,参见 [lstm_seq2seq.py](/examples/lstm_seq2seq/)。 ```python from __future__ import print_function from keras.models import Model, load_model from keras.layers import Input import numpy as np batch_size = 64 # 训练批次大小。 epochs = 100 # 训练轮次数。 latent_dim = 256 # 编码空间隐层维度。 num_samples = 10000 # 训练样本数。 # 磁盘中数据文件路径。 data_path = 'fra-eng/fra.txt' # 向量化数据。使用与训练脚本相同的方法。 # 注意: 数据必须相同,以使字符->整数映射保持一致。 # 我们省略对 target_texts 的编码,因为不需要它们。 input_texts = [] target_texts = [] input_characters = set() target_characters = set() with open(data_path, 'r', encoding='utf-8') as f: lines = f.read().split('\n') for line in lines[: min(num_samples, len(lines) - 1)]: input_text, target_text = line.split('\t') # 我们使用 "tab" 作为目标的 "开始序列" 字符,并使用 "\n" 作为 "结束序列" 字符。 target_text = '\t' + target_text + '\n' input_texts.append(input_text) target_texts.append(target_text) for char in input_text: if char not in input_characters: input_characters.add(char) for char in target_text: if char not in target_characters: target_characters.add(char) input_characters = sorted(list(input_characters)) target_characters = sorted(list(target_characters)) num_encoder_tokens = len(input_characters) num_decoder_tokens = len(target_characters) max_encoder_seq_length = max([len(txt) for txt in input_texts]) max_decoder_seq_length = max([len(txt) for txt in target_texts]) print('Number of samples:', len(input_texts)) print('Number of unique input tokens:', num_encoder_tokens) print('Number of unique output tokens:', num_decoder_tokens) print('Max sequence length for inputs:', max_encoder_seq_length) print('Max sequence length for outputs:', max_decoder_seq_length) input_token_index = dict( [(char, i) for i, char in enumerate(input_characters)]) target_token_index = dict( [(char, i) for i, char in enumerate(target_characters)]) encoder_input_data = np.zeros( (len(input_texts), max_encoder_seq_length, num_encoder_tokens), dtype='float32') for i, input_text in enumerate(input_texts): for t, char in enumerate(input_text): encoder_input_data[i, t, input_token_index[char]] = 1. # 恢复模型并构造编码器和解码器。 model = load_model('s2s.h5') encoder_inputs = model.input[0] # input_1 encoder_outputs, state_h_enc, state_c_enc = model.layers[2].output # lstm_1 encoder_states = [state_h_enc, state_c_enc] encoder_model = Model(encoder_inputs, encoder_states) decoder_inputs = model.input[1] # input_2 decoder_state_input_h = Input(shape=(latent_dim,), name='input_3') decoder_state_input_c = Input(shape=(latent_dim,), name='input_4') decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c] decoder_lstm = model.layers[3] decoder_outputs, state_h_dec, state_c_dec = decoder_lstm( decoder_inputs, initial_state=decoder_states_inputs) decoder_states = [state_h_dec, state_c_dec] decoder_dense = model.layers[4] decoder_outputs = decoder_dense(decoder_outputs) decoder_model = Model( [decoder_inputs] + decoder_states_inputs, [decoder_outputs] + decoder_states) # 反向查询 token 索引可将序列解码回可读的内容。 reverse_input_char_index = dict( (i, char) for char, i in input_token_index.items()) reverse_target_char_index = dict( (i, char) for char, i in target_token_index.items()) # 解码输入序列。未来的工作应支持波束搜索。 def decode_sequence(input_seq): # 将输入编码为状态向量。 states_value = encoder_model.predict(input_seq) # 生成长度为 1 的空目标序列。 target_seq = np.zeros((1, 1, num_decoder_tokens)) # 用起始字符填充目标序列的第一个字符。 target_seq[0, 0, target_token_index['\t']] = 1. # 一批序列的采样循环 # (为了简化,这里我们假设一批大小为 1)。 stop_condition = False decoded_sentence = '' while not stop_condition: output_tokens, h, c = decoder_model.predict( [target_seq] + states_value) # 采样一个 token sampled_token_index = np.argmax(output_tokens[0, -1, :]) sampled_char = reverse_target_char_index[sampled_token_index] decoded_sentence += sampled_char # 退出条件:达到最大长度或找到停止符。 if (sampled_char == '\n' or len(decoded_sentence) > max_decoder_seq_length): stop_condition = True # 更新目标序列(长度为 1)。 target_seq = np.zeros((1, 1, num_decoder_tokens)) target_seq[0, 0, sampled_token_index] = 1. # 更新状态 states_value = [h, c] return decoded_sentence for seq_index in range(100): # 抽取一个序列(训练集的一部分)进行解码。 input_seq = encoder_input_data[seq_index: seq_index + 1] decoded_sentence = decode_sequence(input_seq) print('-') print('Input sentence:', input_texts[seq_index]) print('Decoded sentence:', decoded_sentence) ```
keras-docs-zh/sources/examples/lstm_seq2seq_restore.md/0
{ "file_path": "keras-docs-zh/sources/examples/lstm_seq2seq_restore.md", "repo_id": "keras-docs-zh", "token_count": 2698 }
90
# 加载预训练词嵌入 该脚本将预训练的词嵌入(GloVe 嵌入)加载到冻结的 Keras 嵌入层中,并使用它在 20 个新闻组数据集上训练文本分类模型(将新闻组消息分类为 20 个不同的类别)。 可以在以下位置找到 GloVe 嵌入数据: http://nlp.stanford.edu/data/glove.6B.zip (source page: http://nlp.stanford.edu/projects/glove/) 20个新闻组数据可在以下位置找到: http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/news20.html ```python from __future__ import print_function import os import sys import numpy as np from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.utils import to_categorical from keras.layers import Dense, Input, GlobalMaxPooling1D from keras.layers import Conv1D, MaxPooling1D, Embedding from keras.models import Model from keras.initializers import Constant BASE_DIR = '' GLOVE_DIR = os.path.join(BASE_DIR, 'glove.6B') TEXT_DATA_DIR = os.path.join(BASE_DIR, '20_newsgroup') MAX_SEQUENCE_LENGTH = 1000 MAX_NUM_WORDS = 20000 EMBEDDING_DIM = 100 VALIDATION_SPLIT = 0.2 # 首先,在嵌入集中将索引映射词构建为其嵌入向量 print('Indexing word vectors.') embeddings_index = {} with open(os.path.join(GLOVE_DIR, 'glove.6B.100d.txt')) as f: for line in f: word, coefs = line.split(maxsplit=1) coefs = np.fromstring(coefs, 'f', sep=' ') embeddings_index[word] = coefs print('Found %s word vectors.' % len(embeddings_index)) # 其次,准备文本样本及其标签 print('Processing text dataset') texts = [] # 文字样本列表 labels_index = {} # 将标签名称映射到数字 ID 的字典 labels = [] # 标签 ID 列表 for name in sorted(os.listdir(TEXT_DATA_DIR)): path = os.path.join(TEXT_DATA_DIR, name) if os.path.isdir(path): label_id = len(labels_index) labels_index[name] = label_id for fname in sorted(os.listdir(path)): if fname.isdigit(): fpath = os.path.join(path, fname) args = {} if sys.version_info < (3,) else {'encoding': 'latin-1'} with open(fpath, **args) as f: t = f.read() i = t.find('\n\n') # 跳过标题 if 0 < i: t = t[i:] texts.append(t) labels.append(label_id) print('Found %s texts.' % len(texts)) # 最后,将文本样本向量化为 2D 整数张量 tokenizer = Tokenizer(num_words=MAX_NUM_WORDS) tokenizer.fit_on_texts(texts) sequences = tokenizer.texts_to_sequences(texts) word_index = tokenizer.word_index print('Found %s unique tokens.' % len(word_index)) data = pad_sequences(sequences, maxlen=MAX_SEQUENCE_LENGTH) labels = to_categorical(np.asarray(labels)) print('Shape of data tensor:', data.shape) print('Shape of label tensor:', labels.shape) # 将数据分为训练集和验证集 indices = np.arange(data.shape[0]) np.random.shuffle(indices) data = data[indices] labels = labels[indices] num_validation_samples = int(VALIDATION_SPLIT * data.shape[0]) x_train = data[:-num_validation_samples] y_train = labels[:-num_validation_samples] x_val = data[-num_validation_samples:] y_val = labels[-num_validation_samples:] print('Preparing embedding matrix.') # 准备嵌入矩阵 num_words = min(MAX_NUM_WORDS, len(word_index) + 1) embedding_matrix = np.zeros((num_words, EMBEDDING_DIM)) for word, i in word_index.items(): if i >= MAX_NUM_WORDS: continue embedding_vector = embeddings_index.get(word) if embedding_vector is not None: # 嵌入索引中找不到的单词将为全零。 embedding_matrix[i] = embedding_vector # 将预训练的词嵌入加载到嵌入层中 # 请注意,我们设置了 trainable = False,以便保持嵌入固定 embedding_layer = Embedding(num_words, EMBEDDING_DIM, embeddings_initializer=Constant(embedding_matrix), input_length=MAX_SEQUENCE_LENGTH, trainable=False) print('Training model.') # 使用全局 maxpooling 训练 1D convnet sequence_input = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='int32') embedded_sequences = embedding_layer(sequence_input) x = Conv1D(128, 5, activation='relu')(embedded_sequences) x = MaxPooling1D(5)(x) x = Conv1D(128, 5, activation='relu')(x) x = MaxPooling1D(5)(x) x = Conv1D(128, 5, activation='relu')(x) x = GlobalMaxPooling1D()(x) x = Dense(128, activation='relu')(x) preds = Dense(len(labels_index), activation='softmax')(x) model = Model(sequence_input, preds) model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['acc']) model.fit(x_train, y_train, batch_size=128, epochs=10, validation_data=(x_val, y_val)) ```
keras-docs-zh/sources/examples/pretrained_word_embeddings.md/0
{ "file_path": "keras-docs-zh/sources/examples/pretrained_word_embeddings.md", "repo_id": "keras-docs-zh", "token_count": 2464 }
91
# Keras: 基于 Python 的深度学习库 <img src='https://s3.amazonaws.com/keras.io/img/keras-logo-2018-large-1200.png', style='max-width: 600px;'> ## 你恰好发现了 Keras。 Keras 是一个用 Python 编写的高级神经网络 API,它能够以 [TensorFlow](https://github.com/tensorflow/tensorflow), [CNTK](https://github.com/Microsoft/cntk) 或者 [Theano](https://github.com/Theano/Theano) 作为后端运行。Keras 的开发重点是支持快速的实验。*能够以最小的时延把你的想法转换为实验结果,是做好研究的关键。* 如果你在以下情况下需要深度学习库,请使用 Keras: - 允许简单而快速的原型设计(由于用户友好,高度模块化,可扩展性)。 - 同时支持卷积神经网络和循环神经网络,以及两者的组合。 - 在 CPU 和 GPU 上无缝运行。 查看文档,请访问 [Keras.io](https://keras.io/zh/)。备份网址:[Keras-zh](https://keras-zh.readthedocs.io/)。 Keras 兼容的 Python 版本: __Python 2.7-3.6__。 ------------------ ## 多后端 Keras 和 tf.keras: **目前,我们推荐使用 TensorFlow 后端的 Keras 用户切换至 TensorFlow 2.0 的 `tf.keras`。** `tf.keras` 具有更好的维护,并且更好地集成了 TensorFlow 功能(eager执行,分布式支持及其他)。 Keras 2.2.5 是最后一个实现 2.2.* API 的 Keras 版本。它是最后一个仅支持 TensorFlow 1(以及 Theano 和 CNTK)的版本。 Keras 的当前版本是 2.3.0,它对 API 做了重大的调整,并且添加了 TensorFlow 2.0 的支持。2.3.0 将会是最后一个多后端 Keras 主版本。多后端 Keras 已被 `tf.keras` 取代。 多后端 Keras 中存在的错误修复仅会持续到 2020 年 4 月(作为次要版本的一部分)。 关于 Keras 未来的更多信息,详见 [the Keras meeting notes](http://bit.ly/keras-meeting-notes)。 ## 指导原则 - __用户友好。__ Keras 是为人类而不是为机器设计的 API。它把用户体验放在首要和中心位置。Keras 遵循减少认知困难的最佳实践:它提供一致且简单的 API,将常见用例所需的用户操作数量降至最低,并且在用户错误时提供清晰和可操作的反馈。 - __模块化。__ 模型被理解为由独立的、完全可配置的模块构成的序列或图。这些模块可以以尽可能少的限制组装在一起。特别是神经网络层、损失函数、优化器、初始化方法、激活函数、正则化方法,它们都是可以结合起来构建新模型的模块。 - __易扩展性。__ 新的模块是很容易添加的(作为新的类和函数),现有的模块已经提供了充足的示例。由于能够轻松地创建可以提高表现力的新模块,Keras 更加适合高级研究。 - __基于 Python 实现。__ Keras 没有特定格式的单独配置文件。模型定义在 Python 代码中,这些代码紧凑,易于调试,并且易于扩展。 ------------------ ## 快速开始:30 秒上手 Keras Keras 的核心数据结构是 __model__,一种组织网络层的方式。最简单的模型是 [Sequential 顺序模型](/getting-started/sequential-model-guide),它由多个网络层线性堆叠。对于更复杂的结构,你应该使用 [Keras 函数式 API](/getting-started/functional-api-guide),它允许构建任意的神经网络图。 `Sequential` 模型如下所示: ```python from keras.models import Sequential model = Sequential() ``` 可以简单地使用 `.add()` 来堆叠模型: ```python from keras.layers import Dense model.add(Dense(units=64, activation='relu', input_dim=100)) model.add(Dense(units=10, activation='softmax')) ``` 在完成了模型的构建后, 可以使用 `.compile()` 来配置学习过程: ```python model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) ``` 如果需要,你还可以进一步地配置你的优化器。Keras 的核心原则是使事情变得相当简单,同时又允许用户在需要的时候能够进行完全的控制(终极的控制是源代码的易扩展性)。 ```python model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.SGD(lr=0.01, momentum=0.9, nesterov=True)) ``` 现在,你可以批量地在训练数据上进行迭代了: ```python # x_train 和 y_train 是 Numpy 数组 -- 就像在 Scikit-Learn API 中一样。 model.fit(x_train, y_train, epochs=5, batch_size=32) ``` 或者,你可以手动地将批次的数据提供给模型: ```python model.train_on_batch(x_batch, y_batch) ``` 只需一行代码就能评估模型性能: ```python loss_and_metrics = model.evaluate(x_test, y_test, batch_size=128) ``` 或者对新的数据生成预测: ```python classes = model.predict(x_test, batch_size=128) ``` 构建一个问答系统,一个图像分类模型,一个神经图灵机,或者其他的任何模型,就是这么的快。深度学习背后的思想很简单,那么它们的实现又何必要那么痛苦呢? 有关 Keras 更深入的教程,请查看: - [开始使用 Sequential 模型](/getting-started/sequential-model-guide) - [开始使用函数式 API](/getting-started/functional-api-guide) 在代码仓库的 [examples](https://github.com/keras-team/keras/tree/master/examples) 目录中,你会找到更多高级模型:基于记忆网络的问答系统、基于栈式 LSTM 的文本生成等等。 ------------------ ## 安装指引 在安装 Keras 之前,请安装以下后端引擎之一: TensorFlow, Theano 或者 CNTK。我们推荐 TensorFlow 后端。 - [TensorFlow 安装指引](https://www.tensorflow.org/install/)。 - [Theano 安装指引](http://deeplearning.net/software/theano/install.html#install)。 - [CNTK 安装指引](https://docs.microsoft.com/en-us/cognitive-toolkit/setup-cntk-on-your-machine)。 你也可以考虑安装以下**可选依赖**: - [cuDNN](https://docs.nvidia.com/deeplearning/sdk/cudnn-install/) (如果你计划在 GPU 上运行 Keras,建议安装)。 - HDF5 和 [h5py](http://docs.h5py.org/en/latest/build.html) (如果你需要将 Keras 模型保存到磁盘,则需要这些)。 - [graphviz](https://graphviz.gitlab.io/download/) 和 [pydot](https://github.com/erocarrera/pydot) (用于绘制模型图的[可视化工具](https://keras.io/zh/visualization/))。 然后你就可以安装 Keras 本身了。有两种方法安装 Keras: - **使用 PyPI 安装 Keras(推荐):** 注意:这些安装步骤假定你在 Linux 或 Mac 环境中。 如果你使用的是 Windows,则需要删除 `sudo` 才能运行以下命令。 ```sh sudo pip install keras ``` 如果你使用 virtualenv 虚拟环境, 你可以避免使用 sudo: ```sh pip install keras ``` - **或者:使用 GitHub 源码安装 Keras:** 首先,使用 `git` 来克隆 Keras: ```sh git clone https://github.com/keras-team/keras.git ``` 然后,`cd` 到 Keras 目录并且运行安装命令: ```sh cd keras sudo python setup.py install ``` ------------------ ## 配置你的 Keras 后端 默认情况下,Keras 将使用 TensorFlow 作为其张量操作库。请[跟随这些指引](https://keras.io/zh/backend/)来配置其他 Keras 后端。 ------------------ ## 技术支持 你可以提出问题并参与开发讨论: - [Keras Google group](https://groups.google.com/forum/#!forum/keras-users)。 - [Keras Slack channel](https://kerasteam.slack.com)。使用 [这个链接](https://keras-slack-autojoin.herokuapp.com/) 向该频道请求邀请函。 - 或者加入 Keras 深度学习交流群,协助文档的翻译工作,群号为 951623081。 你也可以在 [GitHub issues](https://github.com/keras-team/keras/issues) 中发布**漏洞报告和新功能请求**(仅限于此)。注意请先阅读[规范文档](https://github.com/keras-team/keras/blob/master/CONTRIBUTING.md)。 ------------------ ## 为什么取名为 Keras? Keras (κέρας) 在希腊语中意为 *号角* 。它来自古希腊和拉丁文学中的一个文学形象,首先出现于 *《奥德赛》* 中, 梦神 (_Oneiroi_, singular _Oneiros_) 从这两类人中分离出来:那些用虚幻的景象欺骗人类,通过象牙之门抵达地球之人,以及那些宣告未来即将到来,通过号角之门抵达之人。 它类似于文字寓意,κέρας (号角) / κραίνω (履行),以及 ἐλέφας (象牙) / ἐλεφαίρομαι (欺骗)。 Keras 最初是作为 ONEIROS 项目(开放式神经电子智能机器人操作系统)研究工作的一部分而开发的。 >_"Oneiroi 超出了我们的理解 - 谁能确定它们讲述了什么故事?并不是所有人都能找到。那里有两扇门,就是通往短暂的 Oneiroi 的通道;一个是用号角制造的,一个是用象牙制造的。穿过尖锐的象牙的 Oneiroi 是诡计多端的,他们带有一些不会实现的信息; 那些穿过抛光的喇叭出来的人背后具有真理,对于看到他们的人来说是完成的。"_ Homer, Odyssey 19. 562 ff (Shewring translation). ------------------
keras-docs-zh/sources/index.md/0
{ "file_path": "keras-docs-zh/sources/index.md", "repo_id": "keras-docs-zh", "token_count": 5448 }
92
## 评价函数的用法 评价函数用于评估当前训练模型的性能。当模型编译后(compile),评价函数应该作为 `metrics` 的参数来输入。 ```python model.compile(loss='mean_squared_error', optimizer='sgd', metrics=['mae', 'acc']) ``` ```python from keras import metrics model.compile(loss='mean_squared_error', optimizer='sgd', metrics=[metrics.mae, metrics.categorical_accuracy]) ``` 评价函数和 [损失函数](/losses) 相似,只不过评价函数的结果不会用于训练过程中。 我们可以传递已有的评价函数名称,或者传递一个自定义的 Theano/TensorFlow 函数来使用(查阅[自定义评价函数](#custom-metrics))。 __参数__ - __y_true__: 真实标签,Theano/Tensorflow 张量。 - __y_pred__: 预测值。和 y_true 相同尺寸的 Theano/TensorFlow 张量。 __返回__  返回一个表示全部数据点平均值的张量。 ---- ## 可使用的评价函数 ### accuracy ```python keras.metrics.accuracy(y_true, y_pred) ``` ### binary_accuracy ```python keras.metrics.binary_accuracy(y_true, y_pred, threshold=0.5) ``` ---- ### categorical_accuracy ```python keras.metrics.categorical_accuracy(y_true, y_pred) ``` ---- ### sparse_categorical_accuracy ```python keras.metrics.sparse_categorical_accuracy(y_true, y_pred) ``` ---- ### top_k_categorical_accuracy ```python keras.metrics.top_k_categorical_accuracy(y_true, y_pred, k=5) ``` ---- ### sparse_top_k_categorical_accuracy ```python keras.metrics.sparse_top_k_categorical_accuracy(y_true, y_pred, k=5) ``` ---- ### cosine_proximity ```python keras.metrics.cosine_proximity(y_true, y_pred, axis=-1) ``` ---- ### clone_metric ```python keras.metrics.clone_metric(metric) ``` 若有状态,返回评估指标的克隆,否则返回其本身。 ---- ### clone_metrics ```python keras.metrics.clone_metrics(metrics) ``` 克隆给定的评估指标序列/字典。 除以上评估指标,你还可以使用在损失函数页描述的损失函数作为评估指标。 ---- ## 自定义评价函数 自定义评价函数应该在编译的时候(compile)传递进去。该函数需要以 `(y_true, y_pred)` 作为输入参数,并返回一个张量作为输出结果。 ```python import keras.backend as K def mean_pred(y_true, y_pred): return K.mean(y_pred) model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy', mean_pred]) ```
keras-docs-zh/sources/metrics.md/0
{ "file_path": "keras-docs-zh/sources/metrics.md", "repo_id": "keras-docs-zh", "token_count": 1391 }
93
<jupyter_start><jupyter_text>Automatic Speech Recognition using CTC**Authors:** [Mohamed Reda Bouadjenek](https://rbouadjenek.github.io/) and [Ngoc Dung Huynh](https://www.linkedin.com/in/parkerhuynh/)**Date created:** 2021/09/26**Last modified:** 2021/09/26**Description:** Training a CTC-based model for automatic speech recognition. IntroductionSpeech recognition is an interdisciplinary subfield of computer scienceand computational linguistics that develops methodologies and technologiesthat enable the recognition and translation of spoken language into textby computers. It is also known as automatic speech recognition (ASR),computer speech recognition or speech to text (STT). It incorporatesknowledge and research in the computer science, linguistics and computerengineering fields.This demonstration shows how to combine a 2D CNN, RNN and a ConnectionistTemporal Classification (CTC) loss to build an ASR. CTC is an algorithmused to train deep neural networks in speech recognition, handwritingrecognition and other sequence problems. CTC is used when we don’t knowhow the input aligns with the output (how the characters in the transcriptalign to the audio). The model we create is similar to[DeepSpeech2](https://nvidia.github.io/OpenSeq2Seq/html/speech-recognition/deepspeech2.html).We will use the LJSpeech dataset from the[LibriVox](https://librivox.org/) project. It consists of shortaudio clips of a single speaker reading passages from 7 non-fiction books.We will evaluate the quality of the model using[Word Error Rate (WER)](https://en.wikipedia.org/wiki/Word_error_rate).WER is obtained by adding upthe substitutions, insertions, and deletions that occur in a sequence ofrecognized words. Divide that number by the total number of words originallyspoken. The result is the WER. To get the WER score you need to install the[jiwer](https://pypi.org/project/jiwer/) package. You can use the following command line:```pip install jiwer```**References:**- [LJSpeech Dataset](https://keithito.com/LJ-Speech-Dataset/)- [Speech recognition](https://en.wikipedia.org/wiki/Speech_recognition)- [Sequence Modeling With CTC](https://distill.pub/2017/ctc/)- [DeepSpeech2](https://nvidia.github.io/OpenSeq2Seq/html/speech-recognition/deepspeech2.html) Setup<jupyter_code>import pandas as pd import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers import matplotlib.pyplot as plt from IPython import display from jiwer import wer<jupyter_output><empty_output><jupyter_text>Load the LJSpeech DatasetLet's download the [LJSpeech Dataset](https://keithito.com/LJ-Speech-Dataset/).The dataset contains 13,100 audio files as `wav` files in the `/wavs/` folder.The label (transcript) for each audio file is a stringgiven in the `metadata.csv` file. The fields are:- **ID**: this is the name of the corresponding .wav file- **Transcription**: words spoken by the reader (UTF-8)- **Normalized transcription**: transcription with numbers,ordinals, and monetary units expanded into full words (UTF-8).For this demo we will use on the "Normalized transcription" field.Each audio file is a single-channel 16-bit PCM WAV with a sample rate of 22,050 Hz.<jupyter_code>data_url = "https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2" data_path = keras.utils.get_file("LJSpeech-1.1", data_url, untar=True) wavs_path = data_path + "/wavs/" metadata_path = data_path + "/metadata.csv" # Read metadata file and parse it metadata_df = pd.read_csv(metadata_path, sep="|", header=None, quoting=3) metadata_df.columns = ["file_name", "transcription", "normalized_transcription"] metadata_df = metadata_df[["file_name", "normalized_transcription"]] metadata_df = metadata_df.sample(frac=1).reset_index(drop=True) metadata_df.head(3)<jupyter_output><empty_output><jupyter_text>We now split the data into training and validation set.<jupyter_code>split = int(len(metadata_df) * 0.90) df_train = metadata_df[:split] df_val = metadata_df[split:] print(f"Size of the training set: {len(df_train)}") print(f"Size of the training set: {len(df_val)}")<jupyter_output><empty_output><jupyter_text>PreprocessingWe first prepare the vocabulary to be used.<jupyter_code># The set of characters accepted in the transcription. characters = [x for x in "abcdefghijklmnopqrstuvwxyz'?! "] # Mapping characters to integers char_to_num = keras.layers.StringLookup(vocabulary=characters, oov_token="") # Mapping integers back to original characters num_to_char = keras.layers.StringLookup( vocabulary=char_to_num.get_vocabulary(), oov_token="", invert=True ) print( f"The vocabulary is: {char_to_num.get_vocabulary()} " f"(size ={char_to_num.vocabulary_size()})" )<jupyter_output><empty_output><jupyter_text>Next, we create the function that describes the transformation that we apply to eachelement of our dataset.<jupyter_code># An integer scalar Tensor. The window length in samples. frame_length = 256 # An integer scalar Tensor. The number of samples to step. frame_step = 160 # An integer scalar Tensor. The size of the FFT to apply. # If not provided, uses the smallest power of 2 enclosing frame_length. fft_length = 384 def encode_single_sample(wav_file, label): ########################################### ## Process the Audio ########################################## # 1. Read wav file file = tf.io.read_file(wavs_path + wav_file + ".wav") # 2. Decode the wav file audio, _ = tf.audio.decode_wav(file) audio = tf.squeeze(audio, axis=-1) # 3. Change type to float audio = tf.cast(audio, tf.float32) # 4. Get the spectrogram spectrogram = tf.signal.stft( audio, frame_length=frame_length, frame_step=frame_step, fft_length=fft_length ) # 5. We only need the magnitude, which can be derived by applying tf.abs spectrogram = tf.abs(spectrogram) spectrogram = tf.math.pow(spectrogram, 0.5) # 6. normalisation means = tf.math.reduce_mean(spectrogram, 1, keepdims=True) stddevs = tf.math.reduce_std(spectrogram, 1, keepdims=True) spectrogram = (spectrogram - means) / (stddevs + 1e-10) ########################################### ## Process the label ########################################## # 7. Convert label to Lower case label = tf.strings.lower(label) # 8. Split the label label = tf.strings.unicode_split(label, input_encoding="UTF-8") # 9. Map the characters in label to numbers label = char_to_num(label) # 10. Return a dict as our model is expecting two inputs return spectrogram, label<jupyter_output><empty_output><jupyter_text>Creating `Dataset` objectsWe create a `tf.data.Dataset` object that yieldsthe transformed elements, in the same order as theyappeared in the input.<jupyter_code>batch_size = 32 # Define the training dataset train_dataset = tf.data.Dataset.from_tensor_slices( (list(df_train["file_name"]), list(df_train["normalized_transcription"])) ) train_dataset = ( train_dataset.map(encode_single_sample, num_parallel_calls=tf.data.AUTOTUNE) .padded_batch(batch_size) .prefetch(buffer_size=tf.data.AUTOTUNE) ) # Define the validation dataset validation_dataset = tf.data.Dataset.from_tensor_slices( (list(df_val["file_name"]), list(df_val["normalized_transcription"])) ) validation_dataset = ( validation_dataset.map(encode_single_sample, num_parallel_calls=tf.data.AUTOTUNE) .padded_batch(batch_size) .prefetch(buffer_size=tf.data.AUTOTUNE) )<jupyter_output><empty_output><jupyter_text>Visualize the dataLet's visualize an example in our dataset, including theaudio clip, the spectrogram and the corresponding label.<jupyter_code>fig = plt.figure(figsize=(8, 5)) for batch in train_dataset.take(1): spectrogram = batch[0][0].numpy() spectrogram = np.array([np.trim_zeros(x) for x in np.transpose(spectrogram)]) label = batch[1][0] # Spectrogram label = tf.strings.reduce_join(num_to_char(label)).numpy().decode("utf-8") ax = plt.subplot(2, 1, 1) ax.imshow(spectrogram, vmax=1) ax.set_title(label) ax.axis("off") # Wav file = tf.io.read_file(wavs_path + list(df_train["file_name"])[0] + ".wav") audio, _ = tf.audio.decode_wav(file) audio = audio.numpy() ax = plt.subplot(2, 1, 2) plt.plot(audio) ax.set_title("Signal Wave") ax.set_xlim(0, len(audio)) display.display(display.Audio(np.transpose(audio), rate=16000)) plt.show()<jupyter_output><empty_output><jupyter_text>ModelWe first define the CTC Loss function.<jupyter_code>def CTCLoss(y_true, y_pred): # Compute the training-time loss value batch_len = tf.cast(tf.shape(y_true)[0], dtype="int64") input_length = tf.cast(tf.shape(y_pred)[1], dtype="int64") label_length = tf.cast(tf.shape(y_true)[1], dtype="int64") input_length = input_length * tf.ones(shape=(batch_len, 1), dtype="int64") label_length = label_length * tf.ones(shape=(batch_len, 1), dtype="int64") loss = keras.backend.ctc_batch_cost(y_true, y_pred, input_length, label_length) return loss<jupyter_output><empty_output><jupyter_text>We now define our model. We will define a model similar to[DeepSpeech2](https://nvidia.github.io/OpenSeq2Seq/html/speech-recognition/deepspeech2.html).<jupyter_code>def build_model(input_dim, output_dim, rnn_layers=5, rnn_units=128): """Model similar to DeepSpeech2.""" # Model's input input_spectrogram = layers.Input((None, input_dim), name="input") # Expand the dimension to use 2D CNN. x = layers.Reshape((-1, input_dim, 1), name="expand_dim")(input_spectrogram) # Convolution layer 1 x = layers.Conv2D( filters=32, kernel_size=[11, 41], strides=[2, 2], padding="same", use_bias=False, name="conv_1", )(x) x = layers.BatchNormalization(name="conv_1_bn")(x) x = layers.ReLU(name="conv_1_relu")(x) # Convolution layer 2 x = layers.Conv2D( filters=32, kernel_size=[11, 21], strides=[1, 2], padding="same", use_bias=False, name="conv_2", )(x) x = layers.BatchNormalization(name="conv_2_bn")(x) x = layers.ReLU(name="conv_2_relu")(x) # Reshape the resulted volume to feed the RNNs layers x = layers.Reshape((-1, x.shape[-2] * x.shape[-1]))(x) # RNN layers for i in range(1, rnn_layers + 1): recurrent = layers.GRU( units=rnn_units, activation="tanh", recurrent_activation="sigmoid", use_bias=True, return_sequences=True, reset_after=True, name=f"gru_{i}", ) x = layers.Bidirectional( recurrent, name=f"bidirectional_{i}", merge_mode="concat" )(x) if i < rnn_layers: x = layers.Dropout(rate=0.5)(x) # Dense layer x = layers.Dense(units=rnn_units * 2, name="dense_1")(x) x = layers.ReLU(name="dense_1_relu")(x) x = layers.Dropout(rate=0.5)(x) # Classification layer output = layers.Dense(units=output_dim + 1, activation="softmax")(x) # Model model = keras.Model(input_spectrogram, output, name="DeepSpeech_2") # Optimizer opt = keras.optimizers.Adam(learning_rate=1e-4) # Compile the model and return model.compile(optimizer=opt, loss=CTCLoss) return model # Get the model model = build_model( input_dim=fft_length // 2 + 1, output_dim=char_to_num.vocabulary_size(), rnn_units=512, ) model.summary(line_length=110)<jupyter_output><empty_output><jupyter_text>Training and Evaluating<jupyter_code># A utility function to decode the output of the network def decode_batch_predictions(pred): input_len = np.ones(pred.shape[0]) * pred.shape[1] # Use greedy search. For complex tasks, you can use beam search results = keras.backend.ctc_decode(pred, input_length=input_len, greedy=True)[0][0] # Iterate over the results and get back the text output_text = [] for result in results: result = tf.strings.reduce_join(num_to_char(result)).numpy().decode("utf-8") output_text.append(result) return output_text # A callback class to output a few transcriptions during training class CallbackEval(keras.callbacks.Callback): """Displays a batch of outputs after every epoch.""" def __init__(self, dataset): super().__init__() self.dataset = dataset def on_epoch_end(self, epoch: int, logs=None): predictions = [] targets = [] for batch in self.dataset: X, y = batch batch_predictions = model.predict(X) batch_predictions = decode_batch_predictions(batch_predictions) predictions.extend(batch_predictions) for label in y: label = ( tf.strings.reduce_join(num_to_char(label)).numpy().decode("utf-8") ) targets.append(label) wer_score = wer(targets, predictions) print("-" * 100) print(f"Word Error Rate: {wer_score:.4f}") print("-" * 100) for i in np.random.randint(0, len(predictions), 2): print(f"Target : {targets[i]}") print(f"Prediction: {predictions[i]}") print("-" * 100)<jupyter_output><empty_output><jupyter_text>Let's start the training process.<jupyter_code># Define the number of epochs. epochs = 1 # Callback function to check transcription on the val set. validation_callback = CallbackEval(validation_dataset) # Train the model history = model.fit( train_dataset, validation_data=validation_dataset, epochs=epochs, callbacks=[validation_callback], )<jupyter_output><empty_output><jupyter_text>Inference<jupyter_code># Let's check results on more validation samples predictions = [] targets = [] for batch in validation_dataset: X, y = batch batch_predictions = model.predict(X) batch_predictions = decode_batch_predictions(batch_predictions) predictions.extend(batch_predictions) for label in y: label = tf.strings.reduce_join(num_to_char(label)).numpy().decode("utf-8") targets.append(label) wer_score = wer(targets, predictions) print("-" * 100) print(f"Word Error Rate: {wer_score:.4f}") print("-" * 100) for i in np.random.randint(0, len(predictions), 5): print(f"Target : {targets[i]}") print(f"Prediction: {predictions[i]}") print("-" * 100)<jupyter_output><empty_output>
keras-io/examples/audio/ipynb/ctc_asr.ipynb/0
{ "file_path": "keras-io/examples/audio/ipynb/ctc_asr.ipynb", "repo_id": "keras-io", "token_count": 5436 }
94
<jupyter_start><jupyter_text>Drug Molecule Generation with VAE**Author:** [Victor Basu](https://www.linkedin.com/in/victor-basu-520958147)**Date created:** 2022/03/10**Last modified:** 2022/03/24**Description:** Implementing a Convolutional Variational AutoEncoder (VAE) for Drug Discovery. IntroductionIn this example, we use a Variational Autoencoder to generate molecules for drug discovery.We use the research papers[Automatic chemical design using a data-driven continuous representation of molecules](https://arxiv.org/abs/1610.02415)and [MolGAN: An implicit generative model for small molecular graphs](https://arxiv.org/abs/1805.11973)as a reference.The model described in the paper **Automatic chemical design using a data-drivencontinuous representation of molecules** generates new molecules via efficient explorationof open-ended spaces of chemical compounds. The model consists ofthree components: Encoder, Decoder and Predictor. The Encoder converts the discreterepresentation of a molecule into a real-valued continuous vector, and the Decoderconverts these continuous vectors back to discrete molecule representations. ThePredictor estimates chemical properties from the latent continuous vector representationof the molecule. Continuous representations allow the use of gradient-basedoptimization to efficiently guide the search for optimized functional compounds.**Figure (a)** - A diagram of the autoencoder used for molecule design, including thejoint property prediction model. Starting from a discrete molecule representation, suchas a SMILES string, the encoder network converts each molecule into a vector in thelatent space, which is effectively a continuous molecule representation. Given a pointin the latent space, the decoder network produces a corresponding SMILES string. Amultilayer perceptron network estimates the value of target properties associated witheach molecule.**Figure (b)** - Gradient-based optimization in continuous latent space. After training asurrogate model `f(z)` to predict the properties of molecules based on their latentrepresentation `z`, we can optimize `f(z)` with respect to `z` to find new latentrepresentations expected to match specific desired properties. These new latentrepresentations can then be decoded into SMILES strings, at which point their propertiescan be tested empirically.For an explanation and implementation of MolGAN, please refer to the Keras Example[**WGAN-GP with R-GCN for the generation of small molecular graphs**](https://bit.ly/3pU6zXK) byAlexander Kensert. Many of the functions used in the present example are from the above Keras example. SetupRDKit is an open source toolkit for cheminformatics and machine learning. This toolkit come in handyif one is into drug discovery domain. In this example, RDKit is used to convenientlyand efficiently transform SMILES to molecule objects, and then from those obtain sets of atomsand bonds.Quoting from[WGAN-GP with R-GCN for the generation of small molecular graphs](https://keras.io/examples/generative/wgan-graphs/)):**"SMILES expresses the structure of a given molecule in the form of an ASCII string.The SMILES string is a compact encoding which, for smaller molecules, is relatively human-readable.Encoding molecules as a string both alleviates and facilitates database and/or web searchingof a given molecule. RDKit uses algorithms to accurately transform a given SMILES toa molecule object, which can then be used to compute a great number of molecular properties/features."**<jupyter_code>!pip -q install rdkit-pypi==2021.9.4 import ast import pandas as pd import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers import matplotlib.pyplot as plt from rdkit import Chem, RDLogger from rdkit.Chem import BondType from rdkit.Chem.Draw import MolsToGridImage RDLogger.DisableLog("rdApp.*")<jupyter_output><empty_output><jupyter_text>DatasetWe use the [**ZINC – A Free Database of Commercially Available Compounds forVirtual Screening**](https://bit.ly/3IVBI4x) dataset. The dataset comes with moleculeformula in SMILE representation along with their respective molecular properties such as**logP** (water–octanal partition coefficient), **SAS** (syntheticaccessibility score) and **QED** (Qualitative Estimate of Drug-likeness).<jupyter_code>csv_path = keras.utils.get_file( "/content/250k_rndm_zinc_drugs_clean_3.csv", "https://raw.githubusercontent.com/aspuru-guzik-group/chemical_vae/master/models/zinc_properties/250k_rndm_zinc_drugs_clean_3.csv", ) df = pd.read_csv("/content/250k_rndm_zinc_drugs_clean_3.csv") df["smiles"] = df["smiles"].apply(lambda s: s.replace("\n", "")) df.head()<jupyter_output><empty_output><jupyter_text>Hyperparameters<jupyter_code>SMILE_CHARSET = '["C", "B", "F", "I", "H", "O", "N", "S", "P", "Cl", "Br"]' bond_mapping = {"SINGLE": 0, "DOUBLE": 1, "TRIPLE": 2, "AROMATIC": 3} bond_mapping.update( {0: BondType.SINGLE, 1: BondType.DOUBLE, 2: BondType.TRIPLE, 3: BondType.AROMATIC} ) SMILE_CHARSET = ast.literal_eval(SMILE_CHARSET) MAX_MOLSIZE = max(df["smiles"].str.len()) SMILE_to_index = dict((c, i) for i, c in enumerate(SMILE_CHARSET)) index_to_SMILE = dict((i, c) for i, c in enumerate(SMILE_CHARSET)) atom_mapping = dict(SMILE_to_index) atom_mapping.update(index_to_SMILE) BATCH_SIZE = 100 EPOCHS = 10 VAE_LR = 5e-4 NUM_ATOMS = 120 # Maximum number of atoms ATOM_DIM = len(SMILE_CHARSET) # Number of atom types BOND_DIM = 4 + 1 # Number of bond types LATENT_DIM = 435 # Size of the latent space def smiles_to_graph(smiles): # Converts SMILES to molecule object molecule = Chem.MolFromSmiles(smiles) # Initialize adjacency and feature tensor adjacency = np.zeros((BOND_DIM, NUM_ATOMS, NUM_ATOMS), "float32") features = np.zeros((NUM_ATOMS, ATOM_DIM), "float32") # loop over each atom in molecule for atom in molecule.GetAtoms(): i = atom.GetIdx() atom_type = atom_mapping[atom.GetSymbol()] features[i] = np.eye(ATOM_DIM)[atom_type] # loop over one-hop neighbors for neighbor in atom.GetNeighbors(): j = neighbor.GetIdx() bond = molecule.GetBondBetweenAtoms(i, j) bond_type_idx = bond_mapping[bond.GetBondType().name] adjacency[bond_type_idx, [i, j], [j, i]] = 1 # Where no bond, add 1 to last channel (indicating "non-bond") # Notice: channels-first adjacency[-1, np.sum(adjacency, axis=0) == 0] = 1 # Where no atom, add 1 to last column (indicating "non-atom") features[np.where(np.sum(features, axis=1) == 0)[0], -1] = 1 return adjacency, features def graph_to_molecule(graph): # Unpack graph adjacency, features = graph # RWMol is a molecule object intended to be edited molecule = Chem.RWMol() # Remove "no atoms" & atoms with no bonds keep_idx = np.where( (np.argmax(features, axis=1) != ATOM_DIM - 1) & (np.sum(adjacency[:-1], axis=(0, 1)) != 0) )[0] features = features[keep_idx] adjacency = adjacency[:, keep_idx, :][:, :, keep_idx] # Add atoms to molecule for atom_type_idx in np.argmax(features, axis=1): atom = Chem.Atom(atom_mapping[atom_type_idx]) _ = molecule.AddAtom(atom) # Add bonds between atoms in molecule; based on the upper triangles # of the [symmetric] adjacency tensor (bonds_ij, atoms_i, atoms_j) = np.where(np.triu(adjacency) == 1) for (bond_ij, atom_i, atom_j) in zip(bonds_ij, atoms_i, atoms_j): if atom_i == atom_j or bond_ij == BOND_DIM - 1: continue bond_type = bond_mapping[bond_ij] molecule.AddBond(int(atom_i), int(atom_j), bond_type) # Sanitize the molecule; for more information on sanitization, see # https://www.rdkit.org/docs/RDKit_Book.html#molecular-sanitization flag = Chem.SanitizeMol(molecule, catchErrors=True) # Let's be strict. If sanitization fails, return None if flag != Chem.SanitizeFlags.SANITIZE_NONE: return None return molecule<jupyter_output><empty_output><jupyter_text>Generate training set<jupyter_code>train_df = df.sample(frac=0.75, random_state=42) # random state is a seed value train_df.reset_index(drop=True, inplace=True) adjacency_tensor, feature_tensor, qed_tensor = [], [], [] for idx in range(8000): adjacency, features = smiles_to_graph(train_df.loc[idx]["smiles"]) qed = train_df.loc[idx]["qed"] adjacency_tensor.append(adjacency) feature_tensor.append(features) qed_tensor.append(qed) adjacency_tensor = np.array(adjacency_tensor) feature_tensor = np.array(feature_tensor) qed_tensor = np.array(qed_tensor) class RelationalGraphConvLayer(keras.layers.Layer): def __init__( self, units=128, activation="relu", use_bias=False, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, **kwargs ): super().__init__(**kwargs) self.units = units self.activation = keras.activations.get(activation) self.use_bias = use_bias self.kernel_initializer = keras.initializers.get(kernel_initializer) self.bias_initializer = keras.initializers.get(bias_initializer) self.kernel_regularizer = keras.regularizers.get(kernel_regularizer) self.bias_regularizer = keras.regularizers.get(bias_regularizer) def build(self, input_shape): bond_dim = input_shape[0][1] atom_dim = input_shape[1][2] self.kernel = self.add_weight( shape=(bond_dim, atom_dim, self.units), initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, trainable=True, name="W", dtype=tf.float32, ) if self.use_bias: self.bias = self.add_weight( shape=(bond_dim, 1, self.units), initializer=self.bias_initializer, regularizer=self.bias_regularizer, trainable=True, name="b", dtype=tf.float32, ) self.built = True def call(self, inputs, training=False): adjacency, features = inputs # Aggregate information from neighbors x = tf.matmul(adjacency, features[:, None, :, :]) # Apply linear transformation x = tf.matmul(x, self.kernel) if self.use_bias: x += self.bias # Reduce bond types dim x_reduced = tf.reduce_sum(x, axis=1) # Apply non-linear transformation return self.activation(x_reduced)<jupyter_output><empty_output><jupyter_text>Build the Encoder and DecoderThe Encoder takes as input a molecule's graph adjacency matrix and feature matrix.These features are processed via a Graph Convolution layer, then are flattened andprocessed by several Dense layers to derive `z_mean` and `log_var`, thelatent-space representation of the molecule.**Graph Convolution layer**: The relational graph convolution layer implementsnon-linearly transformed neighbourhood aggregations. We can define these layers asfollows:`H_hat**(l+1) = σ(D_hat**(-1) * A_hat * H_hat**(l+1) * W**(l))`Where `σ` denotes the non-linear transformation (commonly a ReLU activation), `A` theadjacency tensor, `H_hat**(l)` the feature tensor at the `l-th` layer, `D_hat**(-1)` theinverse diagonal degree tensor of `A_hat`, and `W_hat**(l)` the trainable weight tensorat the `l-th` layer. Specifically, for each bond type (relation), the degree tensorexpresses, in the diagonal, the number of bonds attached to each atom.Source:[WGAN-GP with R-GCN for the generation of small molecular graphs](https://keras.io/examples/generative/wgan-graphs/))The Decoder takes as input the latent-space representation and predictsthe graph adjacency matrix and feature matrix of the corresponding molecules.<jupyter_code>def get_encoder( gconv_units, latent_dim, adjacency_shape, feature_shape, dense_units, dropout_rate ): adjacency = keras.layers.Input(shape=adjacency_shape) features = keras.layers.Input(shape=feature_shape) # Propagate through one or more graph convolutional layers features_transformed = features for units in gconv_units: features_transformed = RelationalGraphConvLayer(units)( [adjacency, features_transformed] ) # Reduce 2-D representation of molecule to 1-D x = keras.layers.GlobalAveragePooling1D()(features_transformed) # Propagate through one or more densely connected layers for units in dense_units: x = layers.Dense(units, activation="relu")(x) x = layers.Dropout(dropout_rate)(x) z_mean = layers.Dense(latent_dim, dtype="float32", name="z_mean")(x) log_var = layers.Dense(latent_dim, dtype="float32", name="log_var")(x) encoder = keras.Model([adjacency, features], [z_mean, log_var], name="encoder") return encoder def get_decoder(dense_units, dropout_rate, latent_dim, adjacency_shape, feature_shape): latent_inputs = keras.Input(shape=(latent_dim,)) x = latent_inputs for units in dense_units: x = keras.layers.Dense(units, activation="tanh")(x) x = keras.layers.Dropout(dropout_rate)(x) # Map outputs of previous layer (x) to [continuous] adjacency tensors (x_adjacency) x_adjacency = keras.layers.Dense(tf.math.reduce_prod(adjacency_shape))(x) x_adjacency = keras.layers.Reshape(adjacency_shape)(x_adjacency) # Symmetrify tensors in the last two dimensions x_adjacency = (x_adjacency + tf.transpose(x_adjacency, (0, 1, 3, 2))) / 2 x_adjacency = keras.layers.Softmax(axis=1)(x_adjacency) # Map outputs of previous layer (x) to [continuous] feature tensors (x_features) x_features = keras.layers.Dense(tf.math.reduce_prod(feature_shape))(x) x_features = keras.layers.Reshape(feature_shape)(x_features) x_features = keras.layers.Softmax(axis=2)(x_features) decoder = keras.Model( latent_inputs, outputs=[x_adjacency, x_features], name="decoder" ) return decoder<jupyter_output><empty_output><jupyter_text>Build the Sampling layer<jupyter_code>class Sampling(layers.Layer): def call(self, inputs): z_mean, z_log_var = inputs batch = tf.shape(z_log_var)[0] dim = tf.shape(z_log_var)[1] epsilon = tf.keras.backend.random_normal(shape=(batch, dim)) return z_mean + tf.exp(0.5 * z_log_var) * epsilon<jupyter_output><empty_output><jupyter_text>Build the VAEThis model is trained to optimize four losses:* Categorical crossentropy* KL divergence loss* Property prediction loss* Graph loss (gradient penalty)The categorical crossentropy loss function measures the model'sreconstruction accuracy. The Property prediction loss estimates the mean squarederror between predicted and actual properties after running the latent representationthrough a property prediction model. The propertyprediction of the model is optimized via binary crossentropy. The gradientpenalty is further guided by the model's property (QED) prediction.A gradient penalty is an alternative soft constraint on the1-Lipschitz continuity as an improvement upon the gradient clipping scheme from theoriginal neural network("1-Lipschitz continuity" means that the norm of the gradient is at most 1 at evey singlepoint of the function).It adds a regularization term to the loss function.<jupyter_code>class MoleculeGenerator(keras.Model): def __init__(self, encoder, decoder, max_len, **kwargs): super().__init__(**kwargs) self.encoder = encoder self.decoder = decoder self.property_prediction_layer = layers.Dense(1) self.max_len = max_len self.train_total_loss_tracker = keras.metrics.Mean(name="train_total_loss") self.val_total_loss_tracker = keras.metrics.Mean(name="val_total_loss") def train_step(self, data): adjacency_tensor, feature_tensor, qed_tensor = data[0] graph_real = [adjacency_tensor, feature_tensor] self.batch_size = tf.shape(qed_tensor)[0] with tf.GradientTape() as tape: z_mean, z_log_var, qed_pred, gen_adjacency, gen_features = self( graph_real, training=True ) graph_generated = [gen_adjacency, gen_features] total_loss = self._compute_loss( z_log_var, z_mean, qed_tensor, qed_pred, graph_real, graph_generated ) grads = tape.gradient(total_loss, self.trainable_weights) self.optimizer.apply_gradients(zip(grads, self.trainable_weights)) self.train_total_loss_tracker.update_state(total_loss) return {"loss": self.train_total_loss_tracker.result()} def _compute_loss( self, z_log_var, z_mean, qed_true, qed_pred, graph_real, graph_generated ): adjacency_real, features_real = graph_real adjacency_gen, features_gen = graph_generated adjacency_loss = tf.reduce_mean( tf.reduce_sum( keras.losses.categorical_crossentropy(adjacency_real, adjacency_gen), axis=(1, 2), ) ) features_loss = tf.reduce_mean( tf.reduce_sum( keras.losses.categorical_crossentropy(features_real, features_gen), axis=(1), ) ) kl_loss = -0.5 * tf.reduce_sum( 1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var), 1 ) kl_loss = tf.reduce_mean(kl_loss) property_loss = tf.reduce_mean( keras.losses.binary_crossentropy(qed_true, qed_pred) ) graph_loss = self._gradient_penalty(graph_real, graph_generated) return kl_loss + property_loss + graph_loss + adjacency_loss + features_loss def _gradient_penalty(self, graph_real, graph_generated): # Unpack graphs adjacency_real, features_real = graph_real adjacency_generated, features_generated = graph_generated # Generate interpolated graphs (adjacency_interp and features_interp) alpha = tf.random.uniform([self.batch_size]) alpha = tf.reshape(alpha, (self.batch_size, 1, 1, 1)) adjacency_interp = (adjacency_real * alpha) + (1 - alpha) * adjacency_generated alpha = tf.reshape(alpha, (self.batch_size, 1, 1)) features_interp = (features_real * alpha) + (1 - alpha) * features_generated # Compute the logits of interpolated graphs with tf.GradientTape() as tape: tape.watch(adjacency_interp) tape.watch(features_interp) _, _, logits, _, _ = self( [adjacency_interp, features_interp], training=True ) # Compute the gradients with respect to the interpolated graphs grads = tape.gradient(logits, [adjacency_interp, features_interp]) # Compute the gradient penalty grads_adjacency_penalty = (1 - tf.norm(grads[0], axis=1)) ** 2 grads_features_penalty = (1 - tf.norm(grads[1], axis=2)) ** 2 return tf.reduce_mean( tf.reduce_mean(grads_adjacency_penalty, axis=(-2, -1)) + tf.reduce_mean(grads_features_penalty, axis=(-1)) ) def inference(self, batch_size): z = tf.random.normal((batch_size, LATENT_DIM)) reconstruction_adjacency, reconstruction_features = model.decoder.predict(z) # obtain one-hot encoded adjacency tensor adjacency = tf.argmax(reconstruction_adjacency, axis=1) adjacency = tf.one_hot(adjacency, depth=BOND_DIM, axis=1) # Remove potential self-loops from adjacency adjacency = tf.linalg.set_diag(adjacency, tf.zeros(tf.shape(adjacency)[:-1])) # obtain one-hot encoded feature tensor features = tf.argmax(reconstruction_features, axis=2) features = tf.one_hot(features, depth=ATOM_DIM, axis=2) return [ graph_to_molecule([adjacency[i].numpy(), features[i].numpy()]) for i in range(batch_size) ] def call(self, inputs): z_mean, log_var = self.encoder(inputs) z = Sampling()([z_mean, log_var]) gen_adjacency, gen_features = self.decoder(z) property_pred = self.property_prediction_layer(z_mean) return z_mean, log_var, property_pred, gen_adjacency, gen_features<jupyter_output><empty_output><jupyter_text>Train the model<jupyter_code>vae_optimizer = tf.keras.optimizers.Adam(learning_rate=VAE_LR) encoder = get_encoder( gconv_units=[9], adjacency_shape=(BOND_DIM, NUM_ATOMS, NUM_ATOMS), feature_shape=(NUM_ATOMS, ATOM_DIM), latent_dim=LATENT_DIM, dense_units=[512], dropout_rate=0.0, ) decoder = get_decoder( dense_units=[128, 256, 512], dropout_rate=0.2, latent_dim=LATENT_DIM, adjacency_shape=(BOND_DIM, NUM_ATOMS, NUM_ATOMS), feature_shape=(NUM_ATOMS, ATOM_DIM), ) model = MoleculeGenerator(encoder, decoder, MAX_MOLSIZE) model.compile(vae_optimizer) history = model.fit([adjacency_tensor, feature_tensor, qed_tensor], epochs=EPOCHS)<jupyter_output><empty_output><jupyter_text>InferenceWe use our model to generate new valid molecules from different points of the latent space. Generate unique Molecules with the model<jupyter_code>molecules = model.inference(1000) MolsToGridImage( [m for m in molecules if m is not None][:1000], molsPerRow=5, subImgSize=(260, 160) )<jupyter_output><empty_output><jupyter_text>Display latent space clusters with respect to molecular properties (QAE)<jupyter_code>def plot_latent(vae, data, labels): # display a 2D plot of the property in the latent space z_mean, _ = vae.encoder.predict(data) plt.figure(figsize=(12, 10)) plt.scatter(z_mean[:, 0], z_mean[:, 1], c=labels) plt.colorbar() plt.xlabel("z[0]") plt.ylabel("z[1]") plt.show() plot_latent(model, [adjacency_tensor[:8000], feature_tensor[:8000]], qed_tensor[:8000])<jupyter_output><empty_output>
keras-io/examples/generative/ipynb/molecule_generation.ipynb/0
{ "file_path": "keras-io/examples/generative/ipynb/molecule_generation.ipynb", "repo_id": "keras-io", "token_count": 8506 }
95
# CycleGAN **Author:** [A_K_Nain](https://twitter.com/A_K_Nain)<br> **Date created:** 2020/08/12<br> **Last modified:** 2020/08/12<br> **Description:** Implementation of CycleGAN. <img class="k-inline-icon" src="https://colab.research.google.com/img/colab_favicon.ico"/> [**View in Colab**](https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/generative/ipynb/cyclegan.ipynb) <span class="k-dot">•</span><img class="k-inline-icon" src="https://github.com/favicon.ico"/> [**GitHub source**](https://github.com/keras-team/keras-io/blob/master/examples/generative/cyclegan.py) --- ## CycleGAN CycleGAN is a model that aims to solve the image-to-image translation problem. The goal of the image-to-image translation problem is to learn the mapping between an input image and an output image using a training set of aligned image pairs. However, obtaining paired examples isn't always feasible. CycleGAN tries to learn this mapping without requiring paired input-output images, using cycle-consistent adversarial networks. - [Paper](https://arxiv.org/pdf/1703.10593.pdf) - [Original implementation](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix) --- ## Setup ```python import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers import tensorflow_addons as tfa import tensorflow_datasets as tfds tfds.disable_progress_bar() autotune = tf.data.AUTOTUNE ``` --- ## Prepare the dataset In this example, we will be using the [horse to zebra](https://www.tensorflow.org/datasets/catalog/cycle_gan#cycle_ganhorse2zebra) dataset. ```python # Load the horse-zebra dataset using tensorflow-datasets. dataset, _ = tfds.load("cycle_gan/horse2zebra", with_info=True, as_supervised=True) train_horses, train_zebras = dataset["trainA"], dataset["trainB"] test_horses, test_zebras = dataset["testA"], dataset["testB"] # Define the standard image size. orig_img_size = (286, 286) # Size of the random crops to be used during training. input_img_size = (256, 256, 3) # Weights initializer for the layers. kernel_init = keras.initializers.RandomNormal(mean=0.0, stddev=0.02) # Gamma initializer for instance normalization. gamma_init = keras.initializers.RandomNormal(mean=0.0, stddev=0.02) buffer_size = 256 batch_size = 1 def normalize_img(img): img = tf.cast(img, dtype=tf.float32) # Map values in the range [-1, 1] return (img / 127.5) - 1.0 def preprocess_train_image(img, label): # Random flip img = tf.image.random_flip_left_right(img) # Resize to the original size first img = tf.image.resize(img, [*orig_img_size]) # Random crop to 256X256 img = tf.image.random_crop(img, size=[*input_img_size]) # Normalize the pixel values in the range [-1, 1] img = normalize_img(img) return img def preprocess_test_image(img, label): # Only resizing and normalization for the test images. img = tf.image.resize(img, [input_img_size[0], input_img_size[1]]) img = normalize_img(img) return img ``` --- ## Create `Dataset` objects ```python # Apply the preprocessing operations to the training data train_horses = ( train_horses.map(preprocess_train_image, num_parallel_calls=autotune) .cache() .shuffle(buffer_size) .batch(batch_size) ) train_zebras = ( train_zebras.map(preprocess_train_image, num_parallel_calls=autotune) .cache() .shuffle(buffer_size) .batch(batch_size) ) # Apply the preprocessing operations to the test data test_horses = ( test_horses.map(preprocess_test_image, num_parallel_calls=autotune) .cache() .shuffle(buffer_size) .batch(batch_size) ) test_zebras = ( test_zebras.map(preprocess_test_image, num_parallel_calls=autotune) .cache() .shuffle(buffer_size) .batch(batch_size) ) ``` --- ## Visualize some samples ```python _, ax = plt.subplots(4, 2, figsize=(10, 15)) for i, samples in enumerate(zip(train_horses.take(4), train_zebras.take(4))): horse = (((samples[0][0] * 127.5) + 127.5).numpy()).astype(np.uint8) zebra = (((samples[1][0] * 127.5) + 127.5).numpy()).astype(np.uint8) ax[i, 0].imshow(horse) ax[i, 1].imshow(zebra) plt.show() ``` ![png](/img/examples/generative/cyclegan/cyclegan_9_0.png) --- ## Building blocks used in the CycleGAN generators and discriminators ```python class ReflectionPadding2D(layers.Layer): """Implements Reflection Padding as a layer. Args: padding(tuple): Amount of padding for the spatial dimensions. Returns: A padded tensor with the same type as the input tensor. """ def __init__(self, padding=(1, 1), **kwargs): self.padding = tuple(padding) super().__init__(**kwargs) def call(self, input_tensor, mask=None): padding_width, padding_height = self.padding padding_tensor = [ [0, 0], [padding_height, padding_height], [padding_width, padding_width], [0, 0], ] return tf.pad(input_tensor, padding_tensor, mode="REFLECT") def residual_block( x, activation, kernel_initializer=kernel_init, kernel_size=(3, 3), strides=(1, 1), padding="valid", gamma_initializer=gamma_init, use_bias=False, ): dim = x.shape[-1] input_tensor = x x = ReflectionPadding2D()(input_tensor) x = layers.Conv2D( dim, kernel_size, strides=strides, kernel_initializer=kernel_initializer, padding=padding, use_bias=use_bias, )(x) x = tfa.layers.InstanceNormalization(gamma_initializer=gamma_initializer)(x) x = activation(x) x = ReflectionPadding2D()(x) x = layers.Conv2D( dim, kernel_size, strides=strides, kernel_initializer=kernel_initializer, padding=padding, use_bias=use_bias, )(x) x = tfa.layers.InstanceNormalization(gamma_initializer=gamma_initializer)(x) x = layers.add([input_tensor, x]) return x def downsample( x, filters, activation, kernel_initializer=kernel_init, kernel_size=(3, 3), strides=(2, 2), padding="same", gamma_initializer=gamma_init, use_bias=False, ): x = layers.Conv2D( filters, kernel_size, strides=strides, kernel_initializer=kernel_initializer, padding=padding, use_bias=use_bias, )(x) x = tfa.layers.InstanceNormalization(gamma_initializer=gamma_initializer)(x) if activation: x = activation(x) return x def upsample( x, filters, activation, kernel_size=(3, 3), strides=(2, 2), padding="same", kernel_initializer=kernel_init, gamma_initializer=gamma_init, use_bias=False, ): x = layers.Conv2DTranspose( filters, kernel_size, strides=strides, padding=padding, kernel_initializer=kernel_initializer, use_bias=use_bias, )(x) x = tfa.layers.InstanceNormalization(gamma_initializer=gamma_initializer)(x) if activation: x = activation(x) return x ``` --- ## Build the generators The generator consists of downsampling blocks: nine residual blocks and upsampling blocks. The structure of the generator is the following: ``` c7s1-64 ==> Conv block with `relu` activation, filter size of 7 d128 ====| |-> 2 downsampling blocks d256 ====| R256 ====| R256 | R256 | R256 | R256 |-> 9 residual blocks R256 | R256 | R256 | R256 ====| u128 ====| |-> 2 upsampling blocks u64 ====| c7s1-3 => Last conv block with `tanh` activation, filter size of 7. ``` ```python def get_resnet_generator( filters=64, num_downsampling_blocks=2, num_residual_blocks=9, num_upsample_blocks=2, gamma_initializer=gamma_init, name=None, ): img_input = layers.Input(shape=input_img_size, name=name + "_img_input") x = ReflectionPadding2D(padding=(3, 3))(img_input) x = layers.Conv2D(filters, (7, 7), kernel_initializer=kernel_init, use_bias=False)( x ) x = tfa.layers.InstanceNormalization(gamma_initializer=gamma_initializer)(x) x = layers.Activation("relu")(x) # Downsampling for _ in range(num_downsampling_blocks): filters *= 2 x = downsample(x, filters=filters, activation=layers.Activation("relu")) # Residual blocks for _ in range(num_residual_blocks): x = residual_block(x, activation=layers.Activation("relu")) # Upsampling for _ in range(num_upsample_blocks): filters //= 2 x = upsample(x, filters, activation=layers.Activation("relu")) # Final block x = ReflectionPadding2D(padding=(3, 3))(x) x = layers.Conv2D(3, (7, 7), padding="valid")(x) x = layers.Activation("tanh")(x) model = keras.models.Model(img_input, x, name=name) return model ``` --- ## Build the discriminators The discriminators implement the following architecture: `C64->C128->C256->C512` ```python def get_discriminator( filters=64, kernel_initializer=kernel_init, num_downsampling=3, name=None ): img_input = layers.Input(shape=input_img_size, name=name + "_img_input") x = layers.Conv2D( filters, (4, 4), strides=(2, 2), padding="same", kernel_initializer=kernel_initializer, )(img_input) x = layers.LeakyReLU(0.2)(x) num_filters = filters for num_downsample_block in range(3): num_filters *= 2 if num_downsample_block < 2: x = downsample( x, filters=num_filters, activation=layers.LeakyReLU(0.2), kernel_size=(4, 4), strides=(2, 2), ) else: x = downsample( x, filters=num_filters, activation=layers.LeakyReLU(0.2), kernel_size=(4, 4), strides=(1, 1), ) x = layers.Conv2D( 1, (4, 4), strides=(1, 1), padding="same", kernel_initializer=kernel_initializer )(x) model = keras.models.Model(inputs=img_input, outputs=x, name=name) return model # Get the generators gen_G = get_resnet_generator(name="generator_G") gen_F = get_resnet_generator(name="generator_F") # Get the discriminators disc_X = get_discriminator(name="discriminator_X") disc_Y = get_discriminator(name="discriminator_Y") ``` --- ## Build the CycleGAN model We will override the `train_step()` method of the `Model` class for training via `fit()`. ```python class CycleGan(keras.Model): def __init__( self, generator_G, generator_F, discriminator_X, discriminator_Y, lambda_cycle=10.0, lambda_identity=0.5, ): super().__init__() self.gen_G = generator_G self.gen_F = generator_F self.disc_X = discriminator_X self.disc_Y = discriminator_Y self.lambda_cycle = lambda_cycle self.lambda_identity = lambda_identity def compile( self, gen_G_optimizer, gen_F_optimizer, disc_X_optimizer, disc_Y_optimizer, gen_loss_fn, disc_loss_fn, ): super().compile() self.gen_G_optimizer = gen_G_optimizer self.gen_F_optimizer = gen_F_optimizer self.disc_X_optimizer = disc_X_optimizer self.disc_Y_optimizer = disc_Y_optimizer self.generator_loss_fn = gen_loss_fn self.discriminator_loss_fn = disc_loss_fn self.cycle_loss_fn = keras.losses.MeanAbsoluteError() self.identity_loss_fn = keras.losses.MeanAbsoluteError() def train_step(self, batch_data): # x is Horse and y is zebra real_x, real_y = batch_data # For CycleGAN, we need to calculate different # kinds of losses for the generators and discriminators. # We will perform the following steps here: # # 1. Pass real images through the generators and get the generated images # 2. Pass the generated images back to the generators to check if we # can predict the original image from the generated image. # 3. Do an identity mapping of the real images using the generators. # 4. Pass the generated images in 1) to the corresponding discriminators. # 5. Calculate the generators total loss (adversarial + cycle + identity) # 6. Calculate the discriminators loss # 7. Update the weights of the generators # 8. Update the weights of the discriminators # 9. Return the losses in a dictionary with tf.GradientTape(persistent=True) as tape: # Horse to fake zebra fake_y = self.gen_G(real_x, training=True) # Zebra to fake horse -> y2x fake_x = self.gen_F(real_y, training=True) # Cycle (Horse to fake zebra to fake horse): x -> y -> x cycled_x = self.gen_F(fake_y, training=True) # Cycle (Zebra to fake horse to fake zebra) y -> x -> y cycled_y = self.gen_G(fake_x, training=True) # Identity mapping same_x = self.gen_F(real_x, training=True) same_y = self.gen_G(real_y, training=True) # Discriminator output disc_real_x = self.disc_X(real_x, training=True) disc_fake_x = self.disc_X(fake_x, training=True) disc_real_y = self.disc_Y(real_y, training=True) disc_fake_y = self.disc_Y(fake_y, training=True) # Generator adversarial loss gen_G_loss = self.generator_loss_fn(disc_fake_y) gen_F_loss = self.generator_loss_fn(disc_fake_x) # Generator cycle loss cycle_loss_G = self.cycle_loss_fn(real_y, cycled_y) * self.lambda_cycle cycle_loss_F = self.cycle_loss_fn(real_x, cycled_x) * self.lambda_cycle # Generator identity loss id_loss_G = ( self.identity_loss_fn(real_y, same_y) * self.lambda_cycle * self.lambda_identity ) id_loss_F = ( self.identity_loss_fn(real_x, same_x) * self.lambda_cycle * self.lambda_identity ) # Total generator loss total_loss_G = gen_G_loss + cycle_loss_G + id_loss_G total_loss_F = gen_F_loss + cycle_loss_F + id_loss_F # Discriminator loss disc_X_loss = self.discriminator_loss_fn(disc_real_x, disc_fake_x) disc_Y_loss = self.discriminator_loss_fn(disc_real_y, disc_fake_y) # Get the gradients for the generators grads_G = tape.gradient(total_loss_G, self.gen_G.trainable_variables) grads_F = tape.gradient(total_loss_F, self.gen_F.trainable_variables) # Get the gradients for the discriminators disc_X_grads = tape.gradient(disc_X_loss, self.disc_X.trainable_variables) disc_Y_grads = tape.gradient(disc_Y_loss, self.disc_Y.trainable_variables) # Update the weights of the generators self.gen_G_optimizer.apply_gradients( zip(grads_G, self.gen_G.trainable_variables) ) self.gen_F_optimizer.apply_gradients( zip(grads_F, self.gen_F.trainable_variables) ) # Update the weights of the discriminators self.disc_X_optimizer.apply_gradients( zip(disc_X_grads, self.disc_X.trainable_variables) ) self.disc_Y_optimizer.apply_gradients( zip(disc_Y_grads, self.disc_Y.trainable_variables) ) return { "G_loss": total_loss_G, "F_loss": total_loss_F, "D_X_loss": disc_X_loss, "D_Y_loss": disc_Y_loss, } ``` --- ## Create a callback that periodically saves generated images ```python class GANMonitor(keras.callbacks.Callback): """A callback to generate and save images after each epoch""" def __init__(self, num_img=4): self.num_img = num_img def on_epoch_end(self, epoch, logs=None): _, ax = plt.subplots(4, 2, figsize=(12, 12)) for i, img in enumerate(test_horses.take(self.num_img)): prediction = self.model.gen_G(img)[0].numpy() prediction = (prediction * 127.5 + 127.5).astype(np.uint8) img = (img[0] * 127.5 + 127.5).numpy().astype(np.uint8) ax[i, 0].imshow(img) ax[i, 1].imshow(prediction) ax[i, 0].set_title("Input image") ax[i, 1].set_title("Translated image") ax[i, 0].axis("off") ax[i, 1].axis("off") prediction = keras.utils.array_to_img(prediction) prediction.save( "generated_img_{i}_{epoch}.png".format(i=i, epoch=epoch + 1) ) plt.show() plt.close() ``` --- ## Train the end-to-end model ```python # Loss function for evaluating adversarial loss adv_loss_fn = keras.losses.MeanSquaredError() # Define the loss function for the generators def generator_loss_fn(fake): fake_loss = adv_loss_fn(tf.ones_like(fake), fake) return fake_loss # Define the loss function for the discriminators def discriminator_loss_fn(real, fake): real_loss = adv_loss_fn(tf.ones_like(real), real) fake_loss = adv_loss_fn(tf.zeros_like(fake), fake) return (real_loss + fake_loss) * 0.5 # Create cycle gan model cycle_gan_model = CycleGan( generator_G=gen_G, generator_F=gen_F, discriminator_X=disc_X, discriminator_Y=disc_Y ) # Compile the model cycle_gan_model.compile( gen_G_optimizer=keras.optimizers.legacy.Adam(learning_rate=2e-4, beta_1=0.5), gen_F_optimizer=keras.optimizers.legacy.Adam(learning_rate=2e-4, beta_1=0.5), disc_X_optimizer=keras.optimizers.legacy.Adam(learning_rate=2e-4, beta_1=0.5), disc_Y_optimizer=keras.optimizers.legacy.Adam(learning_rate=2e-4, beta_1=0.5), gen_loss_fn=generator_loss_fn, disc_loss_fn=discriminator_loss_fn, ) # Callbacks plotter = GANMonitor() checkpoint_filepath = "./model_checkpoints/cyclegan_checkpoints.{epoch:03d}" model_checkpoint_callback = keras.callbacks.ModelCheckpoint( filepath=checkpoint_filepath, save_weights_only=True ) # Here we will train the model for just one epoch as each epoch takes around # 7 minutes on a single P100 backed machine. cycle_gan_model.fit( tf.data.Dataset.zip((train_horses, train_zebras)), epochs=1, callbacks=[plotter, model_checkpoint_callback], ) ``` <div class="k-default-codeblock"> ``` 1067/1067 [==============================] - ETA: 0s - G_loss: 4.4794 - F_loss: 4.1048 - D_X_loss: 0.1584 - D_Y_loss: 0.1233 ``` </div> ![png](/img/examples/generative/cyclegan/cyclegan_21_1.png) <div class="k-default-codeblock"> ``` 1067/1067 [==============================] - 390s 366ms/step - G_loss: 4.4783 - F_loss: 4.1035 - D_X_loss: 0.1584 - D_Y_loss: 0.1232 <tensorflow.python.keras.callbacks.History at 0x7f4184326e90> ``` </div> Test the performance of the model. You can use the trained model hosted on [Hugging Face Hub](https://huggingface.co/keras-io/CycleGAN) and try the demo on [Hugging Face Spaces](https://huggingface.co/spaces/keras-io/CycleGAN). ```python # This model was trained for 90 epochs. We will be loading those weights # here. Once the weights are loaded, we will take a few samples from the test # data and check the model's performance. ``` ```python !curl -LO https://github.com/AakashKumarNain/CycleGAN_TF2/releases/download/v1.0/saved_checkpoints.zip !unzip -qq saved_checkpoints.zip ``` ```python # Load the checkpoints weight_file = "./saved_checkpoints/cyclegan_checkpoints.090" cycle_gan_model.load_weights(weight_file).expect_partial() print("Weights loaded successfully") _, ax = plt.subplots(4, 2, figsize=(10, 15)) for i, img in enumerate(test_horses.take(4)): prediction = cycle_gan_model.gen_G(img, training=False)[0].numpy() prediction = (prediction * 127.5 + 127.5).astype(np.uint8) img = (img[0] * 127.5 + 127.5).numpy().astype(np.uint8) ax[i, 0].imshow(img) ax[i, 1].imshow(prediction) ax[i, 0].set_title("Input image") ax[i, 0].set_title("Input image") ax[i, 1].set_title("Translated image") ax[i, 0].axis("off") ax[i, 1].axis("off") prediction = keras.utils.array_to_img(prediction) prediction.save("predicted_img_{i}.png".format(i=i)) plt.tight_layout() plt.show() ``` <div class="k-default-codeblock"> ``` % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 634 100 634 0 0 2874 0 --:--:-- --:--:-- --:--:-- 2881 100 273M 100 273M 0 0 1736k 0 0:02:41 0:02:41 --:--:-- 2049k Weights loaded successfully ``` </div> ![png](/img/examples/generative/cyclegan/cyclegan_25_1.png)
keras-io/examples/generative/md/cyclegan.md/0
{ "file_path": "keras-io/examples/generative/md/cyclegan.md", "repo_id": "keras-io", "token_count": 9184 }
96
# Density estimation using Real NVP **Authors:** [Mandolini Giorgio Maria](https://www.linkedin.com/in/giorgio-maria-mandolini-a2a1b71b4/), [Sanna Daniele](https://www.linkedin.com/in/daniele-sanna-338629bb/), [Zannini Quirini Giorgio](https://www.linkedin.com/in/giorgio-zannini-quirini-16ab181a0/)<br> **Date created:** 2020/08/10<br> **Last modified:** 2020/08/10<br> **Description:** Estimating the density distribution of the "double moon" dataset. <img class="k-inline-icon" src="https://colab.research.google.com/img/colab_favicon.ico"/> [**View in Colab**](https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/generative/ipynb/real_nvp.ipynb) <span class="k-dot">•</span><img class="k-inline-icon" src="https://github.com/favicon.ico"/> [**GitHub source**](https://github.com/keras-team/keras-io/blob/master/examples/generative/real_nvp.py) --- ## Introduction The aim of this work is to map a simple distribution - which is easy to sample and whose density is simple to estimate - to a more complex one learned from the data. This kind of generative model is also known as "normalizing flow". In order to do this, the model is trained via the maximum likelihood principle, using the "change of variable" formula. We will use an affine coupling function. We create it such that its inverse, as well as the determinant of the Jacobian, are easy to obtain (more details in the referenced paper). **Requirements:** * Tensorflow 2.9.1 * Tensorflow probability 0.17.0 **Reference:** [Density estimation using Real NVP](https://arxiv.org/abs/1605.08803) --- ## Setup ```python import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras import regularizers from sklearn.datasets import make_moons import numpy as np import matplotlib.pyplot as plt import tensorflow_probability as tfp ``` --- ## Load the data ```python data = make_moons(3000, noise=0.05)[0].astype("float32") norm = layers.Normalization() norm.adapt(data) normalized_data = norm(data) ``` --- ## Affine coupling layer ```python # Creating a custom layer with keras API. output_dim = 256 reg = 0.01 def Coupling(input_shape): input = keras.layers.Input(shape=input_shape) t_layer_1 = keras.layers.Dense( output_dim, activation="relu", kernel_regularizer=regularizers.l2(reg) )(input) t_layer_2 = keras.layers.Dense( output_dim, activation="relu", kernel_regularizer=regularizers.l2(reg) )(t_layer_1) t_layer_3 = keras.layers.Dense( output_dim, activation="relu", kernel_regularizer=regularizers.l2(reg) )(t_layer_2) t_layer_4 = keras.layers.Dense( output_dim, activation="relu", kernel_regularizer=regularizers.l2(reg) )(t_layer_3) t_layer_5 = keras.layers.Dense( input_shape, activation="linear", kernel_regularizer=regularizers.l2(reg) )(t_layer_4) s_layer_1 = keras.layers.Dense( output_dim, activation="relu", kernel_regularizer=regularizers.l2(reg) )(input) s_layer_2 = keras.layers.Dense( output_dim, activation="relu", kernel_regularizer=regularizers.l2(reg) )(s_layer_1) s_layer_3 = keras.layers.Dense( output_dim, activation="relu", kernel_regularizer=regularizers.l2(reg) )(s_layer_2) s_layer_4 = keras.layers.Dense( output_dim, activation="relu", kernel_regularizer=regularizers.l2(reg) )(s_layer_3) s_layer_5 = keras.layers.Dense( input_shape, activation="tanh", kernel_regularizer=regularizers.l2(reg) )(s_layer_4) return keras.Model(inputs=input, outputs=[s_layer_5, t_layer_5]) ``` --- ## Real NVP ```python class RealNVP(keras.Model): def __init__(self, num_coupling_layers): super().__init__() self.num_coupling_layers = num_coupling_layers # Distribution of the latent space. self.distribution = tfp.distributions.MultivariateNormalDiag( loc=[0.0, 0.0], scale_diag=[1.0, 1.0] ) self.masks = np.array( [[0, 1], [1, 0]] * (num_coupling_layers // 2), dtype="float32" ) self.loss_tracker = keras.metrics.Mean(name="loss") self.layers_list = [Coupling(2) for i in range(num_coupling_layers)] @property def metrics(self): """List of the model's metrics. We make sure the loss tracker is listed as part of `model.metrics` so that `fit()` and `evaluate()` are able to `reset()` the loss tracker at the start of each epoch and at the start of an `evaluate()` call. """ return [self.loss_tracker] def call(self, x, training=True): log_det_inv = 0 direction = 1 if training: direction = -1 for i in range(self.num_coupling_layers)[::direction]: x_masked = x * self.masks[i] reversed_mask = 1 - self.masks[i] s, t = self.layers_list[i](x_masked) s *= reversed_mask t *= reversed_mask gate = (direction - 1) / 2 x = ( reversed_mask * (x * tf.exp(direction * s) + direction * t * tf.exp(gate * s)) + x_masked ) log_det_inv += gate * tf.reduce_sum(s, [1]) return x, log_det_inv # Log likelihood of the normal distribution plus the log determinant of the jacobian. def log_loss(self, x): y, logdet = self(x) log_likelihood = self.distribution.log_prob(y) + logdet return -tf.reduce_mean(log_likelihood) def train_step(self, data): with tf.GradientTape() as tape: loss = self.log_loss(data) g = tape.gradient(loss, self.trainable_variables) self.optimizer.apply_gradients(zip(g, self.trainable_variables)) self.loss_tracker.update_state(loss) return {"loss": self.loss_tracker.result()} def test_step(self, data): loss = self.log_loss(data) self.loss_tracker.update_state(loss) return {"loss": self.loss_tracker.result()} ``` --- ## Model training ```python model = RealNVP(num_coupling_layers=6) model.compile(optimizer=keras.optimizers.Adam(learning_rate=0.0001)) history = model.fit( normalized_data, batch_size=256, epochs=300, verbose=2, validation_split=0.2 ) ``` <div class="k-default-codeblock"> ``` Epoch 1/300 10/10 - 2s - loss: 2.7104 - val_loss: 2.6385 - 2s/epoch - 248ms/step Epoch 2/300 10/10 - 0s - loss: 2.5951 - val_loss: 2.5818 - 162ms/epoch - 16ms/step Epoch 3/300 10/10 - 0s - loss: 2.5487 - val_loss: 2.5299 - 165ms/epoch - 17ms/step Epoch 4/300 10/10 - 0s - loss: 2.5081 - val_loss: 2.4989 - 150ms/epoch - 15ms/step Epoch 5/300 10/10 - 0s - loss: 2.4729 - val_loss: 2.4641 - 168ms/epoch - 17ms/step Epoch 6/300 10/10 - 0s - loss: 2.4457 - val_loss: 2.4443 - 155ms/epoch - 16ms/step Epoch 7/300 10/10 - 0s - loss: 2.4183 - val_loss: 2.4078 - 155ms/epoch - 16ms/step Epoch 8/300 10/10 - 0s - loss: 2.3840 - val_loss: 2.3852 - 160ms/epoch - 16ms/step Epoch 9/300 10/10 - 0s - loss: 2.3604 - val_loss: 2.3700 - 172ms/epoch - 17ms/step Epoch 10/300 10/10 - 0s - loss: 2.3392 - val_loss: 2.3354 - 156ms/epoch - 16ms/step Epoch 11/300 10/10 - 0s - loss: 2.3042 - val_loss: 2.3099 - 170ms/epoch - 17ms/step Epoch 12/300 10/10 - 0s - loss: 2.2769 - val_loss: 2.3126 - 171ms/epoch - 17ms/step Epoch 13/300 10/10 - 0s - loss: 2.2541 - val_loss: 2.2784 - 174ms/epoch - 17ms/step Epoch 14/300 10/10 - 0s - loss: 2.2175 - val_loss: 2.2354 - 174ms/epoch - 17ms/step Epoch 15/300 10/10 - 0s - loss: 2.1957 - val_loss: 2.1990 - 173ms/epoch - 17ms/step Epoch 16/300 10/10 - 0s - loss: 2.1533 - val_loss: 2.1686 - 167ms/epoch - 17ms/step Epoch 17/300 10/10 - 0s - loss: 2.1232 - val_loss: 2.1276 - 178ms/epoch - 18ms/step Epoch 18/300 10/10 - 0s - loss: 2.0932 - val_loss: 2.1220 - 173ms/epoch - 17ms/step Epoch 19/300 10/10 - 0s - loss: 2.1068 - val_loss: 2.1515 - 152ms/epoch - 15ms/step Epoch 20/300 10/10 - 0s - loss: 2.0793 - val_loss: 2.1661 - 161ms/epoch - 16ms/step Epoch 21/300 10/10 - 0s - loss: 2.0784 - val_loss: 2.0634 - 180ms/epoch - 18ms/step Epoch 22/300 10/10 - 0s - loss: 2.0060 - val_loss: 2.0076 - 160ms/epoch - 16ms/step Epoch 23/300 10/10 - 0s - loss: 1.9845 - val_loss: 1.9773 - 174ms/epoch - 17ms/step Epoch 24/300 10/10 - 0s - loss: 1.9462 - val_loss: 2.0097 - 174ms/epoch - 17ms/step Epoch 25/300 10/10 - 0s - loss: 1.8892 - val_loss: 1.9023 - 173ms/epoch - 17ms/step Epoch 26/300 10/10 - 0s - loss: 1.8011 - val_loss: 1.8128 - 182ms/epoch - 18ms/step Epoch 27/300 10/10 - 0s - loss: 1.7604 - val_loss: 1.8415 - 167ms/epoch - 17ms/step Epoch 28/300 10/10 - 0s - loss: 1.7474 - val_loss: 1.7635 - 172ms/epoch - 17ms/step Epoch 29/300 10/10 - 0s - loss: 1.7313 - val_loss: 1.7154 - 175ms/epoch - 18ms/step Epoch 30/300 10/10 - 0s - loss: 1.6801 - val_loss: 1.7269 - 183ms/epoch - 18ms/step Epoch 31/300 10/10 - 0s - loss: 1.6892 - val_loss: 1.6588 - 170ms/epoch - 17ms/step Epoch 32/300 10/10 - 0s - loss: 1.6384 - val_loss: 1.6467 - 159ms/epoch - 16ms/step Epoch 33/300 10/10 - 0s - loss: 1.6263 - val_loss: 1.6214 - 164ms/epoch - 16ms/step Epoch 34/300 10/10 - 0s - loss: 1.6035 - val_loss: 1.6022 - 154ms/epoch - 15ms/step Epoch 35/300 10/10 - 0s - loss: 1.5872 - val_loss: 1.6203 - 159ms/epoch - 16ms/step Epoch 36/300 10/10 - 0s - loss: 1.5928 - val_loss: 1.6312 - 159ms/epoch - 16ms/step Epoch 37/300 10/10 - 0s - loss: 1.5895 - val_loss: 1.6337 - 148ms/epoch - 15ms/step Epoch 38/300 10/10 - 0s - loss: 1.5726 - val_loss: 1.6192 - 153ms/epoch - 15ms/step Epoch 39/300 10/10 - 0s - loss: 1.5537 - val_loss: 1.5919 - 168ms/epoch - 17ms/step Epoch 40/300 10/10 - 0s - loss: 1.5741 - val_loss: 1.6646 - 173ms/epoch - 17ms/step Epoch 41/300 10/10 - 0s - loss: 1.5737 - val_loss: 1.5718 - 181ms/epoch - 18ms/step Epoch 42/300 10/10 - 0s - loss: 1.5573 - val_loss: 1.6395 - 173ms/epoch - 17ms/step Epoch 43/300 10/10 - 0s - loss: 1.5574 - val_loss: 1.5779 - 183ms/epoch - 18ms/step Epoch 44/300 10/10 - 0s - loss: 1.5345 - val_loss: 1.5549 - 173ms/epoch - 17ms/step Epoch 45/300 10/10 - 0s - loss: 1.5256 - val_loss: 1.5944 - 161ms/epoch - 16ms/step Epoch 46/300 10/10 - 0s - loss: 1.5291 - val_loss: 1.5325 - 169ms/epoch - 17ms/step Epoch 47/300 10/10 - 0s - loss: 1.5341 - val_loss: 1.5929 - 177ms/epoch - 18ms/step Epoch 48/300 10/10 - 0s - loss: 1.5190 - val_loss: 1.5563 - 174ms/epoch - 17ms/step Epoch 49/300 10/10 - 0s - loss: 1.5059 - val_loss: 1.5079 - 187ms/epoch - 19ms/step Epoch 50/300 10/10 - 0s - loss: 1.4971 - val_loss: 1.5163 - 177ms/epoch - 18ms/step Epoch 51/300 10/10 - 0s - loss: 1.4923 - val_loss: 1.5549 - 168ms/epoch - 17ms/step Epoch 52/300 10/10 - 0s - loss: 1.5345 - val_loss: 1.7131 - 171ms/epoch - 17ms/step Epoch 53/300 10/10 - 0s - loss: 1.5381 - val_loss: 1.5102 - 174ms/epoch - 17ms/step Epoch 54/300 10/10 - 0s - loss: 1.4955 - val_loss: 1.5432 - 167ms/epoch - 17ms/step Epoch 55/300 10/10 - 0s - loss: 1.4829 - val_loss: 1.5166 - 172ms/epoch - 17ms/step Epoch 56/300 10/10 - 0s - loss: 1.4672 - val_loss: 1.5297 - 180ms/epoch - 18ms/step Epoch 57/300 10/10 - 0s - loss: 1.4814 - val_loss: 1.5115 - 166ms/epoch - 17ms/step Epoch 58/300 10/10 - 0s - loss: 1.4738 - val_loss: 1.5143 - 165ms/epoch - 17ms/step Epoch 59/300 10/10 - 0s - loss: 1.4639 - val_loss: 1.5326 - 175ms/epoch - 17ms/step Epoch 60/300 10/10 - 0s - loss: 1.4727 - val_loss: 1.5419 - 175ms/epoch - 18ms/step Epoch 61/300 10/10 - 0s - loss: 1.4610 - val_loss: 1.4663 - 177ms/epoch - 18ms/step Epoch 62/300 10/10 - 0s - loss: 1.4512 - val_loss: 1.5624 - 179ms/epoch - 18ms/step Epoch 63/300 10/10 - 0s - loss: 1.4816 - val_loss: 1.5711 - 176ms/epoch - 18ms/step Epoch 64/300 10/10 - 0s - loss: 1.4735 - val_loss: 1.4988 - 181ms/epoch - 18ms/step Epoch 65/300 10/10 - 0s - loss: 1.4443 - val_loss: 1.4850 - 185ms/epoch - 19ms/step Epoch 66/300 10/10 - 0s - loss: 1.4441 - val_loss: 1.5275 - 179ms/epoch - 18ms/step Epoch 67/300 10/10 - 0s - loss: 1.4751 - val_loss: 1.5191 - 177ms/epoch - 18ms/step Epoch 68/300 10/10 - 0s - loss: 1.4874 - val_loss: 1.4888 - 175ms/epoch - 18ms/step Epoch 69/300 10/10 - 0s - loss: 1.4442 - val_loss: 1.5044 - 167ms/epoch - 17ms/step Epoch 70/300 10/10 - 0s - loss: 1.4645 - val_loss: 1.4801 - 174ms/epoch - 17ms/step Epoch 71/300 10/10 - 0s - loss: 1.4648 - val_loss: 1.5016 - 174ms/epoch - 17ms/step Epoch 72/300 10/10 - 0s - loss: 1.4336 - val_loss: 1.4970 - 171ms/epoch - 17ms/step Epoch 73/300 10/10 - 0s - loss: 1.4852 - val_loss: 1.4561 - 176ms/epoch - 18ms/step Epoch 74/300 10/10 - 0s - loss: 1.4656 - val_loss: 1.5156 - 167ms/epoch - 17ms/step Epoch 75/300 10/10 - 0s - loss: 1.4359 - val_loss: 1.4154 - 175ms/epoch - 17ms/step Epoch 76/300 10/10 - 0s - loss: 1.5187 - val_loss: 1.5395 - 182ms/epoch - 18ms/step Epoch 77/300 10/10 - 0s - loss: 1.5554 - val_loss: 1.5524 - 179ms/epoch - 18ms/step Epoch 78/300 10/10 - 0s - loss: 1.4679 - val_loss: 1.4742 - 175ms/epoch - 18ms/step Epoch 79/300 10/10 - 0s - loss: 1.4433 - val_loss: 1.5862 - 177ms/epoch - 18ms/step Epoch 80/300 10/10 - 0s - loss: 1.4775 - val_loss: 1.5030 - 189ms/epoch - 19ms/step Epoch 81/300 10/10 - 0s - loss: 1.4020 - val_loss: 1.5264 - 169ms/epoch - 17ms/step Epoch 82/300 10/10 - 0s - loss: 1.4298 - val_loss: 1.4841 - 170ms/epoch - 17ms/step Epoch 83/300 10/10 - 0s - loss: 1.4329 - val_loss: 1.3966 - 177ms/epoch - 18ms/step Epoch 84/300 10/10 - 0s - loss: 1.4106 - val_loss: 1.4472 - 183ms/epoch - 18ms/step Epoch 85/300 10/10 - 0s - loss: 1.3902 - val_loss: 1.5917 - 174ms/epoch - 17ms/step Epoch 86/300 10/10 - 0s - loss: 1.6401 - val_loss: 1.6188 - 181ms/epoch - 18ms/step Epoch 87/300 10/10 - 0s - loss: 1.5748 - val_loss: 1.5913 - 177ms/epoch - 18ms/step Epoch 88/300 10/10 - 0s - loss: 1.5449 - val_loss: 1.5437 - 185ms/epoch - 19ms/step Epoch 89/300 10/10 - 0s - loss: 1.4769 - val_loss: 1.5344 - 185ms/epoch - 19ms/step Epoch 90/300 10/10 - 0s - loss: 1.4805 - val_loss: 1.4814 - 173ms/epoch - 17ms/step Epoch 91/300 10/10 - 0s - loss: 1.4540 - val_loss: 1.5087 - 170ms/epoch - 17ms/step Epoch 92/300 10/10 - 0s - loss: 1.4266 - val_loss: 1.4554 - 169ms/epoch - 17ms/step Epoch 93/300 10/10 - 0s - loss: 1.4014 - val_loss: 1.4492 - 185ms/epoch - 19ms/step Epoch 94/300 10/10 - 0s - loss: 1.3701 - val_loss: 1.3875 - 182ms/epoch - 18ms/step Epoch 95/300 10/10 - 0s - loss: 1.3792 - val_loss: 1.4288 - 193ms/epoch - 19ms/step Epoch 96/300 10/10 - 0s - loss: 1.3813 - val_loss: 1.4452 - 180ms/epoch - 18ms/step Epoch 97/300 10/10 - 0s - loss: 1.3505 - val_loss: 1.3954 - 173ms/epoch - 17ms/step Epoch 98/300 10/10 - 0s - loss: 1.3870 - val_loss: 1.6328 - 178ms/epoch - 18ms/step Epoch 99/300 10/10 - 0s - loss: 1.5100 - val_loss: 1.5139 - 174ms/epoch - 17ms/step Epoch 100/300 10/10 - 0s - loss: 1.4355 - val_loss: 1.4654 - 176ms/epoch - 18ms/step Epoch 101/300 10/10 - 0s - loss: 1.3967 - val_loss: 1.4168 - 156ms/epoch - 16ms/step Epoch 102/300 10/10 - 0s - loss: 1.3466 - val_loss: 1.3765 - 164ms/epoch - 16ms/step Epoch 103/300 10/10 - 0s - loss: 1.3188 - val_loss: 1.3783 - 182ms/epoch - 18ms/step Epoch 104/300 10/10 - 0s - loss: 1.3659 - val_loss: 1.4572 - 190ms/epoch - 19ms/step Epoch 105/300 10/10 - 0s - loss: 1.6089 - val_loss: 1.6353 - 184ms/epoch - 18ms/step Epoch 106/300 10/10 - 0s - loss: 1.6317 - val_loss: 1.6007 - 171ms/epoch - 17ms/step Epoch 107/300 10/10 - 0s - loss: 1.5652 - val_loss: 1.5409 - 184ms/epoch - 18ms/step Epoch 108/300 10/10 - 0s - loss: 1.5273 - val_loss: 1.5030 - 165ms/epoch - 17ms/step Epoch 109/300 10/10 - 0s - loss: 1.4750 - val_loss: 1.4796 - 179ms/epoch - 18ms/step Epoch 110/300 10/10 - 0s - loss: 1.4710 - val_loss: 1.4996 - 175ms/epoch - 18ms/step Epoch 111/300 10/10 - 0s - loss: 1.4805 - val_loss: 1.5006 - 179ms/epoch - 18ms/step Epoch 112/300 10/10 - 0s - loss: 1.4518 - val_loss: 1.5023 - 184ms/epoch - 18ms/step Epoch 113/300 10/10 - 0s - loss: 1.4313 - val_loss: 1.4234 - 162ms/epoch - 16ms/step Epoch 114/300 10/10 - 0s - loss: 1.4113 - val_loss: 1.4629 - 178ms/epoch - 18ms/step Epoch 115/300 10/10 - 0s - loss: 1.3999 - val_loss: 1.4300 - 170ms/epoch - 17ms/step Epoch 116/300 10/10 - 0s - loss: 1.3886 - val_loss: 1.4042 - 179ms/epoch - 18ms/step Epoch 117/300 10/10 - 0s - loss: 1.3659 - val_loss: 1.4245 - 182ms/epoch - 18ms/step Epoch 118/300 10/10 - 0s - loss: 1.3605 - val_loss: 1.4482 - 162ms/epoch - 16ms/step Epoch 119/300 10/10 - 0s - loss: 1.4003 - val_loss: 1.4756 - 163ms/epoch - 16ms/step Epoch 120/300 10/10 - 0s - loss: 1.3749 - val_loss: 1.4237 - 189ms/epoch - 19ms/step Epoch 121/300 10/10 - 0s - loss: 1.3323 - val_loss: 1.3580 - 189ms/epoch - 19ms/step Epoch 122/300 10/10 - 0s - loss: 1.3464 - val_loss: 1.3684 - 187ms/epoch - 19ms/step Epoch 123/300 10/10 - 0s - loss: 1.3430 - val_loss: 1.3345 - 183ms/epoch - 18ms/step Epoch 124/300 10/10 - 0s - loss: 1.3402 - val_loss: 1.4077 - 183ms/epoch - 18ms/step Epoch 125/300 10/10 - 0s - loss: 1.3861 - val_loss: 1.4208 - 165ms/epoch - 17ms/step Epoch 126/300 10/10 - 0s - loss: 1.3665 - val_loss: 1.4796 - 163ms/epoch - 16ms/step Epoch 127/300 10/10 - 0s - loss: 1.3912 - val_loss: 1.4770 - 169ms/epoch - 17ms/step Epoch 128/300 10/10 - 0s - loss: 1.4114 - val_loss: 1.4261 - 166ms/epoch - 17ms/step Epoch 129/300 10/10 - 0s - loss: 1.3687 - val_loss: 1.4488 - 165ms/epoch - 17ms/step Epoch 130/300 10/10 - 0s - loss: 1.3576 - val_loss: 1.4333 - 173ms/epoch - 17ms/step Epoch 131/300 10/10 - 0s - loss: 1.3413 - val_loss: 1.4298 - 180ms/epoch - 18ms/step Epoch 132/300 10/10 - 0s - loss: 1.3331 - val_loss: 1.4388 - 190ms/epoch - 19ms/step Epoch 133/300 10/10 - 0s - loss: 1.5913 - val_loss: 1.5962 - 188ms/epoch - 19ms/step Epoch 134/300 10/10 - 0s - loss: 1.6076 - val_loss: 1.5921 - 179ms/epoch - 18ms/step Epoch 135/300 10/10 - 0s - loss: 1.5387 - val_loss: 1.5856 - 183ms/epoch - 18ms/step Epoch 136/300 10/10 - 0s - loss: 1.5088 - val_loss: 1.5209 - 159ms/epoch - 16ms/step Epoch 137/300 10/10 - 0s - loss: 1.4640 - val_loss: 1.4599 - 175ms/epoch - 18ms/step Epoch 138/300 10/10 - 0s - loss: 1.4140 - val_loss: 1.4659 - 177ms/epoch - 18ms/step Epoch 139/300 10/10 - 0s - loss: 1.4138 - val_loss: 1.4327 - 179ms/epoch - 18ms/step Epoch 140/300 10/10 - 0s - loss: 1.3911 - val_loss: 1.4366 - 178ms/epoch - 18ms/step Epoch 141/300 10/10 - 0s - loss: 1.3870 - val_loss: 1.3962 - 182ms/epoch - 18ms/step Epoch 142/300 10/10 - 0s - loss: 1.3699 - val_loss: 1.4742 - 154ms/epoch - 15ms/step Epoch 143/300 10/10 - 0s - loss: 1.3630 - val_loss: 1.3963 - 158ms/epoch - 16ms/step Epoch 144/300 10/10 - 0s - loss: 1.3818 - val_loss: 1.4538 - 184ms/epoch - 18ms/step Epoch 145/300 10/10 - 0s - loss: 1.3564 - val_loss: 1.4057 - 182ms/epoch - 18ms/step Epoch 146/300 10/10 - 0s - loss: 1.3353 - val_loss: 1.4064 - 186ms/epoch - 19ms/step Epoch 147/300 10/10 - 0s - loss: 1.3285 - val_loss: 1.3835 - 172ms/epoch - 17ms/step Epoch 148/300 10/10 - 0s - loss: 1.3100 - val_loss: 1.3817 - 188ms/epoch - 19ms/step Epoch 149/300 10/10 - 0s - loss: 1.3761 - val_loss: 1.4566 - 189ms/epoch - 19ms/step Epoch 150/300 10/10 - 0s - loss: 1.3473 - val_loss: 1.4378 - 188ms/epoch - 19ms/step Epoch 151/300 10/10 - 0s - loss: 1.3106 - val_loss: 1.3616 - 182ms/epoch - 18ms/step Epoch 152/300 10/10 - 0s - loss: 1.3239 - val_loss: 1.3468 - 177ms/epoch - 18ms/step Epoch 153/300 10/10 - 0s - loss: 1.2947 - val_loss: 1.3523 - 172ms/epoch - 17ms/step Epoch 154/300 10/10 - 0s - loss: 1.2850 - val_loss: 1.3530 - 170ms/epoch - 17ms/step Epoch 155/300 10/10 - 0s - loss: 1.2834 - val_loss: 1.3878 - 171ms/epoch - 17ms/step Epoch 156/300 10/10 - 0s - loss: 1.3192 - val_loss: 1.3747 - 179ms/epoch - 18ms/step Epoch 157/300 10/10 - 0s - loss: 1.3567 - val_loss: 1.4031 - 174ms/epoch - 17ms/step Epoch 158/300 10/10 - 0s - loss: 1.3240 - val_loss: 1.3735 - 167ms/epoch - 17ms/step Epoch 159/300 10/10 - 0s - loss: 1.3272 - val_loss: 1.4563 - 183ms/epoch - 18ms/step Epoch 160/300 10/10 - 0s - loss: 1.3329 - val_loss: 1.3321 - 179ms/epoch - 18ms/step Epoch 161/300 10/10 - 0s - loss: 1.3120 - val_loss: 1.3779 - 185ms/epoch - 19ms/step Epoch 162/300 10/10 - 0s - loss: 1.3093 - val_loss: 1.3739 - 191ms/epoch - 19ms/step Epoch 163/300 10/10 - 0s - loss: 1.3251 - val_loss: 1.4781 - 182ms/epoch - 18ms/step Epoch 164/300 10/10 - 0s - loss: 1.3762 - val_loss: 1.4035 - 165ms/epoch - 17ms/step Epoch 165/300 10/10 - 0s - loss: 1.3655 - val_loss: 1.3693 - 189ms/epoch - 19ms/step Epoch 166/300 10/10 - 0s - loss: 1.3453 - val_loss: 1.3694 - 170ms/epoch - 17ms/step Epoch 167/300 10/10 - 0s - loss: 1.3019 - val_loss: 1.3496 - 180ms/epoch - 18ms/step Epoch 168/300 10/10 - 0s - loss: 1.2801 - val_loss: 1.3375 - 190ms/epoch - 19ms/step Epoch 169/300 10/10 - 0s - loss: 1.2966 - val_loss: 1.3712 - 178ms/epoch - 18ms/step Epoch 170/300 10/10 - 0s - loss: 1.3060 - val_loss: 1.3237 - 177ms/epoch - 18ms/step Epoch 171/300 10/10 - 0s - loss: 1.3299 - val_loss: 1.5022 - 177ms/epoch - 18ms/step Epoch 172/300 10/10 - 0s - loss: 1.3665 - val_loss: 1.4224 - 186ms/epoch - 19ms/step Epoch 173/300 10/10 - 0s - loss: 1.3432 - val_loss: 1.5198 - 172ms/epoch - 17ms/step Epoch 174/300 10/10 - 0s - loss: 1.3434 - val_loss: 1.4113 - 188ms/epoch - 19ms/step Epoch 175/300 10/10 - 0s - loss: 1.3016 - val_loss: 1.3920 - 175ms/epoch - 18ms/step Epoch 176/300 10/10 - 0s - loss: 1.2833 - val_loss: 1.4342 - 166ms/epoch - 17ms/step Epoch 177/300 10/10 - 0s - loss: 1.3334 - val_loss: 1.4225 - 178ms/epoch - 18ms/step Epoch 178/300 10/10 - 0s - loss: 1.4085 - val_loss: 1.4848 - 170ms/epoch - 17ms/step Epoch 179/300 10/10 - 0s - loss: 1.4262 - val_loss: 1.5149 - 176ms/epoch - 18ms/step Epoch 180/300 10/10 - 0s - loss: 1.4076 - val_loss: 1.5736 - 175ms/epoch - 18ms/step Epoch 181/300 10/10 - 0s - loss: 1.5085 - val_loss: 1.6339 - 179ms/epoch - 18ms/step Epoch 182/300 10/10 - 0s - loss: 1.5028 - val_loss: 1.5327 - 179ms/epoch - 18ms/step Epoch 183/300 10/10 - 0s - loss: 1.4710 - val_loss: 1.4611 - 196ms/epoch - 20ms/step Epoch 184/300 10/10 - 0s - loss: 1.3950 - val_loss: 1.4205 - 190ms/epoch - 19ms/step Epoch 185/300 10/10 - 0s - loss: 1.3815 - val_loss: 1.4100 - 187ms/epoch - 19ms/step Epoch 186/300 10/10 - 0s - loss: 1.3722 - val_loss: 1.3939 - 163ms/epoch - 16ms/step Epoch 187/300 10/10 - 0s - loss: 1.3379 - val_loss: 1.3922 - 194ms/epoch - 19ms/step Epoch 188/300 10/10 - 0s - loss: 1.3406 - val_loss: 1.3874 - 189ms/epoch - 19ms/step Epoch 189/300 10/10 - 0s - loss: 1.4787 - val_loss: 1.5603 - 190ms/epoch - 19ms/step Epoch 190/300 10/10 - 0s - loss: 1.4652 - val_loss: 1.4490 - 163ms/epoch - 16ms/step Epoch 191/300 10/10 - 0s - loss: 1.3868 - val_loss: 1.4725 - 179ms/epoch - 18ms/step Epoch 192/300 10/10 - 0s - loss: 1.3470 - val_loss: 1.4088 - 186ms/epoch - 19ms/step Epoch 193/300 10/10 - 0s - loss: 1.3576 - val_loss: 1.3549 - 193ms/epoch - 19ms/step Epoch 194/300 10/10 - 0s - loss: 1.3574 - val_loss: 1.4884 - 188ms/epoch - 19ms/step Epoch 195/300 10/10 - 0s - loss: 1.4376 - val_loss: 1.4794 - 172ms/epoch - 17ms/step Epoch 196/300 10/10 - 0s - loss: 1.4110 - val_loss: 1.5064 - 175ms/epoch - 18ms/step Epoch 197/300 10/10 - 0s - loss: 1.3597 - val_loss: 1.3742 - 159ms/epoch - 16ms/step Epoch 198/300 10/10 - 0s - loss: 1.3897 - val_loss: 1.4465 - 188ms/epoch - 19ms/step Epoch 199/300 10/10 - 0s - loss: 1.3710 - val_loss: 1.3469 - 175ms/epoch - 18ms/step Epoch 200/300 10/10 - 0s - loss: 1.3613 - val_loss: 1.4129 - 183ms/epoch - 18ms/step Epoch 201/300 10/10 - 0s - loss: 1.3581 - val_loss: 1.4100 - 189ms/epoch - 19ms/step Epoch 202/300 10/10 - 0s - loss: 1.3047 - val_loss: 1.3460 - 164ms/epoch - 16ms/step Epoch 203/300 10/10 - 0s - loss: 1.3133 - val_loss: 1.3942 - 185ms/epoch - 18ms/step Epoch 204/300 10/10 - 0s - loss: 1.3880 - val_loss: 1.4730 - 179ms/epoch - 18ms/step Epoch 205/300 10/10 - 0s - loss: 1.4233 - val_loss: 1.5020 - 196ms/epoch - 20ms/step Epoch 206/300 10/10 - 0s - loss: 1.3696 - val_loss: 1.4541 - 188ms/epoch - 19ms/step Epoch 207/300 10/10 - 0s - loss: 1.3189 - val_loss: 1.4825 - 181ms/epoch - 18ms/step Epoch 208/300 10/10 - 0s - loss: 1.7335 - val_loss: 1.7628 - 170ms/epoch - 17ms/step Epoch 209/300 10/10 - 0s - loss: 1.6927 - val_loss: 1.6906 - 180ms/epoch - 18ms/step Epoch 210/300 10/10 - 0s - loss: 1.6293 - val_loss: 1.6065 - 191ms/epoch - 19ms/step Epoch 211/300 10/10 - 0s - loss: 1.5564 - val_loss: 1.5873 - 179ms/epoch - 18ms/step Epoch 212/300 10/10 - 0s - loss: 1.5258 - val_loss: 1.5561 - 188ms/epoch - 19ms/step Epoch 213/300 10/10 - 0s - loss: 1.4918 - val_loss: 1.5715 - 175ms/epoch - 17ms/step Epoch 214/300 10/10 - 0s - loss: 1.4800 - val_loss: 1.5373 - 166ms/epoch - 17ms/step Epoch 215/300 10/10 - 0s - loss: 1.4669 - val_loss: 1.5262 - 171ms/epoch - 17ms/step Epoch 216/300 10/10 - 0s - loss: 1.4492 - val_loss: 1.4965 - 168ms/epoch - 17ms/step Epoch 217/300 10/10 - 0s - loss: 1.4169 - val_loss: 1.4874 - 160ms/epoch - 16ms/step Epoch 218/300 10/10 - 0s - loss: 1.4192 - val_loss: 1.4848 - 175ms/epoch - 18ms/step Epoch 219/300 10/10 - 0s - loss: 1.4072 - val_loss: 1.4776 - 167ms/epoch - 17ms/step Epoch 220/300 10/10 - 0s - loss: 1.3936 - val_loss: 1.4824 - 163ms/epoch - 16ms/step Epoch 221/300 10/10 - 0s - loss: 1.3813 - val_loss: 1.4814 - 190ms/epoch - 19ms/step Epoch 222/300 10/10 - 0s - loss: 1.3821 - val_loss: 1.4344 - 192ms/epoch - 19ms/step Epoch 223/300 10/10 - 0s - loss: 1.3724 - val_loss: 1.4691 - 197ms/epoch - 20ms/step Epoch 224/300 10/10 - 0s - loss: 1.3818 - val_loss: 1.4371 - 186ms/epoch - 19ms/step Epoch 225/300 10/10 - 0s - loss: 1.3986 - val_loss: 1.4602 - 174ms/epoch - 17ms/step Epoch 226/300 10/10 - 0s - loss: 1.3620 - val_loss: 1.4268 - 162ms/epoch - 16ms/step Epoch 227/300 10/10 - 0s - loss: 1.3658 - val_loss: 1.5127 - 162ms/epoch - 16ms/step Epoch 228/300 10/10 - 0s - loss: 1.3994 - val_loss: 1.4251 - 182ms/epoch - 18ms/step Epoch 229/300 10/10 - 0s - loss: 1.3674 - val_loss: 1.4542 - 181ms/epoch - 18ms/step Epoch 230/300 10/10 - 0s - loss: 1.3453 - val_loss: 1.4165 - 178ms/epoch - 18ms/step Epoch 231/300 10/10 - 0s - loss: 1.3473 - val_loss: 1.4112 - 185ms/epoch - 19ms/step Epoch 232/300 10/10 - 0s - loss: 1.3373 - val_loss: 1.3559 - 193ms/epoch - 19ms/step Epoch 233/300 10/10 - 0s - loss: 1.3267 - val_loss: 1.4230 - 185ms/epoch - 19ms/step Epoch 234/300 10/10 - 0s - loss: 1.4402 - val_loss: 1.5016 - 194ms/epoch - 19ms/step Epoch 235/300 10/10 - 0s - loss: 1.4497 - val_loss: 1.5198 - 182ms/epoch - 18ms/step Epoch 236/300 10/10 - 0s - loss: 1.3724 - val_loss: 1.4116 - 174ms/epoch - 17ms/step Epoch 237/300 10/10 - 0s - loss: 1.3275 - val_loss: 1.4120 - 190ms/epoch - 19ms/step Epoch 238/300 10/10 - 0s - loss: 1.4089 - val_loss: 1.4978 - 180ms/epoch - 18ms/step Epoch 239/300 10/10 - 0s - loss: 1.4203 - val_loss: 1.4340 - 197ms/epoch - 20ms/step Epoch 240/300 10/10 - 0s - loss: 1.4002 - val_loss: 1.4535 - 181ms/epoch - 18ms/step Epoch 241/300 10/10 - 0s - loss: 1.3915 - val_loss: 1.4112 - 179ms/epoch - 18ms/step Epoch 242/300 10/10 - 0s - loss: 1.4050 - val_loss: 1.4437 - 173ms/epoch - 17ms/step Epoch 243/300 10/10 - 0s - loss: 1.3834 - val_loss: 1.3841 - 183ms/epoch - 18ms/step Epoch 244/300 10/10 - 0s - loss: 1.3550 - val_loss: 1.4028 - 185ms/epoch - 19ms/step Epoch 245/300 10/10 - 0s - loss: 1.3415 - val_loss: 1.4119 - 200ms/epoch - 20ms/step Epoch 246/300 10/10 - 0s - loss: 1.3579 - val_loss: 1.4416 - 188ms/epoch - 19ms/step Epoch 247/300 10/10 - 0s - loss: 1.3397 - val_loss: 1.4257 - 173ms/epoch - 17ms/step Epoch 248/300 10/10 - 0s - loss: 1.3353 - val_loss: 1.3809 - 188ms/epoch - 19ms/step Epoch 249/300 10/10 - 0s - loss: 1.3211 - val_loss: 1.3619 - 169ms/epoch - 17ms/step Epoch 250/300 10/10 - 0s - loss: 1.3052 - val_loss: 1.3735 - 168ms/epoch - 17ms/step Epoch 251/300 10/10 - 0s - loss: 1.3121 - val_loss: 1.3636 - 183ms/epoch - 18ms/step Epoch 252/300 10/10 - 0s - loss: 1.3121 - val_loss: 1.3741 - 177ms/epoch - 18ms/step Epoch 253/300 10/10 - 0s - loss: 1.3108 - val_loss: 1.3680 - 168ms/epoch - 17ms/step Epoch 254/300 10/10 - 0s - loss: 1.3188 - val_loss: 1.4326 - 184ms/epoch - 18ms/step Epoch 255/300 10/10 - 0s - loss: 1.3111 - val_loss: 1.3853 - 183ms/epoch - 18ms/step Epoch 256/300 10/10 - 0s - loss: 1.3036 - val_loss: 1.4108 - 195ms/epoch - 20ms/step Epoch 257/300 10/10 - 0s - loss: 1.2867 - val_loss: 1.3785 - 183ms/epoch - 18ms/step Epoch 258/300 10/10 - 0s - loss: 1.2768 - val_loss: 1.3614 - 165ms/epoch - 17ms/step Epoch 259/300 10/10 - 0s - loss: 1.3092 - val_loss: 1.3846 - 176ms/epoch - 18ms/step Epoch 260/300 10/10 - 0s - loss: 1.2845 - val_loss: 1.3970 - 169ms/epoch - 17ms/step Epoch 261/300 10/10 - 0s - loss: 1.3381 - val_loss: 1.3931 - 175ms/epoch - 18ms/step Epoch 262/300 10/10 - 0s - loss: 1.3067 - val_loss: 1.3953 - 176ms/epoch - 18ms/step Epoch 263/300 10/10 - 0s - loss: 1.2947 - val_loss: 1.3783 - 170ms/epoch - 17ms/step Epoch 264/300 10/10 - 0s - loss: 1.2947 - val_loss: 1.3805 - 187ms/epoch - 19ms/step Epoch 265/300 10/10 - 0s - loss: 1.3187 - val_loss: 1.3418 - 187ms/epoch - 19ms/step Epoch 266/300 10/10 - 0s - loss: 1.2830 - val_loss: 1.4077 - 197ms/epoch - 20ms/step Epoch 267/300 10/10 - 0s - loss: 1.3008 - val_loss: 1.3461 - 198ms/epoch - 20ms/step Epoch 268/300 10/10 - 0s - loss: 1.3230 - val_loss: 1.3495 - 183ms/epoch - 18ms/step Epoch 269/300 10/10 - 0s - loss: 1.3171 - val_loss: 1.3547 - 182ms/epoch - 18ms/step Epoch 270/300 10/10 - 0s - loss: 1.3216 - val_loss: 1.4041 - 191ms/epoch - 19ms/step Epoch 271/300 10/10 - 0s - loss: 1.3147 - val_loss: 1.4394 - 182ms/epoch - 18ms/step Epoch 272/300 10/10 - 0s - loss: 1.3062 - val_loss: 1.4410 - 196ms/epoch - 20ms/step Epoch 273/300 10/10 - 0s - loss: 1.3154 - val_loss: 1.4076 - 166ms/epoch - 17ms/step Epoch 274/300 10/10 - 0s - loss: 1.2999 - val_loss: 1.3703 - 161ms/epoch - 16ms/step Epoch 275/300 10/10 - 0s - loss: 1.2730 - val_loss: 1.3523 - 179ms/epoch - 18ms/step Epoch 276/300 10/10 - 0s - loss: 1.2773 - val_loss: 1.3488 - 188ms/epoch - 19ms/step Epoch 277/300 10/10 - 0s - loss: 1.3017 - val_loss: 1.3812 - 184ms/epoch - 18ms/step Epoch 278/300 10/10 - 0s - loss: 1.2857 - val_loss: 1.4040 - 184ms/epoch - 18ms/step Epoch 279/300 10/10 - 0s - loss: 1.3243 - val_loss: 1.3774 - 181ms/epoch - 18ms/step Epoch 280/300 10/10 - 0s - loss: 1.3258 - val_loss: 1.4166 - 161ms/epoch - 16ms/step Epoch 281/300 10/10 - 0s - loss: 1.3004 - val_loss: 1.3956 - 179ms/epoch - 18ms/step Epoch 282/300 10/10 - 0s - loss: 1.3407 - val_loss: 1.3529 - 182ms/epoch - 18ms/step Epoch 283/300 10/10 - 0s - loss: 1.3269 - val_loss: 1.3986 - 183ms/epoch - 18ms/step Epoch 284/300 10/10 - 0s - loss: 1.3138 - val_loss: 1.4302 - 187ms/epoch - 19ms/step Epoch 285/300 10/10 - 0s - loss: 1.2999 - val_loss: 1.3942 - 167ms/epoch - 17ms/step Epoch 286/300 10/10 - 0s - loss: 1.2871 - val_loss: 1.4190 - 161ms/epoch - 16ms/step Epoch 287/300 10/10 - 0s - loss: 1.3094 - val_loss: 1.3905 - 176ms/epoch - 18ms/step Epoch 288/300 10/10 - 0s - loss: 1.3072 - val_loss: 1.3681 - 168ms/epoch - 17ms/step Epoch 289/300 10/10 - 0s - loss: 1.2890 - val_loss: 1.3863 - 190ms/epoch - 19ms/step Epoch 290/300 10/10 - 0s - loss: 1.2861 - val_loss: 1.4039 - 183ms/epoch - 18ms/step Epoch 291/300 10/10 - 0s - loss: 1.2845 - val_loss: 1.4018 - 162ms/epoch - 16ms/step Epoch 292/300 10/10 - 0s - loss: 1.2747 - val_loss: 1.4085 - 184ms/epoch - 18ms/step Epoch 293/300 10/10 - 0s - loss: 1.2728 - val_loss: 1.3846 - 185ms/epoch - 19ms/step Epoch 294/300 10/10 - 0s - loss: 1.2567 - val_loss: 1.3465 - 180ms/epoch - 18ms/step Epoch 295/300 10/10 - 0s - loss: 1.2643 - val_loss: 1.3914 - 195ms/epoch - 20ms/step Epoch 296/300 10/10 - 0s - loss: 1.2747 - val_loss: 1.4068 - 182ms/epoch - 18ms/step Epoch 297/300 10/10 - 0s - loss: 1.3311 - val_loss: 1.5587 - 169ms/epoch - 17ms/step Epoch 298/300 10/10 - 0s - loss: 1.3347 - val_loss: 1.4132 - 181ms/epoch - 18ms/step Epoch 299/300 10/10 - 0s - loss: 1.3485 - val_loss: 1.4953 - 200ms/epoch - 20ms/step Epoch 300/300 10/10 - 0s - loss: 1.3156 - val_loss: 1.4378 - 203ms/epoch - 20ms/step ``` </div> --- ## Performance evaluation ```python plt.figure(figsize=(15, 10)) plt.plot(history.history["loss"]) plt.plot(history.history["val_loss"]) plt.title("model loss") plt.legend(["train", "validation"], loc="upper right") plt.ylabel("loss") plt.xlabel("epoch") # From data to latent space. z, _ = model(normalized_data) # From latent space to data. samples = model.distribution.sample(3000) x, _ = model.predict(samples) f, axes = plt.subplots(2, 2) f.set_size_inches(20, 15) axes[0, 0].scatter(normalized_data[:, 0], normalized_data[:, 1], color="r") axes[0, 0].set(title="Inference data space X", xlabel="x", ylabel="y") axes[0, 1].scatter(z[:, 0], z[:, 1], color="r") axes[0, 1].set(title="Inference latent space Z", xlabel="x", ylabel="y") axes[0, 1].set_xlim([-3.5, 4]) axes[0, 1].set_ylim([-4, 4]) axes[1, 0].scatter(samples[:, 0], samples[:, 1], color="g") axes[1, 0].set(title="Generated latent space Z", xlabel="x", ylabel="y") axes[1, 1].scatter(x[:, 0], x[:, 1], color="g") axes[1, 1].set(title="Generated data space X", label="x", ylabel="y") axes[1, 1].set_xlim([-2, 2]) axes[1, 1].set_ylim([-2, 2]) ``` <div class="k-default-codeblock"> ``` 94/94 [==============================] - 0s 2ms/step ``` </div> <div class="k-default-codeblock"> ``` (-2.0, 2.0) ``` </div> ![png](/img/examples/generative/real_nvp/real_nvp_13_1.png) ![png](/img/examples/generative/real_nvp/real_nvp_13_2.png)
keras-io/examples/generative/md/real_nvp.md/0
{ "file_path": "keras-io/examples/generative/md/real_nvp.md", "repo_id": "keras-io", "token_count": 15325 }
97
""" Title: Creating TFRecords Author: [Dimitre Oliveira](https://www.linkedin.com/in/dimitre-oliveira-7a1a0113a/) Date created: 2021/02/27 Last modified: 2023/12/20 Description: Converting data to the TFRecord format. Accelerator: GPU """ """ ## Introduction The TFRecord format is a simple format for storing a sequence of binary records. Converting your data into TFRecord has many advantages, such as: - **More efficient storage**: the TFRecord data can take up less space than the original data; it can also be partitioned into multiple files. - **Fast I/O**: the TFRecord format can be read with parallel I/O operations, which is useful for [TPUs](https://www.tensorflow.org/guide/tpu) or multiple hosts. - **Self-contained files**: the TFRecord data can be read from a single source—for example, the [COCO2017](https://cocodataset.org/) dataset originally stores data in two folders ("images" and "annotations"). An important use case of the TFRecord data format is training on TPUs. First, TPUs are fast enough to benefit from optimized I/O operations. In addition, TPUs require data to be stored remotely (e.g. on Google Cloud Storage) and using the TFRecord format makes it easier to load the data without batch-downloading. Performance using the TFRecord format can be further improved if you also use it with the [tf.data](https://www.tensorflow.org/guide/data) API. In this example you will learn how to convert data of different types (image, text, and numeric) into TFRecord. **Reference** - [TFRecord and tf.train.Example](https://www.tensorflow.org/tutorials/load_data/tfrecord) ## Dependencies """ import os os.environ["KERAS_BACKEND"] = "tensorflow" import keras import json import pprint import tensorflow as tf import matplotlib.pyplot as plt """ ## Download the COCO2017 dataset We will be using the [COCO2017](https://cocodataset.org/) dataset, because it has many different types of features, including images, floating point data, and lists. It will serve as a good example of how to encode different features into the TFRecord format. This dataset has two sets of fields: images and annotation meta-data. The images are a collection of JPG files and the meta-data are stored in a JSON file which, according to the [official site](https://cocodataset.org/#format-data), contains the following properties: ``` id: int, image_id: int, category_id: int, segmentation: RLE or [polygon], object segmentation mask bbox: [x,y,width,height], object bounding box coordinates area: float, area of the bounding box iscrowd: 0 or 1, is single object or a collection ``` """ root_dir = "datasets" tfrecords_dir = "tfrecords" images_dir = os.path.join(root_dir, "val2017") annotations_dir = os.path.join(root_dir, "annotations") annotation_file = os.path.join(annotations_dir, "instances_val2017.json") images_url = "http://images.cocodataset.org/zips/val2017.zip" annotations_url = ( "http://images.cocodataset.org/annotations/annotations_trainval2017.zip" ) # Download image files if not os.path.exists(images_dir): image_zip = keras.utils.get_file( "images.zip", cache_dir=os.path.abspath("."), origin=images_url, extract=True, ) os.remove(image_zip) # Download caption annotation files if not os.path.exists(annotations_dir): annotation_zip = keras.utils.get_file( "captions.zip", cache_dir=os.path.abspath("."), origin=annotations_url, extract=True, ) os.remove(annotation_zip) print("The COCO dataset has been downloaded and extracted successfully.") with open(annotation_file, "r") as f: annotations = json.load(f)["annotations"] print(f"Number of images: {len(annotations)}") """ ### Contents of the COCO2017 dataset """ pprint.pprint(annotations[60]) """ ## Parameters `num_samples` is the number of data samples on each TFRecord file. `num_tfrecords` is total number of TFRecords that we will create. """ num_samples = 4096 num_tfrecords = len(annotations) // num_samples if len(annotations) % num_samples: num_tfrecords += 1 # add one record if there are any remaining samples if not os.path.exists(tfrecords_dir): os.makedirs(tfrecords_dir) # creating TFRecords output folder """ ## Define TFRecords helper functions """ def image_feature(value): """Returns a bytes_list from a string / byte.""" return tf.train.Feature( bytes_list=tf.train.BytesList(value=[tf.io.encode_jpeg(value).numpy()]) ) def bytes_feature(value): """Returns a bytes_list from a string / byte.""" return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value.encode()])) def float_feature(value): """Returns a float_list from a float / double.""" return tf.train.Feature(float_list=tf.train.FloatList(value=[value])) def int64_feature(value): """Returns an int64_list from a bool / enum / int / uint.""" return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) def float_feature_list(value): """Returns a list of float_list from a float / double.""" return tf.train.Feature(float_list=tf.train.FloatList(value=value)) def create_example(image, path, example): feature = { "image": image_feature(image), "path": bytes_feature(path), "area": float_feature(example["area"]), "bbox": float_feature_list(example["bbox"]), "category_id": int64_feature(example["category_id"]), "id": int64_feature(example["id"]), "image_id": int64_feature(example["image_id"]), } return tf.train.Example(features=tf.train.Features(feature=feature)) def parse_tfrecord_fn(example): feature_description = { "image": tf.io.FixedLenFeature([], tf.string), "path": tf.io.FixedLenFeature([], tf.string), "area": tf.io.FixedLenFeature([], tf.float32), "bbox": tf.io.VarLenFeature(tf.float32), "category_id": tf.io.FixedLenFeature([], tf.int64), "id": tf.io.FixedLenFeature([], tf.int64), "image_id": tf.io.FixedLenFeature([], tf.int64), } example = tf.io.parse_single_example(example, feature_description) example["image"] = tf.io.decode_jpeg(example["image"], channels=3) example["bbox"] = tf.sparse.to_dense(example["bbox"]) return example """ ## Generate data in the TFRecord format Let's generate the COCO2017 data in the TFRecord format. The format will be `file_{number}.tfrec` (this is optional, but including the number sequences in the file names can make counting easier). """ for tfrec_num in range(num_tfrecords): samples = annotations[(tfrec_num * num_samples) : ((tfrec_num + 1) * num_samples)] with tf.io.TFRecordWriter( tfrecords_dir + "/file_%.2i-%i.tfrec" % (tfrec_num, len(samples)) ) as writer: for sample in samples: image_path = f"{images_dir}/{sample['image_id']:012d}.jpg" image = tf.io.decode_jpeg(tf.io.read_file(image_path)) example = create_example(image, image_path, sample) writer.write(example.SerializeToString()) """ ## Explore one sample from the generated TFRecord """ raw_dataset = tf.data.TFRecordDataset(f"{tfrecords_dir}/file_00-{num_samples}.tfrec") parsed_dataset = raw_dataset.map(parse_tfrecord_fn) for features in parsed_dataset.take(1): for key in features.keys(): if key != "image": print(f"{key}: {features[key]}") print(f"Image shape: {features['image'].shape}") plt.figure(figsize=(7, 7)) plt.imshow(features["image"].numpy()) plt.show() """ ## Train a simple model using the generated TFRecords Another advantage of TFRecord is that you are able to add many features to it and later use only a few of them, in this case, we are going to use only `image` and `category_id`. """ """ ## Define dataset helper functions """ def prepare_sample(features): image = keras.ops.image.resize(features["image"], size=(224, 224)) return image, features["category_id"] def get_dataset(filenames, batch_size): dataset = ( tf.data.TFRecordDataset(filenames, num_parallel_reads=AUTOTUNE) .map(parse_tfrecord_fn, num_parallel_calls=AUTOTUNE) .map(prepare_sample, num_parallel_calls=AUTOTUNE) .shuffle(batch_size * 10) .batch(batch_size) .prefetch(AUTOTUNE) ) return dataset train_filenames = tf.io.gfile.glob(f"{tfrecords_dir}/*.tfrec") batch_size = 32 epochs = 1 steps_per_epoch = 50 AUTOTUNE = tf.data.AUTOTUNE input_tensor = keras.layers.Input(shape=(224, 224, 3), name="image") model = keras.applications.EfficientNetB0( input_tensor=input_tensor, weights=None, classes=91 ) model.compile( optimizer=keras.optimizers.Adam(), loss=keras.losses.SparseCategoricalCrossentropy(), metrics=[keras.metrics.SparseCategoricalAccuracy()], ) model.fit( x=get_dataset(train_filenames, batch_size), epochs=epochs, steps_per_epoch=steps_per_epoch, verbose=1, ) """ ## Conclusion This example demonstrates that instead of reading images and annotations from different sources you can have your data coming from a single source thanks to TFRecord. This process can make storing and reading data simpler and more efficient. For more information, you can go to the [TFRecord and tf.train.Example](https://www.tensorflow.org/tutorials/load_data/tfrecord) tutorial. """
keras-io/examples/keras_recipes/creating_tfrecords.py/0
{ "file_path": "keras-io/examples/keras_recipes/creating_tfrecords.py", "repo_id": "keras-io", "token_count": 3372 }
98
""" Title: How to train a Keras model on TFRecord files Author: Amy MiHyun Jang Date created: 2020/07/29 Last modified: 2020/08/07 Description: Loading TFRecords for computer vision models. Accelerator: TPU """ """ ## Introduction + Set Up TFRecords store a sequence of binary records, read linearly. They are useful format for storing data because they can be read efficiently. Learn more about TFRecords [here](https://www.tensorflow.org/tutorials/load_data/tfrecord). We'll explore how we can easily load in TFRecords for our melanoma classifier. """ import tensorflow as tf from functools import partial import matplotlib.pyplot as plt try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver.connect() print("Device:", tpu.master()) strategy = tf.distribute.TPUStrategy(tpu) except: strategy = tf.distribute.get_strategy() print("Number of replicas:", strategy.num_replicas_in_sync) """ We want a bigger batch size as our data is not balanced. """ AUTOTUNE = tf.data.AUTOTUNE GCS_PATH = "gs://kds-b38ce1b823c3ae623f5691483dbaa0f0363f04b0d6a90b63cf69946e" BATCH_SIZE = 64 IMAGE_SIZE = [1024, 1024] """ ## Load the data """ FILENAMES = tf.io.gfile.glob(GCS_PATH + "/tfrecords/train*.tfrec") split_ind = int(0.9 * len(FILENAMES)) TRAINING_FILENAMES, VALID_FILENAMES = FILENAMES[:split_ind], FILENAMES[split_ind:] TEST_FILENAMES = tf.io.gfile.glob(GCS_PATH + "/tfrecords/test*.tfrec") print("Train TFRecord Files:", len(TRAINING_FILENAMES)) print("Validation TFRecord Files:", len(VALID_FILENAMES)) print("Test TFRecord Files:", len(TEST_FILENAMES)) """ ### Decoding the data The images have to be converted to tensors so that it will be a valid input in our model. As images utilize an RBG scale, we specify 3 channels. We also reshape our data so that all of the images will be the same shape. """ def decode_image(image): image = tf.image.decode_jpeg(image, channels=3) image = tf.cast(image, tf.float32) image = tf.reshape(image, [*IMAGE_SIZE, 3]) return image """ As we load in our data, we need both our `X` and our `Y`. The X is our image; the model will find features and patterns in our image dataset. We want to predict Y, the probability that the lesion in the image is malignant. We will to through our TFRecords and parse out the image and the target values. """ def read_tfrecord(example, labeled): tfrecord_format = ( { "image": tf.io.FixedLenFeature([], tf.string), "target": tf.io.FixedLenFeature([], tf.int64), } if labeled else { "image": tf.io.FixedLenFeature([], tf.string), } ) example = tf.io.parse_single_example(example, tfrecord_format) image = decode_image(example["image"]) if labeled: label = tf.cast(example["target"], tf.int32) return image, label return image """ ### Define loading methods Our dataset is not ordered in any meaningful way, so the order can be ignored when loading our dataset. By ignoring the order and reading files as soon as they come in, it will take a shorter time to load the data. """ def load_dataset(filenames, labeled=True): ignore_order = tf.data.Options() ignore_order.experimental_deterministic = False # disable order, increase speed dataset = tf.data.TFRecordDataset( filenames ) # automatically interleaves reads from multiple files dataset = dataset.with_options( ignore_order ) # uses data as soon as it streams in, rather than in its original order dataset = dataset.map( partial(read_tfrecord, labeled=labeled), num_parallel_calls=AUTOTUNE ) # returns a dataset of (image, label) pairs if labeled=True or just images if labeled=False return dataset """ We define the following function to get our different datasets. """ def get_dataset(filenames, labeled=True): dataset = load_dataset(filenames, labeled=labeled) dataset = dataset.shuffle(2048) dataset = dataset.prefetch(buffer_size=AUTOTUNE) dataset = dataset.batch(BATCH_SIZE) return dataset """ ### Visualize input images """ train_dataset = get_dataset(TRAINING_FILENAMES) valid_dataset = get_dataset(VALID_FILENAMES) test_dataset = get_dataset(TEST_FILENAMES, labeled=False) image_batch, label_batch = next(iter(train_dataset)) def show_batch(image_batch, label_batch): plt.figure(figsize=(10, 10)) for n in range(25): ax = plt.subplot(5, 5, n + 1) plt.imshow(image_batch[n] / 255.0) if label_batch[n]: plt.title("MALIGNANT") else: plt.title("BENIGN") plt.axis("off") show_batch(image_batch.numpy(), label_batch.numpy()) """ ## Building our model """ """ ### Define callbacks The following function allows for the model to change the learning rate as it runs each epoch. We can use callbacks to stop training when there are no improvements in the model. At the end of the training process, the model will restore the weights of its best iteration. """ initial_learning_rate = 0.01 lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay( initial_learning_rate, decay_steps=20, decay_rate=0.96, staircase=True ) checkpoint_cb = tf.keras.callbacks.ModelCheckpoint( "melanoma_model.h5", save_best_only=True ) early_stopping_cb = tf.keras.callbacks.EarlyStopping( patience=10, restore_best_weights=True ) """ ### Build our base model Transfer learning is a great way to reap the benefits of a well-trained model without having the train the model ourselves. For this notebook, we want to import the Xception model. A more in-depth analysis of transfer learning can be found [here](https://keras.io/examples/vision/image_classification_efficientnet_fine_tuning/). We do not want our metric to be ```accuracy``` because our data is imbalanced. For our example, we will be looking at the area under a ROC curve. """ def make_model(): base_model = tf.keras.applications.Xception( input_shape=(*IMAGE_SIZE, 3), include_top=False, weights="imagenet" ) base_model.trainable = False inputs = tf.keras.layers.Input([*IMAGE_SIZE, 3]) x = tf.keras.applications.xception.preprocess_input(inputs) x = base_model(x) x = tf.keras.layers.GlobalAveragePooling2D()(x) x = tf.keras.layers.Dense(8, activation="relu")(x) x = tf.keras.layers.Dropout(0.7)(x) outputs = tf.keras.layers.Dense(1, activation="sigmoid")(x) model = tf.keras.Model(inputs=inputs, outputs=outputs) model.compile( optimizer=tf.keras.optimizers.Adam(learning_rate=lr_schedule), loss="binary_crossentropy", metrics=tf.keras.metrics.AUC(name="auc"), ) return model """ ## Train the model """ with strategy.scope(): model = make_model() history = model.fit( train_dataset, epochs=2, validation_data=valid_dataset, callbacks=[checkpoint_cb, early_stopping_cb], ) """ ## Predict results We'll use our model to predict results for our test dataset images. Values closer to `0` are more likely to be benign and values closer to `1` are more likely to be malignant. """ def show_batch_predictions(image_batch): plt.figure(figsize=(10, 10)) for n in range(25): ax = plt.subplot(5, 5, n + 1) plt.imshow(image_batch[n] / 255.0) img_array = tf.expand_dims(image_batch[n], axis=0) plt.title(model.predict(img_array)[0]) plt.axis("off") image_batch = next(iter(test_dataset)) show_batch_predictions(image_batch)
keras-io/examples/keras_recipes/tfrecord.py/0
{ "file_path": "keras-io/examples/keras_recipes/tfrecord.py", "repo_id": "keras-io", "token_count": 2771 }
99
<jupyter_start><jupyter_text>Large-scale multi-label text classification**Author:** [Sayak Paul](https://twitter.com/RisingSayak), [Soumik Rakshit](https://github.com/soumik12345)**Date created:** 2020/09/25**Last modified:** 2020/12/23**Description:** Implementing a large-scale multi-label text classification model. IntroductionIn this example, we will build a multi-label text classifier to predict the subject areasof arXiv papers from their abstract bodies. This type of classifier can be useful forconference submission portals like [OpenReview](https://openreview.net/). Given a paperabstract, the portal could provide suggestions for which areas the paper wouldbest belong to.The dataset was collected using the[`arXiv` Python library](https://github.com/lukasschwab/arxiv.py)that provides a wrapper around the[original arXiv API](http://arxiv.org/help/api/index).To learn more about the data collection process, please refer to[this notebook](https://github.com/soumik12345/multi-label-text-classification/blob/master/arxiv_scrape.ipynb).Additionally, you can also find the dataset on[Kaggle](https://www.kaggle.com/spsayakpaul/arxiv-paper-abstracts). Imports<jupyter_code>from tensorflow.keras import layers from tensorflow import keras import tensorflow as tf from sklearn.model_selection import train_test_split from ast import literal_eval import matplotlib.pyplot as plt import pandas as pd import numpy as np<jupyter_output><empty_output><jupyter_text>Perform exploratory data analysisIn this section, we first load the dataset into a `pandas` dataframe and then performsome basic exploratory data analysis (EDA).<jupyter_code>arxiv_data = pd.read_csv( "https://github.com/soumik12345/multi-label-text-classification/releases/download/v0.2/arxiv_data.csv" ) arxiv_data.head()<jupyter_output><empty_output><jupyter_text>Our text features are present in the `summaries` column and their corresponding labelsare in `terms`. As you can notice, there are multiple categories associated with aparticular entry.<jupyter_code>print(f"There are {len(arxiv_data)} rows in the dataset.")<jupyter_output><empty_output><jupyter_text>Real-world data is noisy. One of the most commonly observed source of noise is dataduplication. Here we notice that our initial dataset has got about 13k duplicate entries.<jupyter_code>total_duplicate_titles = sum(arxiv_data["titles"].duplicated()) print(f"There are {total_duplicate_titles} duplicate titles.")<jupyter_output><empty_output><jupyter_text>Before proceeding further, we drop these entries.<jupyter_code>arxiv_data = arxiv_data[~arxiv_data["titles"].duplicated()] print(f"There are {len(arxiv_data)} rows in the deduplicated dataset.") # There are some terms with occurrence as low as 1. print(sum(arxiv_data["terms"].value_counts() == 1)) # How many unique terms? print(arxiv_data["terms"].nunique())<jupyter_output><empty_output><jupyter_text>As observed above, out of 3,157 unique combinations of `terms`, 2,321 entries have thelowest occurrence. To prepare our train, validation, and test sets with[stratification](https://en.wikipedia.org/wiki/Stratified_sampling), we need to dropthese terms.<jupyter_code># Filtering the rare terms. arxiv_data_filtered = arxiv_data.groupby("terms").filter(lambda x: len(x) > 1) arxiv_data_filtered.shape<jupyter_output><empty_output><jupyter_text>Convert the string labels to lists of stringsThe initial labels are represented as raw strings. Here we make them `List[str]` for amore compact representation.<jupyter_code>arxiv_data_filtered["terms"] = arxiv_data_filtered["terms"].apply( lambda x: literal_eval(x) ) arxiv_data_filtered["terms"].values[:5]<jupyter_output><empty_output><jupyter_text>Use stratified splits because of class imbalanceThe dataset has a[class imbalance problem](https://developers.google.com/machine-learning/glossary/class-imbalanced-dataset).So, to have a fair evaluation result, we need to ensure the datasets are sampled withstratification. To know more about different strategies to deal with the class imbalanceproblem, you can follow[this tutorial](https://www.tensorflow.org/tutorials/structured_data/imbalanced_data).For an end-to-end demonstration of classification with imbablanced data, refer to[Imbalanced classification: credit card fraud detection](https://keras.io/examples/structured_data/imbalanced_classification/).<jupyter_code>test_split = 0.1 # Initial train and test split. train_df, test_df = train_test_split( arxiv_data_filtered, test_size=test_split, stratify=arxiv_data_filtered["terms"].values, ) # Splitting the test set further into validation # and new test sets. val_df = test_df.sample(frac=0.5) test_df.drop(val_df.index, inplace=True) print(f"Number of rows in training set: {len(train_df)}") print(f"Number of rows in validation set: {len(val_df)}") print(f"Number of rows in test set: {len(test_df)}")<jupyter_output><empty_output><jupyter_text>Multi-label binarizationNow we preprocess our labels using the[`StringLookup`](https://keras.io/api/layers/preprocessing_layers/categorical/string_lookup)layer.<jupyter_code>terms = tf.ragged.constant(train_df["terms"].values) lookup = tf.keras.layers.StringLookup(output_mode="multi_hot") lookup.adapt(terms) vocab = lookup.get_vocabulary() def invert_multi_hot(encoded_labels): """Reverse a single multi-hot encoded label to a tuple of vocab terms.""" hot_indices = np.argwhere(encoded_labels == 1.0)[..., 0] return np.take(vocab, hot_indices) print("Vocabulary:\n") print(vocab)<jupyter_output><empty_output><jupyter_text>Here we are separating the individual unique classes available from the labelpool and then using this information to represent a given label set with 0's and 1's.Below is an example.<jupyter_code>sample_label = train_df["terms"].iloc[0] print(f"Original label: {sample_label}") label_binarized = lookup([sample_label]) print(f"Label-binarized representation: {label_binarized}")<jupyter_output><empty_output><jupyter_text>Data preprocessing and `tf.data.Dataset` objectsWe first get percentile estimates of the sequence lengths. The purpose will be clear in amoment.<jupyter_code>train_df["summaries"].apply(lambda x: len(x.split(" "))).describe()<jupyter_output><empty_output><jupyter_text>Notice that 50% of the abstracts have a length of 154 (you may get a different numberbased on the split). So, any number close to that value is a good enough approximate for themaximum sequence length.Now, we implement utilities to prepare our datasets.<jupyter_code>max_seqlen = 150 batch_size = 128 padding_token = "<pad>" auto = tf.data.AUTOTUNE def make_dataset(dataframe, is_train=True): labels = tf.ragged.constant(dataframe["terms"].values) label_binarized = lookup(labels).numpy() dataset = tf.data.Dataset.from_tensor_slices( (dataframe["summaries"].values, label_binarized) ) dataset = dataset.shuffle(batch_size * 10) if is_train else dataset return dataset.batch(batch_size)<jupyter_output><empty_output><jupyter_text>Now we can prepare the `tf.data.Dataset` objects.<jupyter_code>train_dataset = make_dataset(train_df, is_train=True) validation_dataset = make_dataset(val_df, is_train=False) test_dataset = make_dataset(test_df, is_train=False)<jupyter_output><empty_output><jupyter_text>Dataset preview<jupyter_code>text_batch, label_batch = next(iter(train_dataset)) for i, text in enumerate(text_batch[:5]): label = label_batch[i].numpy()[None, ...] print(f"Abstract: {text}") print(f"Label(s): {invert_multi_hot(label[0])}") print(" ")<jupyter_output><empty_output><jupyter_text>VectorizationBefore we feed the data to our model, we need to vectorize it (represent it in a numerical form).For that purpose, we will use the[`TextVectorization` layer](https://keras.io/api/layers/preprocessing_layers/text/text_vectorization).It can operate as a part of your main model so that the model is excluded from the corepreprocessing logic. This greatly reduces the chances of training / serving skew during inference.We first calculate the number of unique words present in the abstracts.<jupyter_code># Source: https://stackoverflow.com/a/18937309/7636462 vocabulary = set() train_df["summaries"].str.lower().str.split().apply(vocabulary.update) vocabulary_size = len(vocabulary) print(vocabulary_size)<jupyter_output><empty_output><jupyter_text>We now create our vectorization layer and `map()` to the `tf.data.Dataset`s createdearlier.<jupyter_code>text_vectorizer = layers.TextVectorization( max_tokens=vocabulary_size, ngrams=2, output_mode="tf_idf" ) # `TextVectorization` layer needs to be adapted as per the vocabulary from our # training set. with tf.device("/CPU:0"): text_vectorizer.adapt(train_dataset.map(lambda text, label: text)) train_dataset = train_dataset.map( lambda text, label: (text_vectorizer(text), label), num_parallel_calls=auto ).prefetch(auto) validation_dataset = validation_dataset.map( lambda text, label: (text_vectorizer(text), label), num_parallel_calls=auto ).prefetch(auto) test_dataset = test_dataset.map( lambda text, label: (text_vectorizer(text), label), num_parallel_calls=auto ).prefetch(auto)<jupyter_output><empty_output><jupyter_text>A batch of raw text will first go through the `TextVectorization` layer and it willgenerate their integer representations. Internally, the `TextVectorization` layer willfirst create bi-grams out of the sequences and then represent them using[TF-IDF](https://wikipedia.org/wiki/Tf%E2%80%93idf). The output representations will thenbe passed to the shallow model responsible for text classification.To learn more about other possible configurations with `TextVectorizer`, please consultthe[official documentation](https://keras.io/api/layers/preprocessing_layers/text/text_vectorization).**Note**: Setting the `max_tokens` argument to a pre-calculated vocabulary size isnot a requirement. Create a text classification modelWe will keep our model simple -- it will be a small stack of fully-connected layers withReLU as the non-linearity.<jupyter_code>def make_model(): shallow_mlp_model = keras.Sequential( [ layers.Dense(512, activation="relu"), layers.Dense(256, activation="relu"), layers.Dense(lookup.vocabulary_size(), activation="sigmoid"), ] # More on why "sigmoid" has been used here in a moment. ) return shallow_mlp_model<jupyter_output><empty_output><jupyter_text>Train the modelWe will train our model using the binary crossentropy loss. This is because the labelsare not disjoint. For a given abstract, we may have multiple categories. So, we willdivide the prediction task into a series of multiple binary classification problems. Thisis also why we kept the activation function of the classification layer in our model tosigmoid. Researchers have used other combinations of loss function and activationfunction as well. For example, in [Exploring the Limits of Weakly Supervised Pretraining](https://arxiv.org/abs/1805.00932),Mahajan et al. used the softmax activation function and cross-entropy loss to traintheir models.There are several options of metrics that can be used in multi-label classification.To keep this code example narrow we decided to use the[binary accuracy metric](https://keras.io/api/metrics/accuracy_metrics/binaryaccuracy-class).To see the explanation why this metric is used we refer to this[pull-request](https://github.com/keras-team/keras-io/pull/1133issuecomment-1322736860).There are also other suitable metrics for multi-label classification, like[F1 Score](https://www.tensorflow.org/addons/api_docs/python/tfa/metrics/F1Score) or[Hamming loss](https://www.tensorflow.org/addons/api_docs/python/tfa/metrics/HammingLoss).<jupyter_code>epochs = 20 shallow_mlp_model = make_model() shallow_mlp_model.compile( loss="binary_crossentropy", optimizer="adam", metrics=["binary_accuracy"] ) history = shallow_mlp_model.fit( train_dataset, validation_data=validation_dataset, epochs=epochs ) def plot_result(item): plt.plot(history.history[item], label=item) plt.plot(history.history["val_" + item], label="val_" + item) plt.xlabel("Epochs") plt.ylabel(item) plt.title("Train and Validation {} Over Epochs".format(item), fontsize=14) plt.legend() plt.grid() plt.show() plot_result("loss") plot_result("binary_accuracy")<jupyter_output><empty_output><jupyter_text>While training, we notice an initial sharp fall in the loss followed by a gradual decay. Evaluate the model<jupyter_code>_, binary_acc = shallow_mlp_model.evaluate(test_dataset) print(f"Categorical accuracy on the test set: {round(binary_acc * 100, 2)}%.")<jupyter_output><empty_output><jupyter_text>The trained model gives us an evaluation accuracy of ~99%. InferenceAn important feature of the[preprocessing layers provided by Keras](https://keras.io/guides/preprocessing_layers/)is that they can be included inside a `tf.keras.Model`. We will export an inference modelby including the `text_vectorization` layer on top of `shallow_mlp_model`. This willallow our inference model to directly operate on raw strings.**Note** that during training it is always preferable to use these preprocessinglayers as a part of the data input pipeline rather than the model to avoidsurfacing bottlenecks for the hardware accelerators. This also allows forasynchronous data processing.<jupyter_code># Create a model for inference. model_for_inference = keras.Sequential([text_vectorizer, shallow_mlp_model]) # Create a small dataset just for demoing inference. inference_dataset = make_dataset(test_df.sample(100), is_train=False) text_batch, label_batch = next(iter(inference_dataset)) predicted_probabilities = model_for_inference.predict(text_batch) # Perform inference. for i, text in enumerate(text_batch[:5]): label = label_batch[i].numpy()[None, ...] print(f"Abstract: {text}") print(f"Label(s): {invert_multi_hot(label[0])}") predicted_proba = [proba for proba in predicted_probabilities[i]] top_3_labels = [ x for _, x in sorted( zip(predicted_probabilities[i], lookup.get_vocabulary()), key=lambda pair: pair[0], reverse=True, ) ][:3] print(f"Predicted Label(s): ({', '.join([label for label in top_3_labels])})") print(" ")<jupyter_output><empty_output>
keras-io/examples/nlp/ipynb/multi_label_classification.ipynb/0
{ "file_path": "keras-io/examples/nlp/ipynb/multi_label_classification.ipynb", "repo_id": "keras-io", "token_count": 4679 }
100
<jupyter_start><jupyter_text>Text classification with Transformer**Author:** [Apoorv Nandan](https://twitter.com/NandanApoorv)**Date created:** 2020/05/10**Last modified:** 2024/01/18**Description:** Implement a Transformer block as a Keras layer and use it for text classification. Setup<jupyter_code>import keras from keras import ops from keras import layers<jupyter_output><empty_output><jupyter_text>Implement a Transformer block as a layer<jupyter_code>class TransformerBlock(layers.Layer): def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1): super().__init__() self.att = layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim) self.ffn = keras.Sequential( [layers.Dense(ff_dim, activation="relu"), layers.Dense(embed_dim),] ) self.layernorm1 = layers.LayerNormalization(epsilon=1e-6) self.layernorm2 = layers.LayerNormalization(epsilon=1e-6) self.dropout1 = layers.Dropout(rate) self.dropout2 = layers.Dropout(rate) def call(self, inputs): attn_output = self.att(inputs, inputs) attn_output = self.dropout1(attn_output) out1 = self.layernorm1(inputs + attn_output) ffn_output = self.ffn(out1) ffn_output = self.dropout2(ffn_output) return self.layernorm2(out1 + ffn_output)<jupyter_output><empty_output><jupyter_text>Implement embedding layerTwo seperate embedding layers, one for tokens, one for token index (positions).<jupyter_code>class TokenAndPositionEmbedding(layers.Layer): def __init__(self, maxlen, vocab_size, embed_dim): super().__init__() self.token_emb = layers.Embedding(input_dim=vocab_size, output_dim=embed_dim) self.pos_emb = layers.Embedding(input_dim=maxlen, output_dim=embed_dim) def call(self, x): maxlen = ops.shape(x)[-1] positions = ops.arange(start=0, stop=maxlen, step=1) positions = self.pos_emb(positions) x = self.token_emb(x) return x + positions<jupyter_output><empty_output><jupyter_text>Download and prepare dataset<jupyter_code>vocab_size = 20000 # Only consider the top 20k words maxlen = 200 # Only consider the first 200 words of each movie review (x_train, y_train), (x_val, y_val) = keras.datasets.imdb.load_data(num_words=vocab_size) print(len(x_train), "Training sequences") print(len(x_val), "Validation sequences") x_train = keras.utils.pad_sequences(x_train, maxlen=maxlen) x_val = keras.utils.pad_sequences(x_val, maxlen=maxlen)<jupyter_output><empty_output><jupyter_text>Create classifier model using transformer layerTransformer layer outputs one vector for each time step of our input sequence.Here, we take the mean across all time steps anduse a feed forward network on top of it to classify text.<jupyter_code>embed_dim = 32 # Embedding size for each token num_heads = 2 # Number of attention heads ff_dim = 32 # Hidden layer size in feed forward network inside transformer inputs = layers.Input(shape=(maxlen,)) embedding_layer = TokenAndPositionEmbedding(maxlen, vocab_size, embed_dim) x = embedding_layer(inputs) transformer_block = TransformerBlock(embed_dim, num_heads, ff_dim) x = transformer_block(x) x = layers.GlobalAveragePooling1D()(x) x = layers.Dropout(0.1)(x) x = layers.Dense(20, activation="relu")(x) x = layers.Dropout(0.1)(x) outputs = layers.Dense(2, activation="softmax")(x) model = keras.Model(inputs=inputs, outputs=outputs)<jupyter_output><empty_output><jupyter_text>Train and Evaluate<jupyter_code>model.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"] ) history = model.fit( x_train, y_train, batch_size=32, epochs=2, validation_data=(x_val, y_val) )<jupyter_output><empty_output>
keras-io/examples/nlp/ipynb/text_classification_with_transformer.ipynb/0
{ "file_path": "keras-io/examples/nlp/ipynb/text_classification_with_transformer.ipynb", "repo_id": "keras-io", "token_count": 1438 }
101
# MultipleChoice Task with Transfer Learning **Author:** Md Awsafur Rahman<br> **Date created:** 2023/09/14<br> **Last modified:** 2023/09/14<br> **Description:** Use pre-trained nlp models for multiplechoice task. <img class="k-inline-icon" src="https://colab.research.google.com/img/colab_favicon.ico"/> [**View in Colab**](https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/nlp/ipynb/multiple_choice_task_with_transfer_learning.ipynb) <span class="k-dot">•</span><img class="k-inline-icon" src="https://github.com/favicon.ico"/> [**GitHub source**](https://github.com/keras-team/keras-io/blob/master/examples/nlp/multiple_choice_task_with_transfer_learning.py) --- ## Introduction In this example, we will demonstrate how to perform the **MultipleChoice** task by finetuning pre-trained DebertaV3 model. In this task, several candidate answers are provided along with a context and the model is trained to select the correct answer unlike question answering. We will use SWAG dataset to demonstrate this example. --- ## Setup ```python import keras_nlp import keras import tensorflow as tf # For tf.data only. import numpy as np import pandas as pd import matplotlib.pyplot as plt ``` --- ## Dataset In this example we'll use **SWAG** dataset for multiplechoice task. ```python !wget "https://github.com/rowanz/swagaf/archive/refs/heads/master.zip" -O swag.zip !unzip -q swag.zip ``` <div class="k-default-codeblock"> ``` --2023-11-13 20:05:24-- https://github.com/rowanz/swagaf/archive/refs/heads/master.zip Resolving github.com (github.com)... 192.30.255.113 Connecting to github.com (github.com)|192.30.255.113|:443... connected. HTTP request sent, awaiting response... 302 Found Location: https://codeload.github.com/rowanz/swagaf/zip/refs/heads/master [following] --2023-11-13 20:05:25-- https://codeload.github.com/rowanz/swagaf/zip/refs/heads/master Resolving codeload.github.com (codeload.github.com)... 20.29.134.24 Connecting to codeload.github.com (codeload.github.com)|20.29.134.24|:443... connected. HTTP request sent, awaiting response... 200 OK Length: unspecified [application/zip] Saving to: ‘swag.zip’ ``` </div> <div class="k-default-codeblock"> ``` swag.zip [ <=> ] 19.94M 4.25MB/s in 4.7s ``` </div> <div class="k-default-codeblock"> ``` 2023-11-13 20:05:30 (4.25 MB/s) - ‘swag.zip’ saved [20905751] ``` </div> ```python !ls swagaf-master/data ``` <div class="k-default-codeblock"> ``` README.md test.csv train.csv train_full.csv val.csv val_full.csv ``` </div> --- ## Configuration ```python class CFG: preset = "deberta_v3_extra_small_en" # Name of pretrained models sequence_length = 200 # Input sequence length seed = 42 # Random seed epochs = 5 # Training epochs batch_size = 8 # Batch size augment = True # Augmentation (Shuffle Options) ``` --- ## Reproducibility Sets value for random seed to produce similar result in each run. ```python keras.utils.set_random_seed(CFG.seed) ``` --- ## Meta Data * **train.csv** - will be used for training. * `sent1` and `sent2`: these fields show how a sentence starts, and if you put the two together, you get the `startphrase` field. * `ending_<i>`: suggests a possible ending for how a sentence can end, but only one of them is correct. * `label`: identifies the correct sentence ending. * **val.csv** - similar to `train.csv` but will be used for validation. ```python # Train data train_df = pd.read_csv( "swagaf-master/data/train.csv", index_col=0 ) # Read CSV file into a DataFrame train_df = train_df.sample(frac=0.02) print("# Train Data: {:,}".format(len(train_df))) # Valid data valid_df = pd.read_csv( "swagaf-master/data/val.csv", index_col=0 ) # Read CSV file into a DataFrame valid_df = valid_df.sample(frac=0.02) print("# Valid Data: {:,}".format(len(valid_df))) ``` <div class="k-default-codeblock"> ``` # Train Data: 1,471 # Valid Data: 400 ``` </div> --- ## Contextualize Options Our approach entails furnishing the model with question and answer pairs, as opposed to employing a single question for all five options. In practice, this signifies that for the five options, we will supply the model with the same set of five questions combined with each respective answer choice (e.g., `(Q + A)`, `(Q + B)`, and so on). This analogy draws parallels to the practice of revisiting a question multiple times during an exam to promote a deeper understanding of the problem at hand. > Notably, in the context of SWAG dataset, question is the start of a sentence and options are possible ending of that sentence. ```python # Define a function to create options based on the prompt and choices def make_options(row): row["options"] = [ f"{row.startphrase}\n{row.ending0}", # Option 0 f"{row.startphrase}\n{row.ending1}", # Option 1 f"{row.startphrase}\n{row.ending2}", # Option 2 f"{row.startphrase}\n{row.ending3}", ] # Option 3 return row ``` Apply the `make_options` function to each row of the dataframe ```python train_df = train_df.apply(make_options, axis=1) valid_df = valid_df.apply(make_options, axis=1) ``` --- ## Preprocessing **What it does:** The preprocessor takes input strings and transforms them into a dictionary (`token_ids`, `padding_mask`) containing preprocessed tensors. This process starts with tokenization, where input strings are converted into sequences of token IDs. **Why it's important:** Initially, raw text data is complex and challenging for modeling due to its high dimensionality. By converting text into a compact set of tokens, such as transforming `"The quick brown fox"` into `["the", "qu", "##ick", "br", "##own", "fox"]`, we simplify the data. Many models rely on special tokens and additional tensors to understand input. These tokens help divide input and identify padding, among other tasks. Making all sequences the same length through padding boosts computational efficiency, making subsequent steps smoother. Explore the following pages to access the available preprocessing and tokenizer layers in **KerasNLP**: - [Preprocessing](https://keras.io/api/keras_nlp/preprocessing_layers/) - [Tokenizers](https://keras.io/api/keras_nlp/tokenizers/) ```python preprocessor = keras_nlp.models.DebertaV3Preprocessor.from_preset( preset=CFG.preset, # Name of the model sequence_length=CFG.sequence_length, # Max sequence length, will be padded if shorter ) ``` Now, let's examine what the output shape of the preprocessing layer looks like. The output shape of the layer can be represented as $(num\_choices, sequence\_length)$. ```python outs = preprocessor(train_df.options.iloc[0]) # Process options for the first row # Display the shape of each processed output for k, v in outs.items(): print(k, ":", v.shape) ``` <div class="k-default-codeblock"> ``` CUDA backend failed to initialize: Found CUDA version 12010, but JAX was built against version 12020, which is newer. The copy of CUDA that is installed must be at least as new as the version against which JAX was built. (Set TF_CPP_MIN_LOG_LEVEL=0 and rerun for more info.) token_ids : (4, 200) padding_mask : (4, 200) ``` </div> We'll use the `preprocessing_fn` function to transform each text option using the `dataset.map(preprocessing_fn)` method. ```python def preprocess_fn(text, label=None): text = preprocessor(text) # Preprocess text return ( (text, label) if label is not None else text ) # Return processed text and label if available ``` --- ## Augmentation In this notebook, we'll experiment with an interesting augmentation technique, `option_shuffle`. Since we're providing the model with one option at a time, we can introduce a shuffle to the order of options. For instance, options `[A, C, E, D, B]` would be rearranged as `[D, B, A, E, C]`. This practice will help the model focus on the content of the options themselves, rather than being influenced by their positions. **Note:** Even though `option_shuffle` function is written in pure tensorflow, it can be used with any backend (e.g. JAX, PyTorch) as it is only used in `tf.data.Dataset` pipeline which is compatible with Keras 3 routines. ```python def option_shuffle(options, labels, prob=0.50, seed=None): if tf.random.uniform([]) > prob: # Shuffle probability check return options, labels # Shuffle indices of options and labels in the same order indices = tf.random.shuffle(tf.range(tf.shape(options)[0]), seed=seed) # Shuffle options and labels options = tf.gather(options, indices) labels = tf.gather(labels, indices) return options, labels ``` In the following function, we'll merge all augmentation functions to apply to the text. These augmentations will be applied to the data using the `dataset.map(augment_fn)` approach. ```python def augment_fn(text, label=None): text, label = option_shuffle(text, label, prob=0.5) # Shuffle the options return (text, label) if label is not None else text ``` --- ## DataLoader The code below sets up a robust data flow pipeline using `tf.data.Dataset` for data processing. Notable aspects of `tf.data` include its ability to simplify pipeline construction and represent components in sequences. To learn more about `tf.data`, refer to this [documentation](https://www.tensorflow.org/guide/data). ```python def build_dataset( texts, labels=None, batch_size=32, cache=False, augment=False, repeat=False, shuffle=1024, ): AUTO = tf.data.AUTOTUNE # AUTOTUNE option slices = ( (texts,) if labels is None else (texts, keras.utils.to_categorical(labels, num_classes=4)) ) # Create slices ds = tf.data.Dataset.from_tensor_slices(slices) # Create dataset from slices ds = ds.cache() if cache else ds # Cache dataset if enabled if augment: # Apply augmentation if enabled ds = ds.map(augment_fn, num_parallel_calls=AUTO) ds = ds.map(preprocess_fn, num_parallel_calls=AUTO) # Map preprocessing function ds = ds.repeat() if repeat else ds # Repeat dataset if enabled opt = tf.data.Options() # Create dataset options if shuffle: ds = ds.shuffle(shuffle, seed=CFG.seed) # Shuffle dataset if enabled opt.experimental_deterministic = False ds = ds.with_options(opt) # Set dataset options ds = ds.batch(batch_size, drop_remainder=True) # Batch dataset ds = ds.prefetch(AUTO) # Prefetch next batch return ds # Return the built dataset ``` Now let's create train and valid dataloader using above funciton. ```python # Build train dataloader train_texts = train_df.options.tolist() # Extract training texts train_labels = train_df.label.tolist() # Extract training labels train_ds = build_dataset( train_texts, train_labels, batch_size=CFG.batch_size, cache=True, shuffle=True, repeat=True, augment=CFG.augment, ) # Build valid dataloader valid_texts = valid_df.options.tolist() # Extract validation texts valid_labels = valid_df.label.tolist() # Extract validation labels valid_ds = build_dataset( valid_texts, valid_labels, batch_size=CFG.batch_size, cache=True, shuffle=False, repeat=False, augment=False, ) ``` --- ## LR Schedule Implementing a learning rate scheduler is crucial for transfer learning. The learning rate initiates at `lr_start` and gradually tapers down to `lr_min` using **cosine** curve. **Importance:** A well-structured learning rate schedule is essential for efficient model training, ensuring optimal convergence and avoiding issues such as overshooting or stagnation. ```python import math def get_lr_callback(batch_size=8, mode="cos", epochs=10, plot=False): lr_start, lr_max, lr_min = 1.0e-6, 0.6e-6 * batch_size, 1e-6 lr_ramp_ep, lr_sus_ep = 2, 0 def lrfn(epoch): # Learning rate update function if epoch < lr_ramp_ep: lr = (lr_max - lr_start) / lr_ramp_ep * epoch + lr_start elif epoch < lr_ramp_ep + lr_sus_ep: lr = lr_max else: decay_total_epochs, decay_epoch_index = ( epochs - lr_ramp_ep - lr_sus_ep + 3, epoch - lr_ramp_ep - lr_sus_ep, ) phase = math.pi * decay_epoch_index / decay_total_epochs lr = (lr_max - lr_min) * 0.5 * (1 + math.cos(phase)) + lr_min return lr if plot: # Plot lr curve if plot is True plt.figure(figsize=(10, 5)) plt.plot( np.arange(epochs), [lrfn(epoch) for epoch in np.arange(epochs)], marker="o", ) plt.xlabel("epoch") plt.ylabel("lr") plt.title("LR Scheduler") plt.show() return keras.callbacks.LearningRateScheduler( lrfn, verbose=False ) # Create lr callback _ = get_lr_callback(CFG.batch_size, plot=True) ``` ![png](/img/examples/nlp/multiple_choice_task_with_transfer_learning/multiple_choice_task_with_transfer_learning_32_0.png) --- ## Callbacks The function below will gather all the training callbacks, such as `lr_scheduler`, `model_checkpoint`. ```python def get_callbacks(): callbacks = [] lr_cb = get_lr_callback(CFG.batch_size) # Get lr callback ckpt_cb = keras.callbacks.ModelCheckpoint( f"best.keras", monitor="val_accuracy", save_best_only=True, save_weights_only=False, mode="max", ) # Get Model checkpoint callback callbacks.extend([lr_cb, ckpt_cb]) # Add lr and checkpoint callbacks return callbacks # Return the list of callbacks callbacks = get_callbacks() ``` --- ## MultipleChoice Model ### Pre-trained Models The `KerasNLP` library provides comprehensive, ready-to-use implementations of popular NLP model architectures. It features a variety of pre-trained models including `Bert`, `Roberta`, `DebertaV3`, and more. In this notebook, we'll showcase the usage of `DistillBert`. However, feel free to explore all available models in the [KerasNLP documentation](https://keras.io/api/keras_nlp/models/). Also for a deeper understanding of `KerasNLP`, refer to the informative [getting started guide](https://keras.io/guides/keras_nlp/getting_started/). Our approach involves using `keras_nlp.models.XXClassifier` to process each question and option pari (e.g. (Q+A), (Q+B), etc.), generating logits. These logits are then combined and passed through a softmax function to produce the final output. ### Classifier for Multiple-Choice Tasks When dealing with multiple-choice questions, instead of giving the model the question and all options together `(Q + A + B + C ...)`, we provide the model with one option at a time along with the question. For instance, `(Q + A)`, `(Q + B)`, and so on. Once we have the prediction scores (logits) for all options, we combine them using the `Softmax` function to get the ultimate result. If we had given all options at once to the model, the text's length would increase, making it harder for the model to handle. The picture below illustrates this idea: ![Model Diagram](https://pbs.twimg.com/media/F3NUju_a8AAS8Fq?format=png&name=large) <div align="center"><b> Picture Credict: </b> <a href="https://twitter.com/johnowhitaker"> @johnowhitaker </a> </div></div><br> From a coding perspective, remember that we use the same model for all five options, with shared weights. Despite the figure suggesting five separate models, they are, in fact, one model with shared weights. Another point to consider is the the input shapes of Classifier and MultipleChoice. * Input shape for **Multiple Choice**: $(batch\_size, num\_choices, seq\_length)$ * Input shape for **Classifier**: $(batch\_size, seq\_length)$ Certainly, it's clear that we can't directly give the data for the multiple-choice task to the model because the input shapes don't match. To handle this, we'll use **slicing**. This means we'll separate the features of each option, like $feature_{(Q + A)}$ and $feature_{(Q + B)}$, and give them one by one to the NLP classifier. After we get the prediction scores $logits_{(Q + A)}$ and $logits_{(Q + B)}$ for all the options, we'll use the Softmax function, like $\operatorname{Softmax}([logits_{(Q + A)}, logits_{(Q + B)}])$, to combine them. This final step helps us make the ultimate decision or choice. > Note that in the classifier, we set `num_classes=1` instead of `5`. This is because the classifier produces a single output for each option. When dealing with five options, these individual outputs are joined together and then processed through a softmax function to generate the final result, which has a dimension of `5`. ```python # Selects one option from five class SelectOption(keras.layers.Layer): def __init__(self, index, **kwargs): super().__init__(**kwargs) self.index = index def call(self, inputs): # Selects a specific slice from the inputs tensor return inputs[:, self.index, :] def get_config(self): # For serialize the model base_config = super().get_config() config = { "index": self.index, } return {**base_config, **config} def build_model(): # Define input layers inputs = { "token_ids": keras.Input(shape=(4, None), dtype="int32", name="token_ids"), "padding_mask": keras.Input( shape=(4, None), dtype="int32", name="padding_mask" ), } # Create a DebertaV3Classifier model classifier = keras_nlp.models.DebertaV3Classifier.from_preset( CFG.preset, preprocessor=None, num_classes=1, # one output per one option, for five options total 5 outputs ) logits = [] # Loop through each option (Q+A), (Q+B) etc and compute associted logits for option_idx in range(4): option = { k: SelectOption(option_idx, name=f"{k}_{option_idx}")(v) for k, v in inputs.items() } logit = classifier(option) logits.append(logit) # Compute final output logits = keras.layers.Concatenate(axis=-1)(logits) outputs = keras.layers.Softmax(axis=-1)(logits) model = keras.Model(inputs, outputs) # Compile the model with optimizer, loss, and metrics model.compile( optimizer=keras.optimizers.AdamW(5e-6), loss=keras.losses.CategoricalCrossentropy(label_smoothing=0.02), metrics=[ keras.metrics.CategoricalAccuracy(name="accuracy"), ], jit_compile=True, ) return model # Build the Build model = build_model() ``` Let's checkout the model summary to have a better insight on the model. ```python model.summary() ``` <pre style="white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace"><span style="font-weight: bold">Model: "functional_1"</span> </pre> <pre style="white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace">┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━┓ ┃<span style="font-weight: bold"> Layer (type) </span>┃<span style="font-weight: bold"> Output Shape </span>┃<span style="font-weight: bold"> Param # </span>┃<span style="font-weight: bold"> Connected to </span>┃ ┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━┩ │ padding_mask │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">4</span>, <span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">0</span> │ - │ │ (<span style="color: #0087ff; text-decoration-color: #0087ff">InputLayer</span>) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ token_ids │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">4</span>, <span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">0</span> │ - │ │ (<span style="color: #0087ff; text-decoration-color: #0087ff">InputLayer</span>) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ padding_mask_0 │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">0</span> │ padding_mask[<span style="color: #00af00; text-decoration-color: #00af00">0</span>][<span style="color: #00af00; text-decoration-color: #00af00">0</span>] │ │ (<span style="color: #0087ff; text-decoration-color: #0087ff">SelectOption</span>) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ token_ids_0 │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">0</span> │ token_ids[<span style="color: #00af00; text-decoration-color: #00af00">0</span>][<span style="color: #00af00; text-decoration-color: #00af00">0</span>] │ │ (<span style="color: #0087ff; text-decoration-color: #0087ff">SelectOption</span>) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ padding_mask_1 │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">0</span> │ padding_mask[<span style="color: #00af00; text-decoration-color: #00af00">0</span>][<span style="color: #00af00; text-decoration-color: #00af00">0</span>] │ │ (<span style="color: #0087ff; text-decoration-color: #0087ff">SelectOption</span>) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ token_ids_1 │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">0</span> │ token_ids[<span style="color: #00af00; text-decoration-color: #00af00">0</span>][<span style="color: #00af00; text-decoration-color: #00af00">0</span>] │ │ (<span style="color: #0087ff; text-decoration-color: #0087ff">SelectOption</span>) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ padding_mask_2 │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">0</span> │ padding_mask[<span style="color: #00af00; text-decoration-color: #00af00">0</span>][<span style="color: #00af00; text-decoration-color: #00af00">0</span>] │ │ (<span style="color: #0087ff; text-decoration-color: #0087ff">SelectOption</span>) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ token_ids_2 │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">0</span> │ token_ids[<span style="color: #00af00; text-decoration-color: #00af00">0</span>][<span style="color: #00af00; text-decoration-color: #00af00">0</span>] │ │ (<span style="color: #0087ff; text-decoration-color: #0087ff">SelectOption</span>) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ padding_mask_3 │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">0</span> │ padding_mask[<span style="color: #00af00; text-decoration-color: #00af00">0</span>][<span style="color: #00af00; text-decoration-color: #00af00">0</span>] │ │ (<span style="color: #0087ff; text-decoration-color: #0087ff">SelectOption</span>) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ token_ids_3 │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">0</span> │ token_ids[<span style="color: #00af00; text-decoration-color: #00af00">0</span>][<span style="color: #00af00; text-decoration-color: #00af00">0</span>] │ │ (<span style="color: #0087ff; text-decoration-color: #0087ff">SelectOption</span>) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ deberta_v3_classif… │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">1</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">70,830…</span> │ padding_mask_0[<span style="color: #00af00; text-decoration-color: #00af00">0</span>][<span style="color: #00af00; text-decoration-color: #00af00">0</span>… │ │ (<span style="color: #0087ff; text-decoration-color: #0087ff">DebertaV3Classifi…</span> │ │ │ token_ids_0[<span style="color: #00af00; text-decoration-color: #00af00">0</span>][<span style="color: #00af00; text-decoration-color: #00af00">0</span>], │ │ │ │ │ padding_mask_1[<span style="color: #00af00; text-decoration-color: #00af00">0</span>][<span style="color: #00af00; text-decoration-color: #00af00">0</span>… │ │ │ │ │ token_ids_1[<span style="color: #00af00; text-decoration-color: #00af00">0</span>][<span style="color: #00af00; text-decoration-color: #00af00">0</span>], │ │ │ │ │ padding_mask_2[<span style="color: #00af00; text-decoration-color: #00af00">0</span>][<span style="color: #00af00; text-decoration-color: #00af00">0</span>… │ │ │ │ │ token_ids_2[<span style="color: #00af00; text-decoration-color: #00af00">0</span>][<span style="color: #00af00; text-decoration-color: #00af00">0</span>], │ │ │ │ │ padding_mask_3[<span style="color: #00af00; text-decoration-color: #00af00">0</span>][<span style="color: #00af00; text-decoration-color: #00af00">0</span>… │ │ │ │ │ token_ids_3[<span style="color: #00af00; text-decoration-color: #00af00">0</span>][<span style="color: #00af00; text-decoration-color: #00af00">0</span>] │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ concatenate │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">4</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">0</span> │ deberta_v3_classifi… │ │ (<span style="color: #0087ff; text-decoration-color: #0087ff">Concatenate</span>) │ │ │ deberta_v3_classifi… │ │ │ │ │ deberta_v3_classifi… │ │ │ │ │ deberta_v3_classifi… │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ softmax (<span style="color: #0087ff; text-decoration-color: #0087ff">Softmax</span>) │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">4</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">0</span> │ concatenate[<span style="color: #00af00; text-decoration-color: #00af00">0</span>][<span style="color: #00af00; text-decoration-color: #00af00">0</span>] │ └─────────────────────┴───────────────────┴─────────┴──────────────────────┘ </pre> <pre style="white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace"><span style="font-weight: bold"> Total params: </span><span style="color: #00af00; text-decoration-color: #00af00">70,830,337</span> (270.20 MB) </pre> <pre style="white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace"><span style="font-weight: bold"> Trainable params: </span><span style="color: #00af00; text-decoration-color: #00af00">70,830,337</span> (270.20 MB) </pre> <pre style="white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace"><span style="font-weight: bold"> Non-trainable params: </span><span style="color: #00af00; text-decoration-color: #00af00">0</span> (0.00 B) </pre> Finally, let's check the model structure visually if everything is in place. ```python keras.utils.plot_model(model, show_shapes=True) ``` ![png](/img/examples/nlp/multiple_choice_task_with_transfer_learning/multiple_choice_task_with_transfer_learning_42_0.png) --- ## Training ```python # Start training the model history = model.fit( train_ds, epochs=CFG.epochs, validation_data=valid_ds, callbacks=callbacks, steps_per_epoch=int(len(train_df) / CFG.batch_size), verbose=1, ) ``` <div class="k-default-codeblock"> ``` Epoch 1/5 183/183 ━━━━━━━━━━━━━━━━━━━━ 5087s 25s/step - accuracy: 0.2563 - loss: 1.3884 - val_accuracy: 0.5150 - val_loss: 1.3742 - learning_rate: 1.0000e-06 Epoch 2/5 183/183 ━━━━━━━━━━━━━━━━━━━━ 4529s 25s/step - accuracy: 0.3825 - loss: 1.3364 - val_accuracy: 0.7125 - val_loss: 0.9071 - learning_rate: 2.9000e-06 Epoch 3/5 183/183 ━━━━━━━━━━━━━━━━━━━━ 4524s 25s/step - accuracy: 0.6144 - loss: 1.0118 - val_accuracy: 0.7425 - val_loss: 0.8017 - learning_rate: 4.8000e-06 Epoch 4/5 183/183 ━━━━━━━━━━━━━━━━━━━━ 4522s 25s/step - accuracy: 0.6744 - loss: 0.8460 - val_accuracy: 0.7625 - val_loss: 0.7323 - learning_rate: 4.7230e-06 Epoch 5/5 183/183 ━━━━━━━━━━━━━━━━━━━━ 4517s 25s/step - accuracy: 0.7200 - loss: 0.7458 - val_accuracy: 0.7750 - val_loss: 0.7022 - learning_rate: 4.4984e-06 ``` </div> --- ## Inference ```python # Make predictions using the trained model on last validation data predictions = model.predict( valid_ds, batch_size=CFG.batch_size, # max batch size = valid size verbose=1, ) # Format predictions and true answers pred_answers = np.arange(4)[np.argsort(-predictions)][:, 0] true_answers = valid_df.label.values # Check 5 Predictions print("# Predictions\n") for i in range(0, 50, 10): row = valid_df.iloc[i] question = row.startphrase pred_answer = f"ending{pred_answers[i]}" true_answer = f"ending{true_answers[i]}" print(f"❓ Sentence {i+1}:\n{question}\n") print(f"✅ True Ending: {true_answer}\n >> {row[true_answer]}\n") print(f"🤖 Predicted Ending: {pred_answer}\n >> {row[pred_answer]}\n") print("-" * 90, "\n") ``` <div class="k-default-codeblock"> ``` 50/50 ━━━━━━━━━━━━━━━━━━━━ 274s 5s/step # Predictions ``` </div> <div class="k-default-codeblock"> ``` ❓ Sentence 1: The man shows the teens how to move the oars. The teens ``` </div> <div class="k-default-codeblock"> ``` ✅ True Ending: ending3 >> follow the instructions of the man and row the oars. ``` </div> <div class="k-default-codeblock"> ``` 🤖 Predicted Ending: ending3 >> follow the instructions of the man and row the oars. ``` </div> <div class="k-default-codeblock"> ``` ------------------------------------------------------------------------------------------ ``` </div> <div class="k-default-codeblock"> ``` ❓ Sentence 11: A lake reflects the mountains and the sky. Someone ``` </div> <div class="k-default-codeblock"> ``` ✅ True Ending: ending2 >> runs along a desert highway. ``` </div> <div class="k-default-codeblock"> ``` 🤖 Predicted Ending: ending1 >> remains by the door. ``` </div> <div class="k-default-codeblock"> ``` ------------------------------------------------------------------------------------------ ``` </div> <div class="k-default-codeblock"> ``` ❓ Sentence 21: On screen, she smiles as someone holds up a present. He watches somberly as on screen, his mother ``` </div> <div class="k-default-codeblock"> ``` ✅ True Ending: ending1 >> picks him up and plays with him in the garden. ``` </div> <div class="k-default-codeblock"> ``` 🤖 Predicted Ending: ending0 >> comes out of her apartment, glowers at her laptop. ``` </div> <div class="k-default-codeblock"> ``` ------------------------------------------------------------------------------------------ ``` </div> <div class="k-default-codeblock"> ``` ❓ Sentence 31: A woman in a black shirt is sitting on a bench. A man ``` </div> <div class="k-default-codeblock"> ``` ✅ True Ending: ending2 >> sits behind a desk. ``` </div> <div class="k-default-codeblock"> ``` 🤖 Predicted Ending: ending0 >> is dancing on a stage. ``` </div> <div class="k-default-codeblock"> ``` ------------------------------------------------------------------------------------------ ``` </div> <div class="k-default-codeblock"> ``` ❓ Sentence 41: People are standing on sand wearing red shirts. They ``` </div> <div class="k-default-codeblock"> ``` ✅ True Ending: ending3 >> are playing a game of soccer in the sand. ``` </div> <div class="k-default-codeblock"> ``` 🤖 Predicted Ending: ending3 >> are playing a game of soccer in the sand. ``` </div> <div class="k-default-codeblock"> ``` ------------------------------------------------------------------------------------------ ``` </div> --- ## Reference * [Multiple Choice with HF](https://twitter.com/johnowhitaker/status/1689790373454041089?s=20) * [Keras NLP](https://keras.io/api/keras_nlp/) * [BirdCLEF23: Pretraining is All you Need [Train]](https://www.kaggle.com/code/awsaf49/birdclef23-pretraining-is-all-you-need-train) [Train]](https://www.kaggle.com/code/awsaf49/birdclef23-pretraining-is-all-you-need-train) * [Triple Stratified KFold with TFRecords](https://www.kaggle.com/code/cdeotte/triple-stratified-kfold-with-tfrecords)
keras-io/examples/nlp/md/multiple_choice_task_with_transfer_learning.md/0
{ "file_path": "keras-io/examples/nlp/md/multiple_choice_task_with_transfer_learning.md", "repo_id": "keras-io", "token_count": 14028 }
102
# Text classification using Decision Forests and pretrained embeddings **Author:** Gitesh Chawda<br> **Date created:** 09/05/2022<br> **Last modified:** 09/05/2022<br> **Description:** Using Tensorflow Decision Forests for text classification. <img class="k-inline-icon" src="https://colab.research.google.com/img/colab_favicon.ico"/> [**View in Colab**](https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/nlp/ipynb/tweet-classification-using-tfdf.ipynb) <span class="k-dot">•</span><img class="k-inline-icon" src="https://github.com/favicon.ico"/> [**GitHub source**](https://github.com/keras-team/keras-io/blob/master/examples/nlp/tweet-classification-using-tfdf.py) --- ## Introduction [TensorFlow Decision Forests](https://www.tensorflow.org/decision_forests) (TF-DF) is a collection of state-of-the-art algorithms for Decision Forest models that are compatible with Keras APIs. The module includes Random Forests, Gradient Boosted Trees, and CART, and can be used for regression, classification, and ranking tasks. In this example we will use Gradient Boosted Trees with pretrained embeddings to classify disaster-related tweets. ### See also: - [TF-DF beginner tutorial](https://www.tensorflow.org/decision_forests/tutorials/beginner_colab) - [TF-DF intermediate tutorial](https://www.tensorflow.org/decision_forests/tutorials/intermediate_colab). Install Tensorflow Decision Forest using following command : `pip install tensorflow_decision_forests` --- ## Imports ```python import pandas as pd import numpy as np import tensorflow as tf from tensorflow import keras import tensorflow_hub as hub from tensorflow.keras import layers import tensorflow_decision_forests as tfdf import matplotlib.pyplot as plt ``` --- ## Get the data The Dataset is avalaible on [Kaggle](https://www.kaggle.com/c/nlp-getting-started) Dataset description: **Files:** - train.csv: the training set **Columns:** - id: a unique identifier for each tweet - text: the text of the tweet - location: the location the tweet was sent from (may be blank) - keyword: a particular keyword from the tweet (may be blank) - target: in train.csv only, this denotes whether a tweet is about a real disaster (1) or not (0) ```python # Turn .csv files into pandas DataFrame's df = pd.read_csv( "https://raw.githubusercontent.com/IMvision12/Tweets-Classification-NLP/main/train.csv" ) print(df.head()) ``` <div class="k-default-codeblock"> ``` id keyword location text \ 0 1 NaN NaN Our Deeds are the Reason of this #earthquake M... 1 4 NaN NaN Forest fire near La Ronge Sask. Canada 2 5 NaN NaN All residents asked to 'shelter in place' are ... 3 6 NaN NaN 13,000 people receive #wildfires evacuation or... 4 7 NaN NaN Just got sent this photo from Ruby #Alaska as ... ``` </div> <div class="k-default-codeblock"> ``` target 0 1 1 1 2 1 3 1 4 1 ``` </div> The dataset includes 7613 samples with 5 columns: ```python print(f"Training dataset shape: {df.shape}") ``` <div class="k-default-codeblock"> ``` Training dataset shape: (7613, 5) ``` </div> Shuffling and dropping unnecessary columns: ```python df_shuffled = df.sample(frac=1, random_state=42) # Dropping id, keyword and location columns as these columns consists of mostly nan values # we will be using only text and target columns df_shuffled.drop(["id", "keyword", "location"], axis=1, inplace=True) df_shuffled.reset_index(inplace=True, drop=True) print(df_shuffled.head()) ``` <div class="k-default-codeblock"> ``` text target 0 So you have a new weapon that can cause un-ima... 1 1 The f$&amp;@ing things I do for #GISHWHES Just... 0 2 DT @georgegalloway: RT @Galloway4Mayor: ‰ÛÏThe... 1 3 Aftershock back to school kick off was great. ... 0 4 in response to trauma Children of Addicts deve... 0 ``` </div> Printing information about the shuffled dataframe: ```python print(df_shuffled.info()) ``` <div class="k-default-codeblock"> ``` <class 'pandas.core.frame.DataFrame'> RangeIndex: 7613 entries, 0 to 7612 Data columns (total 2 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 text 7613 non-null object 1 target 7613 non-null int64 dtypes: int64(1), object(1) memory usage: 119.1+ KB None ``` </div> Total number of "disaster" and "non-disaster" tweets: ```python print( "Total Number of disaster and non-disaster tweets: " f"{df_shuffled.target.value_counts()}" ) ``` <div class="k-default-codeblock"> ``` Total Number of disaster and non-disaster tweets: 0 4342 1 3271 Name: target, dtype: int64 ``` </div> Let's preview a few samples: ```python for index, example in df_shuffled[:5].iterrows(): print(f"Example #{index}") print(f"\tTarget : {example['target']}") print(f"\tText : {example['text']}") ``` <div class="k-default-codeblock"> ``` Example #0 Target : 1 Text : So you have a new weapon that can cause un-imaginable destruction. Example #1 Target : 0 Text : The f$&amp;@ing things I do for #GISHWHES Just got soaked in a deluge going for pads and tampons. Thx @mishacollins @/@ Example #2 Target : 1 Text : DT @georgegalloway: RT @Galloway4Mayor: ‰ÛÏThe CoL police can catch a pickpocket in Liverpool Stree... http://t.co/vXIn1gOq4Q Example #3 Target : 0 Text : Aftershock back to school kick off was great. I want to thank everyone for making it possible. What a great night. Example #4 Target : 0 Text : in response to trauma Children of Addicts develop a defensive self - one that decreases vulnerability. (3 ``` </div> Splitting dataset into training and test sets: ```python test_df = df_shuffled.sample(frac=0.1, random_state=42) train_df = df_shuffled.drop(test_df.index) print(f"Using {len(train_df)} samples for training and {len(test_df)} for validation") ``` <div class="k-default-codeblock"> ``` Using 6852 samples for training and 761 for validation ``` </div> Total number of "disaster" and "non-disaster" tweets in the training data: ```python print(train_df["target"].value_counts()) ``` <div class="k-default-codeblock"> ``` 0 3929 1 2923 Name: target, dtype: int64 ``` </div> Total number of "disaster" and "non-disaster" tweets in the test data: ```python print(test_df["target"].value_counts()) ``` <div class="k-default-codeblock"> ``` 0 413 1 348 Name: target, dtype: int64 ``` </div> --- ## Convert data to a `tf.data.Dataset` ```python def create_dataset(dataframe): dataset = tf.data.Dataset.from_tensor_slices( (dataframe["text"].to_numpy(), dataframe["target"].to_numpy()) ) dataset = dataset.batch(100) dataset = dataset.prefetch(tf.data.AUTOTUNE) return dataset train_ds = create_dataset(train_df) test_ds = create_dataset(test_df) ``` --- ## Downloading pretrained embeddings The Universal Sentence Encoder embeddings encode text into high-dimensional vectors that can be used for text classification, semantic similarity, clustering and other natural language tasks. They're trained on a variety of data sources and a variety of tasks. Their input is variable-length English text and their output is a 512 dimensional vector. To learn more about these pretrained embeddings, see [Universal Sentence Encoder](https://tfhub.dev/google/universal-sentence-encoder/4). ```python sentence_encoder_layer = hub.KerasLayer( "https://tfhub.dev/google/universal-sentence-encoder/4" ) ``` --- ## Creating our models We create two models. In the first model (model_1) raw text will be first encoded via pretrained embeddings and then passed to a Gradient Boosted Tree model for classification. In the second model (model_2) raw text will be directly passed to the Gradient Boosted Trees model. Building model_1 ```python inputs = layers.Input(shape=(), dtype=tf.string) outputs = sentence_encoder_layer(inputs) preprocessor = keras.Model(inputs=inputs, outputs=outputs) model_1 = tfdf.keras.GradientBoostedTreesModel(preprocessing=preprocessor) ``` <div class="k-default-codeblock"> ``` Use /tmp/tmpsp7fmsyk as temporary training directory ``` </div> Building model_2 ```python model_2 = tfdf.keras.GradientBoostedTreesModel() ``` <div class="k-default-codeblock"> ``` Use /tmp/tmpl0zj3vw0 as temporary training directory ``` </div> --- ## Train the models We compile our model by passing the metrics `Accuracy`, `Recall`, `Precision` and `AUC`. When it comes to the loss, TF-DF automatically detects the best loss for the task (Classification or regression). It is printed in the model summary. Also, because they're batch-training models rather than mini-batch gradient descent models, TF-DF models do not need a validation dataset to monitor overfitting, or to stop training early. Some algorithms do not use a validation dataset (e.g. Random Forest) while some others do (e.g. Gradient Boosted Trees). If a validation dataset is needed, it will be extracted automatically from the training dataset. ```python # Compiling model_1 model_1.compile(metrics=["Accuracy", "Recall", "Precision", "AUC"]) # Here we do not specify epochs as, TF-DF trains exactly one epoch of the dataset model_1.fit(train_ds) # Compiling model_2 model_2.compile(metrics=["Accuracy", "Recall", "Precision", "AUC"]) # Here we do not specify epochs as, TF-DF trains exactly one epoch of the dataset model_2.fit(train_ds) ``` <div class="k-default-codeblock"> ``` Reading training dataset... Training dataset read in 0:00:06.473683. Found 6852 examples. Training model... Model trained in 0:00:41.461477 Compiling model... Model compiled. Reading training dataset... Training dataset read in 0:00:00.087930. Found 6852 examples. Training model... Model trained in 0:00:00.367492 Compiling model... Model compiled. <keras.callbacks.History at 0x7fe09ded1b40> ``` </div> Prints training logs of model_1 ```python logs_1 = model_1.make_inspector().training_logs() print(logs_1) ``` <div class="k-default-codeblock"> ``` ``` </div> Prints training logs of model_2 ```python logs_2 = model_2.make_inspector().training_logs() print(logs_2) ``` <div class="k-default-codeblock"> ``` ``` </div> The model.summary() method prints a variety of information about your decision tree model, including model type, task, input features, and feature importance. ```python print("model_1 summary: ") print(model_1.summary()) print() print("model_2 summary: ") print(model_2.summary()) ``` <div class="k-default-codeblock"> ``` model_1 summary: Model: "gradient_boosted_trees_model" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= model (Functional) (None, 512) 256797824 ================================================================= Total params: 256,797,825 Trainable params: 0 Non-trainable params: 256,797,825 _________________________________________________________________ Type: "GRADIENT_BOOSTED_TREES" Task: CLASSIFICATION Label: "__LABEL" ``` </div> <div class="k-default-codeblock"> ``` ``` </div> <div class="k-default-codeblock"> ``` No weights ``` </div> <div class="k-default-codeblock"> ``` ``` </div> <div class="k-default-codeblock"> ``` ``` </div> <div class="k-default-codeblock"> ``` ``` </div> <div class="k-default-codeblock"> ``` ``` </div> <div class="k-default-codeblock"> ``` Loss: BINOMIAL_LOG_LIKELIHOOD Validation loss value: 0.806777 Number of trees per iteration: 1 Node format: NOT_SET Number of trees: 137 Total number of nodes: 6671 ``` </div> <div class="k-default-codeblock"> ``` Number of nodes by tree: Count: 137 Average: 48.6934 StdDev: 9.91023 Min: 21 Max: 63 Ignored: 0 ---------------------------------------------- [ 21, 23) 1 0.73% 0.73% [ 23, 25) 1 0.73% 1.46% [ 25, 27) 0 0.00% 1.46% [ 27, 29) 1 0.73% 2.19% [ 29, 31) 3 2.19% 4.38% # [ 31, 33) 3 2.19% 6.57% # [ 33, 36) 9 6.57% 13.14% #### [ 36, 38) 4 2.92% 16.06% ## [ 38, 40) 4 2.92% 18.98% ## [ 40, 42) 8 5.84% 24.82% #### [ 42, 44) 8 5.84% 30.66% #### [ 44, 46) 9 6.57% 37.23% #### [ 46, 48) 7 5.11% 42.34% ### [ 48, 51) 10 7.30% 49.64% ##### [ 51, 53) 13 9.49% 59.12% ###### [ 53, 55) 10 7.30% 66.42% ##### [ 55, 57) 10 7.30% 73.72% ##### [ 57, 59) 6 4.38% 78.10% ### [ 59, 61) 8 5.84% 83.94% #### [ 61, 63] 22 16.06% 100.00% ########## ``` </div> <div class="k-default-codeblock"> ``` Depth by leafs: Count: 3404 Average: 4.81052 StdDev: 0.557183 Min: 1 Max: 5 Ignored: 0 ---------------------------------------------- [ 1, 2) 6 0.18% 0.18% [ 2, 3) 38 1.12% 1.29% [ 3, 4) 117 3.44% 4.73% [ 4, 5) 273 8.02% 12.75% # [ 5, 5] 2970 87.25% 100.00% ########## ``` </div> <div class="k-default-codeblock"> ``` Number of training obs by leaf: Count: 3404 Average: 248.806 StdDev: 517.403 Min: 5 Max: 4709 Ignored: 0 ---------------------------------------------- [ 5, 240) 2615 76.82% 76.82% ########## [ 240, 475) 243 7.14% 83.96% # [ 475, 710) 162 4.76% 88.72% # [ 710, 946) 104 3.06% 91.77% [ 946, 1181) 80 2.35% 94.12% [ 1181, 1416) 48 1.41% 95.53% [ 1416, 1651) 44 1.29% 96.83% [ 1651, 1887) 27 0.79% 97.62% [ 1887, 2122) 18 0.53% 98.15% [ 2122, 2357) 19 0.56% 98.71% [ 2357, 2592) 10 0.29% 99.00% [ 2592, 2828) 6 0.18% 99.18% [ 2828, 3063) 8 0.24% 99.41% [ 3063, 3298) 7 0.21% 99.62% [ 3298, 3533) 3 0.09% 99.71% [ 3533, 3769) 5 0.15% 99.85% [ 3769, 4004) 2 0.06% 99.91% [ 4004, 4239) 1 0.03% 99.94% [ 4239, 4474) 1 0.03% 99.97% [ 4474, 4709] 1 0.03% 100.00% ``` </div> <div class="k-default-codeblock"> ``` ``` </div> <div class="k-default-codeblock"> ``` ``` </div> <div class="k-default-codeblock"> ``` ``` </div> <div class="k-default-codeblock"> ``` ``` </div> <div class="k-default-codeblock"> ``` ``` </div> <div class="k-default-codeblock"> ``` ``` </div> <div class="k-default-codeblock"> ``` Condition type in nodes: 3267 : HigherCondition Condition type in nodes with depth <= 0: 137 : HigherCondition Condition type in nodes with depth <= 1: 405 : HigherCondition Condition type in nodes with depth <= 2: 903 : HigherCondition Condition type in nodes with depth <= 3: 1782 : HigherCondition Condition type in nodes with depth <= 5: 3267 : HigherCondition ``` </div> <div class="k-default-codeblock"> ``` None ``` </div> <div class="k-default-codeblock"> ``` model_2 summary: Model: "gradient_boosted_trees_model_1" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= ================================================================= Total params: 1 Trainable params: 0 Non-trainable params: 1 _________________________________________________________________ Type: "GRADIENT_BOOSTED_TREES" Task: CLASSIFICATION Label: "__LABEL" ``` </div> <div class="k-default-codeblock"> ``` Input Features (1): data:0 ``` </div> <div class="k-default-codeblock"> ``` No weights ``` </div> <div class="k-default-codeblock"> ``` Variable Importance: MEAN_MIN_DEPTH: 1. "__LABEL" 2.250000 ################ 2. "data:0" 0.000000 ``` </div> <div class="k-default-codeblock"> ``` Variable Importance: NUM_AS_ROOT: 1. "data:0" 117.000000 ``` </div> <div class="k-default-codeblock"> ``` Variable Importance: NUM_NODES: 1. "data:0" 351.000000 ``` </div> <div class="k-default-codeblock"> ``` Variable Importance: SUM_SCORE: 1. "data:0" 32.035971 ``` </div> <div class="k-default-codeblock"> ``` Loss: BINOMIAL_LOG_LIKELIHOOD Validation loss value: 1.36429 Number of trees per iteration: 1 Node format: NOT_SET Number of trees: 117 Total number of nodes: 819 ``` </div> <div class="k-default-codeblock"> ``` Number of nodes by tree: Count: 117 Average: 7 StdDev: 0 Min: 7 Max: 7 Ignored: 0 ---------------------------------------------- [ 7, 7] 117 100.00% 100.00% ########## ``` </div> <div class="k-default-codeblock"> ``` Depth by leafs: Count: 468 Average: 2.25 StdDev: 0.829156 Min: 1 Max: 3 Ignored: 0 ---------------------------------------------- [ 1, 2) 117 25.00% 25.00% ##### [ 2, 3) 117 25.00% 50.00% ##### [ 3, 3] 234 50.00% 100.00% ########## ``` </div> <div class="k-default-codeblock"> ``` Number of training obs by leaf: Count: 468 Average: 1545.5 StdDev: 2660.15 Min: 5 Max: 6153 Ignored: 0 ---------------------------------------------- [ 5, 312) 351 75.00% 75.00% ########## [ 312, 619) 0 0.00% 75.00% [ 619, 927) 0 0.00% 75.00% [ 927, 1234) 0 0.00% 75.00% [ 1234, 1542) 0 0.00% 75.00% [ 1542, 1849) 0 0.00% 75.00% [ 1849, 2157) 0 0.00% 75.00% [ 2157, 2464) 0 0.00% 75.00% [ 2464, 2772) 0 0.00% 75.00% [ 2772, 3079) 0 0.00% 75.00% [ 3079, 3386) 0 0.00% 75.00% [ 3386, 3694) 0 0.00% 75.00% [ 3694, 4001) 0 0.00% 75.00% [ 4001, 4309) 0 0.00% 75.00% [ 4309, 4616) 0 0.00% 75.00% [ 4616, 4924) 0 0.00% 75.00% [ 4924, 5231) 0 0.00% 75.00% [ 5231, 5539) 0 0.00% 75.00% [ 5539, 5846) 0 0.00% 75.00% [ 5846, 6153] 117 25.00% 100.00% ### ``` </div> <div class="k-default-codeblock"> ``` Attribute in nodes: 351 : data:0 [CATEGORICAL] ``` </div> <div class="k-default-codeblock"> ``` Attribute in nodes with depth <= 0: 117 : data:0 [CATEGORICAL] ``` </div> <div class="k-default-codeblock"> ``` Attribute in nodes with depth <= 1: 234 : data:0 [CATEGORICAL] ``` </div> <div class="k-default-codeblock"> ``` Attribute in nodes with depth <= 2: 351 : data:0 [CATEGORICAL] ``` </div> <div class="k-default-codeblock"> ``` Attribute in nodes with depth <= 3: 351 : data:0 [CATEGORICAL] ``` </div> <div class="k-default-codeblock"> ``` Attribute in nodes with depth <= 5: 351 : data:0 [CATEGORICAL] ``` </div> <div class="k-default-codeblock"> ``` Condition type in nodes: 351 : ContainsBitmapCondition Condition type in nodes with depth <= 0: 117 : ContainsBitmapCondition Condition type in nodes with depth <= 1: 234 : ContainsBitmapCondition Condition type in nodes with depth <= 2: 351 : ContainsBitmapCondition Condition type in nodes with depth <= 3: 351 : ContainsBitmapCondition Condition type in nodes with depth <= 5: 351 : ContainsBitmapCondition ``` </div> <div class="k-default-codeblock"> ``` None ``` </div> --- ## Plotting training metrics ```python def plot_curve(logs): plt.figure(figsize=(12, 4)) plt.subplot(1, 2, 1) plt.plot([log.num_trees for log in logs], [log.evaluation.accuracy for log in logs]) plt.xlabel("Number of trees") plt.ylabel("Accuracy") plt.subplot(1, 2, 2) plt.plot([log.num_trees for log in logs], [log.evaluation.loss for log in logs]) plt.xlabel("Number of trees") plt.ylabel("Loss") plt.show() plot_curve(logs_1) plot_curve(logs_2) ``` ![png](/img/examples/nlp/tweet-classification-using-tfdf/tweet-classification-using-tfdf_41_0.png) ![png](/img/examples/nlp/tweet-classification-using-tfdf/tweet-classification-using-tfdf_41_1.png) --- ## Evaluating on test data ```python results = model_1.evaluate(test_ds, return_dict=True, verbose=0) print("model_1 Evaluation: \n") for name, value in results.items(): print(f"{name}: {value:.4f}") results = model_2.evaluate(test_ds, return_dict=True, verbose=0) print("model_2 Evaluation: \n") for name, value in results.items(): print(f"{name}: {value:.4f}") ``` <div class="k-default-codeblock"> ``` model_1 Evaluation: ``` </div> <div class="k-default-codeblock"> ``` loss: 0.0000 Accuracy: 0.8160 recall: 0.7241 precision: 0.8514 auc: 0.8700 model_2 Evaluation: ``` </div> <div class="k-default-codeblock"> ``` loss: 0.0000 Accuracy: 0.5440 recall: 0.0029 precision: 1.0000 auc: 0.5026 ``` </div> --- ## Predicting on validation data ```python test_df.reset_index(inplace=True, drop=True) for index, row in test_df.iterrows(): text = tf.expand_dims(row["text"], axis=0) preds = model_1.predict_step(text) preds = tf.squeeze(tf.round(preds)) print(f"Text: {row['text']}") print(f"Prediction: {int(preds)}") print(f"Ground Truth : {row['target']}") if index == 10: break ``` <div class="k-default-codeblock"> ``` Text: DFR EP016 Monthly Meltdown - On Dnbheaven 2015.08.06 http://t.co/EjKRf8N8A8 #Drum and Bass #heavy #nasty http://t.co/SPHWE6wFI5 Prediction: 0 Ground Truth : 0 Text: FedEx no longer to transport bioterror germs in wake of anthrax lab mishaps http://t.co/qZQc8WWwcN via @usatoday Prediction: 1 Ground Truth : 0 Text: Gunmen kill four in El Salvador bus attack: Suspected Salvadoran gang members killed four people and wounded s... http://t.co/CNtwB6ScZj Prediction: 1 Ground Truth : 1 Text: @camilacabello97 Internally and externally screaming Prediction: 0 Ground Truth : 1 Text: Radiation emergency #preparedness starts with knowing to: get inside stay inside and stay tuned http://t.co/RFFPqBAz2F via @CDCgov Prediction: 1 Ground Truth : 1 Text: Investigators rule catastrophic structural failure resulted in 2014 Virg.. Related Articles: http://t.co/Cy1LFeNyV8 Prediction: 1 Ground Truth : 1 Text: How the West was burned: Thousands of wildfires ablaze in #California alone http://t.co/iCSjGZ9tE1 #climate #energy http://t.co/9FxmN0l0Bd Prediction: 1 Ground Truth : 1 Text: Map: Typhoon Soudelor's predicted path as it approaches Taiwan; expected to make landfall over southern China by S‰Û_ http://t.co/JDVSGVhlIs Prediction: 1 Ground Truth : 1 Text: ‰Ûª93 blasts accused Yeda Yakub dies in Karachi of heart attack http://t.co/mfKqyxd8XG #Mumbai Prediction: 1 Ground Truth : 1 Text: My ears are bleeding https://t.co/k5KnNwugwT Prediction: 0 Ground Truth : 0 Text: @RedCoatJackpot *As it was typical for them their bullets collided and none managed to reach their targets; such was the ''curse'' of a -- Prediction: 0 Ground Truth : 0 ``` </div> --- ## Concluding remarks The TensorFlow Decision Forests package provides powerful models that work especially well with structured data. In our experiments, the Gradient Boosted Tree model with pretrained embeddings achieved 81.6% test accuracy while the plain Gradient Boosted Tree model had 54.4% accuracy.
keras-io/examples/nlp/md/tweet-classification-using-tfdf.md/0
{ "file_path": "keras-io/examples/nlp/md/tweet-classification-using-tfdf.md", "repo_id": "keras-io", "token_count": 8932 }
103
# Classification with TensorFlow Decision Forests **Author:** [Khalid Salama](https://www.linkedin.com/in/khalid-salama-24403144/)<br> **Date created:** 2022/01/25<br> **Last modified:** 2022/01/25<br> **Description:** Using TensorFlow Decision Forests for structured data classification. <img class="k-inline-icon" src="https://colab.research.google.com/img/colab_favicon.ico"/> [**View in Colab**](https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/structured_data/ipynb/classification_with_tfdf.ipynb) <span class="k-dot">•</span><img class="k-inline-icon" src="https://github.com/favicon.ico"/> [**GitHub source**](https://github.com/keras-team/keras-io/blob/master/examples/structured_data/classification_with_tfdf.py) --- ## Introduction [TensorFlow Decision Forests](https://www.tensorflow.org/decision_forests) is a collection of state-of-the-art algorithms of Decision Forest models that are compatible with Keras APIs. The models include [Random Forests](https://www.tensorflow.org/decision_forests/api_docs/python/tfdf/keras/RandomForestModel), [Gradient Boosted Trees](https://www.tensorflow.org/decision_forests/api_docs/python/tfdf/keras/GradientBoostedTreesModel), and [CART](https://www.tensorflow.org/decision_forests/api_docs/python/tfdf/keras/CartModel), and can be used for regression, classification, and ranking task. For a beginner's guide to TensorFlow Decision Forests, please refer to this [tutorial](https://www.tensorflow.org/decision_forests/tutorials/beginner_colab). This example uses Gradient Boosted Trees model in binary classification of structured data, and covers the following scenarios: 1. Build a decision forests model by specifying the input feature usage. 2. Implement a custom *Binary Target encoder* as a [Keras Preprocessing layer](https://keras.io/api/layers/preprocessing_layers/) to encode the categorical features with respect to their target value co-occurrences, and then use the encoded features to build a decision forests model. 3. Encode the categorical features as [embeddings](https://keras.io/api/layers/core_layers/embedding), train these embeddings in a simple NN model, and then use the trained embeddings as inputs to build decision forests model. This example uses TensorFlow 2.7 or higher, as well as [TensorFlow Decision Forests](https://www.tensorflow.org/decision_forests), which you can install using the following command: ```python pip install -U tensorflow_decision_forests ``` --- ## Setup ```python import math import urllib import numpy as np import pandas as pd import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers import tensorflow_decision_forests as tfdf ``` --- ## Prepare the data This example uses the [United States Census Income Dataset](https://archive.ics.uci.edu/ml/datasets/Census-Income+%28KDD%29) provided by the [UC Irvine Machine Learning Repository](https://archive.ics.uci.edu/ml/index.php). The task is binary classification to determine whether a person makes over 50K a year. The dataset includes ~300K instances with 41 input features: 7 numerical features and 34 categorical features. First we load the data from the UCI Machine Learning Repository into a Pandas DataFrame. ```python BASE_PATH = "https://kdd.ics.uci.edu/databases/census-income/census-income" CSV_HEADER = [ l.decode("utf-8").split(":")[0].replace(" ", "_") for l in urllib.request.urlopen(f"{BASE_PATH}.names") if not l.startswith(b"|") ][2:] CSV_HEADER.append("income_level") train_data = pd.read_csv(f"{BASE_PATH}.data.gz", header=None, names=CSV_HEADER,) test_data = pd.read_csv(f"{BASE_PATH}.test.gz", header=None, names=CSV_HEADER,) ``` --- ## Define dataset metadata Here, we define the metadata of the dataset that will be useful for encoding the input features with respect to their types. ```python # Target column name. TARGET_COLUMN_NAME = "income_level" # The labels of the target columns. TARGET_LABELS = [" - 50000.", " 50000+."] # Weight column name. WEIGHT_COLUMN_NAME = "instance_weight" # Numeric feature names. NUMERIC_FEATURE_NAMES = [ "age", "wage_per_hour", "capital_gains", "capital_losses", "dividends_from_stocks", "num_persons_worked_for_employer", "weeks_worked_in_year", ] # Categorical features and their vocabulary lists. CATEGORICAL_FEATURE_NAMES = [ "class_of_worker", "detailed_industry_recode", "detailed_occupation_recode", "education", "enroll_in_edu_inst_last_wk", "marital_stat", "major_industry_code", "major_occupation_code", "race", "hispanic_origin", "sex", "member_of_a_labor_union", "reason_for_unemployment", "full_or_part_time_employment_stat", "tax_filer_stat", "region_of_previous_residence", "state_of_previous_residence", "detailed_household_and_family_stat", "detailed_household_summary_in_household", "migration_code-change_in_msa", "migration_code-change_in_reg", "migration_code-move_within_reg", "live_in_this_house_1_year_ago", "migration_prev_res_in_sunbelt", "family_members_under_18", "country_of_birth_father", "country_of_birth_mother", "country_of_birth_self", "citizenship", "own_business_or_self_employed", "fill_inc_questionnaire_for_veteran's_admin", "veterans_benefits", "year", ] ``` Now we perform basic data preparation. ```python def prepare_dataframe(dataframe): # Convert the target labels from string to integer. dataframe[TARGET_COLUMN_NAME] = dataframe[TARGET_COLUMN_NAME].map( TARGET_LABELS.index ) # Cast the categorical features to string. for feature_name in CATEGORICAL_FEATURE_NAMES: dataframe[feature_name] = dataframe[feature_name].astype(str) prepare_dataframe(train_data) prepare_dataframe(test_data) ``` Now let's show the shapes of the training and test dataframes, and display some instances. ```python print(f"Train data shape: {train_data.shape}") print(f"Test data shape: {test_data.shape}") print(train_data.head().T) ``` <div class="k-default-codeblock"> ``` Train data shape: (199523, 42) Test data shape: (99762, 42) 0 \ age 73 class_of_worker Not in universe detailed_industry_recode 0 detailed_occupation_recode 0 education High school graduate wage_per_hour 0 enroll_in_edu_inst_last_wk Not in universe marital_stat Widowed major_industry_code Not in universe or children major_occupation_code Not in universe race White hispanic_origin All other sex Female member_of_a_labor_union Not in universe reason_for_unemployment Not in universe full_or_part_time_employment_stat Not in labor force capital_gains 0 capital_losses 0 dividends_from_stocks 0 tax_filer_stat Nonfiler region_of_previous_residence Not in universe state_of_previous_residence Not in universe detailed_household_and_family_stat Other Rel 18+ ever marr not in subfamily detailed_household_summary_in_household Other relative of householder instance_weight 1700.09 migration_code-change_in_msa ? migration_code-change_in_reg ? migration_code-move_within_reg ? live_in_this_house_1_year_ago Not in universe under 1 year old migration_prev_res_in_sunbelt ? num_persons_worked_for_employer 0 family_members_under_18 Not in universe country_of_birth_father United-States country_of_birth_mother United-States country_of_birth_self United-States citizenship Native- Born in the United States own_business_or_self_employed 0 fill_inc_questionnaire_for_veteran's_admin Not in universe veterans_benefits 2 weeks_worked_in_year 0 year 95 income_level 0 ``` </div> <div class="k-default-codeblock"> ``` 1 \ age 58 class_of_worker Self-employed-not incorporated detailed_industry_recode 4 detailed_occupation_recode 34 education Some college but no degree wage_per_hour 0 enroll_in_edu_inst_last_wk Not in universe marital_stat Divorced major_industry_code Construction major_occupation_code Precision production craft & repair race White hispanic_origin All other sex Male member_of_a_labor_union Not in universe reason_for_unemployment Not in universe full_or_part_time_employment_stat Children or Armed Forces capital_gains 0 capital_losses 0 dividends_from_stocks 0 tax_filer_stat Head of household region_of_previous_residence South state_of_previous_residence Arkansas detailed_household_and_family_stat Householder detailed_household_summary_in_household Householder instance_weight 1053.55 migration_code-change_in_msa MSA to MSA migration_code-change_in_reg Same county migration_code-move_within_reg Same county live_in_this_house_1_year_ago No migration_prev_res_in_sunbelt Yes num_persons_worked_for_employer 1 family_members_under_18 Not in universe country_of_birth_father United-States country_of_birth_mother United-States country_of_birth_self United-States citizenship Native- Born in the United States own_business_or_self_employed 0 fill_inc_questionnaire_for_veteran's_admin Not in universe veterans_benefits 2 weeks_worked_in_year 52 year 94 income_level 0 ``` </div> <div class="k-default-codeblock"> ``` 2 \ age 18 class_of_worker Not in universe detailed_industry_recode 0 detailed_occupation_recode 0 education 10th grade wage_per_hour 0 enroll_in_edu_inst_last_wk High school marital_stat Never married major_industry_code Not in universe or children major_occupation_code Not in universe race Asian or Pacific Islander hispanic_origin All other sex Female member_of_a_labor_union Not in universe reason_for_unemployment Not in universe full_or_part_time_employment_stat Not in labor force capital_gains 0 capital_losses 0 dividends_from_stocks 0 tax_filer_stat Nonfiler region_of_previous_residence Not in universe state_of_previous_residence Not in universe detailed_household_and_family_stat Child 18+ never marr Not in a subfamily detailed_household_summary_in_household Child 18 or older instance_weight 991.95 migration_code-change_in_msa ? migration_code-change_in_reg ? migration_code-move_within_reg ? live_in_this_house_1_year_ago Not in universe under 1 year old migration_prev_res_in_sunbelt ? num_persons_worked_for_employer 0 family_members_under_18 Not in universe country_of_birth_father Vietnam country_of_birth_mother Vietnam country_of_birth_self Vietnam citizenship Foreign born- Not a citizen of U S own_business_or_self_employed 0 fill_inc_questionnaire_for_veteran's_admin Not in universe veterans_benefits 2 weeks_worked_in_year 0 year 95 income_level 0 ``` </div> <div class="k-default-codeblock"> ``` 3 \ age 9 class_of_worker Not in universe detailed_industry_recode 0 detailed_occupation_recode 0 education Children wage_per_hour 0 enroll_in_edu_inst_last_wk Not in universe marital_stat Never married major_industry_code Not in universe or children major_occupation_code Not in universe race White hispanic_origin All other sex Female member_of_a_labor_union Not in universe reason_for_unemployment Not in universe full_or_part_time_employment_stat Children or Armed Forces capital_gains 0 capital_losses 0 dividends_from_stocks 0 tax_filer_stat Nonfiler region_of_previous_residence Not in universe state_of_previous_residence Not in universe detailed_household_and_family_stat Child <18 never marr not in subfamily detailed_household_summary_in_household Child under 18 never married instance_weight 1758.14 migration_code-change_in_msa Nonmover migration_code-change_in_reg Nonmover migration_code-move_within_reg Nonmover live_in_this_house_1_year_ago Yes migration_prev_res_in_sunbelt Not in universe num_persons_worked_for_employer 0 family_members_under_18 Both parents present country_of_birth_father United-States country_of_birth_mother United-States country_of_birth_self United-States citizenship Native- Born in the United States own_business_or_self_employed 0 fill_inc_questionnaire_for_veteran's_admin Not in universe veterans_benefits 0 weeks_worked_in_year 0 year 94 income_level 0 ``` </div> <div class="k-default-codeblock"> ``` 4 age 10 class_of_worker Not in universe detailed_industry_recode 0 detailed_occupation_recode 0 education Children wage_per_hour 0 enroll_in_edu_inst_last_wk Not in universe marital_stat Never married major_industry_code Not in universe or children major_occupation_code Not in universe race White hispanic_origin All other sex Female member_of_a_labor_union Not in universe reason_for_unemployment Not in universe full_or_part_time_employment_stat Children or Armed Forces capital_gains 0 capital_losses 0 dividends_from_stocks 0 tax_filer_stat Nonfiler region_of_previous_residence Not in universe state_of_previous_residence Not in universe detailed_household_and_family_stat Child <18 never marr not in subfamily detailed_household_summary_in_household Child under 18 never married instance_weight 1069.16 migration_code-change_in_msa Nonmover migration_code-change_in_reg Nonmover migration_code-move_within_reg Nonmover live_in_this_house_1_year_ago Yes migration_prev_res_in_sunbelt Not in universe num_persons_worked_for_employer 0 family_members_under_18 Both parents present country_of_birth_father United-States country_of_birth_mother United-States country_of_birth_self United-States citizenship Native- Born in the United States own_business_or_self_employed 0 fill_inc_questionnaire_for_veteran's_admin Not in universe veterans_benefits 0 weeks_worked_in_year 0 year 94 income_level 0 ``` </div> --- ## Configure hyperparameters You can find all the parameters of the Gradient Boosted Tree model in the [documentation](https://www.tensorflow.org/decision_forests/api_docs/python/tfdf/keras/GradientBoostedTreesModel) ```python # Maximum number of decision trees. The effective number of trained trees can be smaller if early stopping is enabled. NUM_TREES = 250 # Minimum number of examples in a node. MIN_EXAMPLES = 6 # Maximum depth of the tree. max_depth=1 means that all trees will be roots. MAX_DEPTH = 5 # Ratio of the dataset (sampling without replacement) used to train individual trees for the random sampling method. SUBSAMPLE = 0.65 # Control the sampling of the datasets used to train individual trees. SAMPLING_METHOD = "RANDOM" # Ratio of the training dataset used to monitor the training. Require to be >0 if early stopping is enabled. VALIDATION_RATIO = 0.1 ``` --- ## Implement a training and evaluation procedure The `run_experiment()` method is responsible loading the train and test datasets, training a given model, and evaluating the trained model. Note that when training a Decision Forests model, only one epoch is needed to read the full dataset. Any extra steps will result in unnecessary slower training. Therefore, the default `num_epochs=1` is used in the `run_experiment()` method. ```python def run_experiment(model, train_data, test_data, num_epochs=1, batch_size=None): train_dataset = tfdf.keras.pd_dataframe_to_tf_dataset( train_data, label=TARGET_COLUMN_NAME, weight=WEIGHT_COLUMN_NAME ) test_dataset = tfdf.keras.pd_dataframe_to_tf_dataset( test_data, label=TARGET_COLUMN_NAME, weight=WEIGHT_COLUMN_NAME ) model.fit(train_dataset, epochs=num_epochs, batch_size=batch_size) _, accuracy = model.evaluate(test_dataset, verbose=0) print(f"Test accuracy: {round(accuracy * 100, 2)}%") ``` --- ## Experiment 1: Decision Forests with raw features ### Specify model input feature usages You can attach semantics to each feature to control how it is used by the model. If not specified, the semantics are inferred from the representation type. It is recommended to specify the [feature usages](https://www.tensorflow.org/decision_forests/api_docs/python/tfdf/keras/FeatureUsage) explicitly to avoid incorrect inferred semantics is incorrect. For example, a categorical value identifier (integer) will be be inferred as numerical, while it is semantically categorical. For numerical features, you can set the `discretized` parameters to the number of buckets by which the numerical feature should be discretized. This makes the training faster but may lead to worse models. ```python def specify_feature_usages(): feature_usages = [] for feature_name in NUMERIC_FEATURE_NAMES: feature_usage = tfdf.keras.FeatureUsage( name=feature_name, semantic=tfdf.keras.FeatureSemantic.NUMERICAL ) feature_usages.append(feature_usage) for feature_name in CATEGORICAL_FEATURE_NAMES: feature_usage = tfdf.keras.FeatureUsage( name=feature_name, semantic=tfdf.keras.FeatureSemantic.CATEGORICAL ) feature_usages.append(feature_usage) return feature_usages ``` ### Create a Gradient Boosted Trees model When compiling a decision forests model, you may only provide extra evaluation metrics. The loss is specified in the model construction, and the optimizer is irrelevant to decision forests models. ```python def create_gbt_model(): # See all the model parameters in https://www.tensorflow.org/decision_forests/api_docs/python/tfdf/keras/GradientBoostedTreesModel gbt_model = tfdf.keras.GradientBoostedTreesModel( features=specify_feature_usages(), exclude_non_specified_features=True, num_trees=NUM_TREES, max_depth=MAX_DEPTH, min_examples=MIN_EXAMPLES, subsample=SUBSAMPLE, validation_ratio=VALIDATION_RATIO, task=tfdf.keras.Task.CLASSIFICATION, ) gbt_model.compile(metrics=[keras.metrics.BinaryAccuracy(name="accuracy")]) return gbt_model ``` ### Train and evaluate the model ```python gbt_model = create_gbt_model() run_experiment(gbt_model, train_data, test_data) ``` <div class="k-default-codeblock"> ``` Starting reading the dataset 200/200 [==============================] - ETA: 0s Dataset read in 0:00:08.829036 Training model Model trained in 0:00:48.639771 Compiling model 200/200 [==============================] - 58s 268ms/step Test accuracy: 95.79% ``` </div> ### Inspect the model The `model.summary()` method will display several types of information about your decision trees model, model type, task, input features, and feature importance. ```python print(gbt_model.summary()) ``` <div class="k-default-codeblock"> ``` Model: "gradient_boosted_trees_model" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= ================================================================= Total params: 1 Trainable params: 0 Non-trainable params: 1 _________________________________________________________________ Type: "GRADIENT_BOOSTED_TREES" Task: CLASSIFICATION Label: "__LABEL" ``` </div> <div class="k-default-codeblock"> ``` Input Features (40): age capital_gains capital_losses citizenship class_of_worker country_of_birth_father country_of_birth_mother country_of_birth_self detailed_household_and_family_stat detailed_household_summary_in_household detailed_industry_recode detailed_occupation_recode dividends_from_stocks education enroll_in_edu_inst_last_wk family_members_under_18 fill_inc_questionnaire_for_veteran's_admin full_or_part_time_employment_stat hispanic_origin live_in_this_house_1_year_ago major_industry_code major_occupation_code marital_stat member_of_a_labor_union migration_code-change_in_msa migration_code-change_in_reg migration_code-move_within_reg migration_prev_res_in_sunbelt num_persons_worked_for_employer own_business_or_self_employed race reason_for_unemployment region_of_previous_residence sex state_of_previous_residence tax_filer_stat veterans_benefits wage_per_hour weeks_worked_in_year year ``` </div> <div class="k-default-codeblock"> ``` Trained with weights ``` </div> <div class="k-default-codeblock"> ``` Variable Importance: MEAN_MIN_DEPTH: 1. "enroll_in_edu_inst_last_wk" 3.942647 ################ 2. "family_members_under_18" 3.942647 ################ 3. "live_in_this_house_1_year_ago" 3.942647 ################ 4. "migration_code-change_in_msa" 3.942647 ################ 5. "migration_code-move_within_reg" 3.942647 ################ 6. "year" 3.942647 ################ 7. "__LABEL" 3.942647 ################ 8. "__WEIGHTS" 3.942647 ################ 9. "citizenship" 3.942137 ############### 10. "detailed_household_summary_in_household" 3.942137 ############### 11. "region_of_previous_residence" 3.942137 ############### 12. "veterans_benefits" 3.942137 ############### 13. "migration_prev_res_in_sunbelt" 3.940135 ############### 14. "migration_code-change_in_reg" 3.939926 ############### 15. "major_occupation_code" 3.937681 ############### 16. "major_industry_code" 3.933687 ############### 17. "reason_for_unemployment" 3.926320 ############### 18. "hispanic_origin" 3.900776 ############### 19. "member_of_a_labor_union" 3.894843 ############### 20. "race" 3.878617 ############### 21. "num_persons_worked_for_employer" 3.818566 ############## 22. "marital_stat" 3.795667 ############## 23. "full_or_part_time_employment_stat" 3.795431 ############## 24. "country_of_birth_mother" 3.787967 ############## 25. "tax_filer_stat" 3.784505 ############## 26. "fill_inc_questionnaire_for_veteran's_admin" 3.783607 ############## 27. "own_business_or_self_employed" 3.776398 ############## 28. "country_of_birth_father" 3.715252 ############# 29. "sex" 3.708745 ############# 30. "class_of_worker" 3.688424 ############# 31. "weeks_worked_in_year" 3.665290 ############# 32. "state_of_previous_residence" 3.657234 ############# 33. "country_of_birth_self" 3.654377 ############# 34. "age" 3.634295 ############ 35. "wage_per_hour" 3.617817 ############ 36. "detailed_household_and_family_stat" 3.594743 ############ 37. "capital_losses" 3.439298 ########## 38. "dividends_from_stocks" 3.423652 ########## 39. "capital_gains" 3.222753 ######## 40. "education" 3.158698 ######## 41. "detailed_industry_recode" 2.981471 ###### 42. "detailed_occupation_recode" 2.364817 ``` </div> <div class="k-default-codeblock"> ``` Variable Importance: NUM_AS_ROOT: 1. "education" 33.000000 ################ 2. "capital_gains" 29.000000 ############## 3. "capital_losses" 24.000000 ########### 4. "detailed_household_and_family_stat" 14.000000 ###### 5. "dividends_from_stocks" 14.000000 ###### 6. "wage_per_hour" 12.000000 ##### 7. "country_of_birth_self" 11.000000 ##### 8. "detailed_occupation_recode" 11.000000 ##### 9. "weeks_worked_in_year" 11.000000 ##### 10. "age" 10.000000 #### 11. "state_of_previous_residence" 10.000000 #### 12. "fill_inc_questionnaire_for_veteran's_admin" 9.000000 #### 13. "class_of_worker" 8.000000 ### 14. "full_or_part_time_employment_stat" 8.000000 ### 15. "marital_stat" 8.000000 ### 16. "own_business_or_self_employed" 8.000000 ### 17. "sex" 6.000000 ## 18. "tax_filer_stat" 5.000000 ## 19. "country_of_birth_father" 4.000000 # 20. "race" 3.000000 # 21. "detailed_industry_recode" 2.000000 22. "hispanic_origin" 2.000000 23. "country_of_birth_mother" 1.000000 24. "num_persons_worked_for_employer" 1.000000 25. "reason_for_unemployment" 1.000000 ``` </div> <div class="k-default-codeblock"> ``` Variable Importance: NUM_NODES: 1. "detailed_occupation_recode" 785.000000 ################ 2. "detailed_industry_recode" 668.000000 ############# 3. "capital_gains" 275.000000 ##### 4. "dividends_from_stocks" 220.000000 #### 5. "capital_losses" 197.000000 #### 6. "education" 178.000000 ### 7. "country_of_birth_mother" 128.000000 ## 8. "country_of_birth_father" 116.000000 ## 9. "age" 114.000000 ## 10. "wage_per_hour" 98.000000 # 11. "state_of_previous_residence" 95.000000 # 12. "detailed_household_and_family_stat" 78.000000 # 13. "class_of_worker" 67.000000 # 14. "country_of_birth_self" 65.000000 # 15. "sex" 65.000000 # 16. "weeks_worked_in_year" 60.000000 # 17. "tax_filer_stat" 57.000000 # 18. "num_persons_worked_for_employer" 54.000000 # 19. "own_business_or_self_employed" 30.000000 20. "marital_stat" 26.000000 21. "member_of_a_labor_union" 16.000000 22. "fill_inc_questionnaire_for_veteran's_admin" 15.000000 23. "full_or_part_time_employment_stat" 15.000000 24. "major_industry_code" 15.000000 25. "hispanic_origin" 9.000000 26. "major_occupation_code" 7.000000 27. "race" 7.000000 28. "citizenship" 1.000000 29. "detailed_household_summary_in_household" 1.000000 30. "migration_code-change_in_reg" 1.000000 31. "migration_prev_res_in_sunbelt" 1.000000 32. "reason_for_unemployment" 1.000000 33. "region_of_previous_residence" 1.000000 34. "veterans_benefits" 1.000000 ``` </div> <div class="k-default-codeblock"> ``` Variable Importance: SUM_SCORE: 1. "detailed_occupation_recode" 15392441.075369 ################ 2. "capital_gains" 5277826.822514 ##### 3. "education" 4751749.289550 #### 4. "dividends_from_stocks" 3792002.951255 ### 5. "detailed_industry_recode" 2882200.882109 ## 6. "sex" 2559417.877325 ## 7. "age" 2042990.944829 ## 8. "capital_losses" 1735728.772551 # 9. "weeks_worked_in_year" 1272820.203971 # 10. "tax_filer_stat" 697890.160846 11. "num_persons_worked_for_employer" 671351.905595 12. "detailed_household_and_family_stat" 444620.829557 13. "class_of_worker" 362250.565331 14. "country_of_birth_mother" 296311.574426 15. "country_of_birth_father" 258198.889206 16. "wage_per_hour" 239764.219048 17. "state_of_previous_residence" 237687.602572 18. "country_of_birth_self" 103002.168158 19. "marital_stat" 102449.735314 20. "own_business_or_self_employed" 82938.893541 21. "fill_inc_questionnaire_for_veteran's_admin" 22692.700206 22. "full_or_part_time_employment_stat" 19078.398837 23. "major_industry_code" 18450.345505 24. "member_of_a_labor_union" 14905.360879 25. "hispanic_origin" 12602.867902 26. "major_occupation_code" 8709.665989 27. "race" 6116.282065 28. "citizenship" 3291.490393 29. "detailed_household_summary_in_household" 2733.439375 30. "veterans_benefits" 1230.940488 31. "region_of_previous_residence" 1139.240981 32. "reason_for_unemployment" 219.245124 33. "migration_code-change_in_reg" 55.806436 34. "migration_prev_res_in_sunbelt" 37.780635 ``` </div> <div class="k-default-codeblock"> ``` Loss: BINOMIAL_LOG_LIKELIHOOD Validation loss value: 0.228983 Number of trees per iteration: 1 Node format: NOT_SET Number of trees: 245 Total number of nodes: 7179 ``` </div> <div class="k-default-codeblock"> ``` Number of nodes by tree: Count: 245 Average: 29.302 StdDev: 2.96211 Min: 17 Max: 31 Ignored: 0 ---------------------------------------------- [ 17, 18) 2 0.82% 0.82% [ 18, 19) 0 0.00% 0.82% [ 19, 20) 3 1.22% 2.04% [ 20, 21) 0 0.00% 2.04% [ 21, 22) 4 1.63% 3.67% [ 22, 23) 0 0.00% 3.67% [ 23, 24) 15 6.12% 9.80% # [ 24, 25) 0 0.00% 9.80% [ 25, 26) 5 2.04% 11.84% [ 26, 27) 0 0.00% 11.84% [ 27, 28) 21 8.57% 20.41% # [ 28, 29) 0 0.00% 20.41% [ 29, 30) 39 15.92% 36.33% ### [ 30, 31) 0 0.00% 36.33% [ 31, 31] 156 63.67% 100.00% ########## ``` </div> <div class="k-default-codeblock"> ``` Depth by leafs: Count: 3712 Average: 3.95259 StdDev: 0.249814 Min: 2 Max: 4 Ignored: 0 ---------------------------------------------- [ 2, 3) 32 0.86% 0.86% [ 3, 4) 112 3.02% 3.88% [ 4, 4] 3568 96.12% 100.00% ########## ``` </div> <div class="k-default-codeblock"> ``` Number of training obs by leaf: Count: 3712 Average: 11849.3 StdDev: 33719.3 Min: 6 Max: 179360 Ignored: 0 ---------------------------------------------- [ 6, 8973) 3100 83.51% 83.51% ########## [ 8973, 17941) 148 3.99% 87.50% [ 17941, 26909) 79 2.13% 89.63% [ 26909, 35877) 36 0.97% 90.60% [ 35877, 44844) 44 1.19% 91.78% [ 44844, 53812) 17 0.46% 92.24% [ 53812, 62780) 20 0.54% 92.78% [ 62780, 71748) 39 1.05% 93.83% [ 71748, 80715) 24 0.65% 94.48% [ 80715, 89683) 12 0.32% 94.80% [ 89683, 98651) 22 0.59% 95.39% [ 98651, 107619) 21 0.57% 95.96% [ 107619, 116586) 17 0.46% 96.42% [ 116586, 125554) 17 0.46% 96.88% [ 125554, 134522) 13 0.35% 97.23% [ 134522, 143490) 8 0.22% 97.44% [ 143490, 152457) 5 0.13% 97.58% [ 152457, 161425) 6 0.16% 97.74% [ 161425, 170393) 15 0.40% 98.14% [ 170393, 179360] 69 1.86% 100.00% ``` </div> <div class="k-default-codeblock"> ``` Attribute in nodes: 785 : detailed_occupation_recode [CATEGORICAL] 668 : detailed_industry_recode [CATEGORICAL] 275 : capital_gains [NUMERICAL] 220 : dividends_from_stocks [NUMERICAL] 197 : capital_losses [NUMERICAL] 178 : education [CATEGORICAL] 128 : country_of_birth_mother [CATEGORICAL] 116 : country_of_birth_father [CATEGORICAL] 114 : age [NUMERICAL] 98 : wage_per_hour [NUMERICAL] 95 : state_of_previous_residence [CATEGORICAL] 78 : detailed_household_and_family_stat [CATEGORICAL] 67 : class_of_worker [CATEGORICAL] 65 : sex [CATEGORICAL] 65 : country_of_birth_self [CATEGORICAL] 60 : weeks_worked_in_year [NUMERICAL] 57 : tax_filer_stat [CATEGORICAL] 54 : num_persons_worked_for_employer [NUMERICAL] 30 : own_business_or_self_employed [CATEGORICAL] 26 : marital_stat [CATEGORICAL] 16 : member_of_a_labor_union [CATEGORICAL] 15 : major_industry_code [CATEGORICAL] 15 : full_or_part_time_employment_stat [CATEGORICAL] 15 : fill_inc_questionnaire_for_veteran's_admin [CATEGORICAL] 9 : hispanic_origin [CATEGORICAL] 7 : race [CATEGORICAL] 7 : major_occupation_code [CATEGORICAL] 1 : veterans_benefits [CATEGORICAL] 1 : region_of_previous_residence [CATEGORICAL] 1 : reason_for_unemployment [CATEGORICAL] 1 : migration_prev_res_in_sunbelt [CATEGORICAL] 1 : migration_code-change_in_reg [CATEGORICAL] 1 : detailed_household_summary_in_household [CATEGORICAL] 1 : citizenship [CATEGORICAL] ``` </div> <div class="k-default-codeblock"> ``` Attribute in nodes with depth <= 0: 33 : education [CATEGORICAL] 29 : capital_gains [NUMERICAL] 24 : capital_losses [NUMERICAL] 14 : dividends_from_stocks [NUMERICAL] 14 : detailed_household_and_family_stat [CATEGORICAL] 12 : wage_per_hour [NUMERICAL] 11 : weeks_worked_in_year [NUMERICAL] 11 : detailed_occupation_recode [CATEGORICAL] 11 : country_of_birth_self [CATEGORICAL] 10 : state_of_previous_residence [CATEGORICAL] 10 : age [NUMERICAL] 9 : fill_inc_questionnaire_for_veteran's_admin [CATEGORICAL] 8 : own_business_or_self_employed [CATEGORICAL] 8 : marital_stat [CATEGORICAL] 8 : full_or_part_time_employment_stat [CATEGORICAL] 8 : class_of_worker [CATEGORICAL] 6 : sex [CATEGORICAL] 5 : tax_filer_stat [CATEGORICAL] 4 : country_of_birth_father [CATEGORICAL] 3 : race [CATEGORICAL] 2 : hispanic_origin [CATEGORICAL] 2 : detailed_industry_recode [CATEGORICAL] 1 : reason_for_unemployment [CATEGORICAL] 1 : num_persons_worked_for_employer [NUMERICAL] 1 : country_of_birth_mother [CATEGORICAL] ``` </div> <div class="k-default-codeblock"> ``` Attribute in nodes with depth <= 1: 140 : detailed_occupation_recode [CATEGORICAL] 82 : capital_gains [NUMERICAL] 65 : capital_losses [NUMERICAL] 62 : education [CATEGORICAL] 59 : detailed_industry_recode [CATEGORICAL] 47 : dividends_from_stocks [NUMERICAL] 31 : wage_per_hour [NUMERICAL] 26 : detailed_household_and_family_stat [CATEGORICAL] 23 : age [NUMERICAL] 22 : state_of_previous_residence [CATEGORICAL] 21 : country_of_birth_self [CATEGORICAL] 21 : class_of_worker [CATEGORICAL] 20 : weeks_worked_in_year [NUMERICAL] 20 : sex [CATEGORICAL] 15 : country_of_birth_father [CATEGORICAL] 12 : own_business_or_self_employed [CATEGORICAL] 11 : fill_inc_questionnaire_for_veteran's_admin [CATEGORICAL] 10 : num_persons_worked_for_employer [NUMERICAL] 9 : tax_filer_stat [CATEGORICAL] 9 : full_or_part_time_employment_stat [CATEGORICAL] 8 : marital_stat [CATEGORICAL] 8 : country_of_birth_mother [CATEGORICAL] 6 : member_of_a_labor_union [CATEGORICAL] 5 : race [CATEGORICAL] 2 : hispanic_origin [CATEGORICAL] 1 : reason_for_unemployment [CATEGORICAL] ``` </div> <div class="k-default-codeblock"> ``` Attribute in nodes with depth <= 2: 399 : detailed_occupation_recode [CATEGORICAL] 249 : detailed_industry_recode [CATEGORICAL] 170 : capital_gains [NUMERICAL] 117 : dividends_from_stocks [NUMERICAL] 116 : capital_losses [NUMERICAL] 87 : education [CATEGORICAL] 59 : wage_per_hour [NUMERICAL] 45 : detailed_household_and_family_stat [CATEGORICAL] 43 : country_of_birth_father [CATEGORICAL] 43 : age [NUMERICAL] 40 : country_of_birth_self [CATEGORICAL] 38 : state_of_previous_residence [CATEGORICAL] 38 : class_of_worker [CATEGORICAL] 37 : sex [CATEGORICAL] 36 : weeks_worked_in_year [NUMERICAL] 33 : country_of_birth_mother [CATEGORICAL] 28 : num_persons_worked_for_employer [NUMERICAL] 26 : tax_filer_stat [CATEGORICAL] 14 : own_business_or_self_employed [CATEGORICAL] 14 : marital_stat [CATEGORICAL] 12 : full_or_part_time_employment_stat [CATEGORICAL] 12 : fill_inc_questionnaire_for_veteran's_admin [CATEGORICAL] 8 : member_of_a_labor_union [CATEGORICAL] 6 : race [CATEGORICAL] 6 : hispanic_origin [CATEGORICAL] 2 : major_occupation_code [CATEGORICAL] 2 : major_industry_code [CATEGORICAL] 1 : reason_for_unemployment [CATEGORICAL] 1 : migration_prev_res_in_sunbelt [CATEGORICAL] 1 : migration_code-change_in_reg [CATEGORICAL] ``` </div> <div class="k-default-codeblock"> ``` Attribute in nodes with depth <= 3: 785 : detailed_occupation_recode [CATEGORICAL] 668 : detailed_industry_recode [CATEGORICAL] 275 : capital_gains [NUMERICAL] 220 : dividends_from_stocks [NUMERICAL] 197 : capital_losses [NUMERICAL] 178 : education [CATEGORICAL] 128 : country_of_birth_mother [CATEGORICAL] 116 : country_of_birth_father [CATEGORICAL] 114 : age [NUMERICAL] 98 : wage_per_hour [NUMERICAL] 95 : state_of_previous_residence [CATEGORICAL] 78 : detailed_household_and_family_stat [CATEGORICAL] 67 : class_of_worker [CATEGORICAL] 65 : sex [CATEGORICAL] 65 : country_of_birth_self [CATEGORICAL] 60 : weeks_worked_in_year [NUMERICAL] 57 : tax_filer_stat [CATEGORICAL] 54 : num_persons_worked_for_employer [NUMERICAL] 30 : own_business_or_self_employed [CATEGORICAL] 26 : marital_stat [CATEGORICAL] 16 : member_of_a_labor_union [CATEGORICAL] 15 : major_industry_code [CATEGORICAL] 15 : full_or_part_time_employment_stat [CATEGORICAL] 15 : fill_inc_questionnaire_for_veteran's_admin [CATEGORICAL] 9 : hispanic_origin [CATEGORICAL] 7 : race [CATEGORICAL] 7 : major_occupation_code [CATEGORICAL] 1 : veterans_benefits [CATEGORICAL] 1 : region_of_previous_residence [CATEGORICAL] 1 : reason_for_unemployment [CATEGORICAL] 1 : migration_prev_res_in_sunbelt [CATEGORICAL] 1 : migration_code-change_in_reg [CATEGORICAL] 1 : detailed_household_summary_in_household [CATEGORICAL] 1 : citizenship [CATEGORICAL] ``` </div> <div class="k-default-codeblock"> ``` Attribute in nodes with depth <= 5: 785 : detailed_occupation_recode [CATEGORICAL] 668 : detailed_industry_recode [CATEGORICAL] 275 : capital_gains [NUMERICAL] 220 : dividends_from_stocks [NUMERICAL] 197 : capital_losses [NUMERICAL] 178 : education [CATEGORICAL] 128 : country_of_birth_mother [CATEGORICAL] 116 : country_of_birth_father [CATEGORICAL] 114 : age [NUMERICAL] 98 : wage_per_hour [NUMERICAL] 95 : state_of_previous_residence [CATEGORICAL] 78 : detailed_household_and_family_stat [CATEGORICAL] 67 : class_of_worker [CATEGORICAL] 65 : sex [CATEGORICAL] 65 : country_of_birth_self [CATEGORICAL] 60 : weeks_worked_in_year [NUMERICAL] 57 : tax_filer_stat [CATEGORICAL] 54 : num_persons_worked_for_employer [NUMERICAL] 30 : own_business_or_self_employed [CATEGORICAL] 26 : marital_stat [CATEGORICAL] 16 : member_of_a_labor_union [CATEGORICAL] 15 : major_industry_code [CATEGORICAL] 15 : full_or_part_time_employment_stat [CATEGORICAL] 15 : fill_inc_questionnaire_for_veteran's_admin [CATEGORICAL] 9 : hispanic_origin [CATEGORICAL] 7 : race [CATEGORICAL] 7 : major_occupation_code [CATEGORICAL] 1 : veterans_benefits [CATEGORICAL] 1 : region_of_previous_residence [CATEGORICAL] 1 : reason_for_unemployment [CATEGORICAL] 1 : migration_prev_res_in_sunbelt [CATEGORICAL] 1 : migration_code-change_in_reg [CATEGORICAL] 1 : detailed_household_summary_in_household [CATEGORICAL] 1 : citizenship [CATEGORICAL] ``` </div> <div class="k-default-codeblock"> ``` Condition type in nodes: 2418 : ContainsBitmapCondition 1018 : HigherCondition 31 : ContainsCondition Condition type in nodes with depth <= 0: 137 : ContainsBitmapCondition 101 : HigherCondition 7 : ContainsCondition Condition type in nodes with depth <= 1: 448 : ContainsBitmapCondition 278 : HigherCondition 9 : ContainsCondition Condition type in nodes with depth <= 2: 1097 : ContainsBitmapCondition 569 : HigherCondition 17 : ContainsCondition Condition type in nodes with depth <= 3: 2418 : ContainsBitmapCondition 1018 : HigherCondition 31 : ContainsCondition Condition type in nodes with depth <= 5: 2418 : ContainsBitmapCondition 1018 : HigherCondition 31 : ContainsCondition ``` </div> <div class="k-default-codeblock"> ``` None ``` </div> --- ## Experiment 2: Decision Forests with target encoding [Target encoding](https://dl.acm.org/doi/10.1145/507533.507538) is a common preprocessing technique for categorical features that convert them into numerical features. Using categorical features with high cardinality as-is may lead to overfitting. Target encoding aims to replace each categorical feature value with one or more numerical values that represent its co-occurrence with the target labels. More precisely, given a categorical feature, the binary target encoder in this example will produce three new numerical features: 1. `positive_frequency`: How many times each feature value occurred with a positive target label. 2. `negative_frequency`: How many times each feature value occurred with a negative target label. 3. `positive_probability`: The probability that the target label is positive, given the feature value, which is computed as `positive_frequency / (positive_frequency + negative_frequency + correction)`. The `correction` term is added in to make the division more stable for rare categorical values. The default value for `correction` is 1.0. Note that target encoding is effective with models that cannot automatically learn dense representations to categorical features, such as decision forests or kernel methods. If neural network models are used, its recommended to encode categorical features as embeddings. ### Implement Binary Target Encoder For simplicity, we assume that the inputs for the `adapt` and `call` methods are in the expected data types and shapes, so no validation logic is added. It is recommended to pass the `vocabulary_size` of the categorical feature to the `BinaryTargetEncoding` constructor. If not specified, it will be computed during the `adapt()` method execution. ```python class BinaryTargetEncoding(layers.Layer): def __init__(self, vocabulary_size=None, correction=1.0, **kwargs): super().__init__(**kwargs) self.vocabulary_size = vocabulary_size self.correction = correction def adapt(self, data): # data is expected to be an integer numpy array to a Tensor shape [num_exmples, 2]. # This contains feature values for a given feature in the dataset, and target values. # Convert the data to a tensor. data = tf.convert_to_tensor(data) # Separate the feature values and target values feature_values = tf.cast(data[:, 0], tf.dtypes.int32) target_values = tf.cast(data[:, 1], tf.dtypes.bool) # Compute the vocabulary_size of not specified. if self.vocabulary_size is None: self.vocabulary_size = tf.unique(feature_values).y.shape[0] # Filter the data where the target label is positive. positive_indices = tf.where(condition=target_values) postive_feature_values = tf.gather_nd( params=feature_values, indices=positive_indices ) # Compute how many times each feature value occurred with a positive target label. positive_frequency = tf.math.unsorted_segment_sum( data=tf.ones( shape=(postive_feature_values.shape[0], 1), dtype=tf.dtypes.float64 ), segment_ids=postive_feature_values, num_segments=self.vocabulary_size, ) # Filter the data where the target label is negative. negative_indices = tf.where(condition=tf.math.logical_not(target_values)) negative_feature_values = tf.gather_nd( params=feature_values, indices=negative_indices ) # Compute how many times each feature value occurred with a negative target label. negative_frequency = tf.math.unsorted_segment_sum( data=tf.ones( shape=(negative_feature_values.shape[0], 1), dtype=tf.dtypes.float64 ), segment_ids=negative_feature_values, num_segments=self.vocabulary_size, ) # Compute positive probability for the input feature values. positive_probability = positive_frequency / ( positive_frequency + negative_frequency + self.correction ) # Concatenate the computed statistics for traget_encoding. target_encoding_statistics = tf.cast( tf.concat( [positive_frequency, negative_frequency, positive_probability], axis=1 ), dtype=tf.dtypes.float32, ) self.target_encoding_statistics = tf.constant(target_encoding_statistics) def call(self, inputs): # inputs is expected to be an integer numpy array to a Tensor shape [num_exmples, 1]. # This includes the feature values for a given feature in the dataset. # Raise an error if the target encoding statistics are not computed. if self.target_encoding_statistics == None: raise ValueError( f"You need to call the adapt method to compute target encoding statistics." ) # Convert the inputs to a tensor. inputs = tf.convert_to_tensor(inputs) # Cast the inputs int64 a tensor. inputs = tf.cast(inputs, tf.dtypes.int64) # Lookup target encoding statistics for the input feature values. target_encoding_statistics = tf.cast( tf.gather_nd(self.target_encoding_statistics, inputs), dtype=tf.dtypes.float32, ) return target_encoding_statistics ``` Let's test the binary target encoder ```python data = tf.constant( [ [0, 1], [2, 0], [0, 1], [1, 1], [1, 1], [2, 0], [1, 0], [0, 1], [2, 1], [1, 0], [0, 1], [2, 0], [0, 1], [1, 1], [1, 1], [2, 0], [1, 0], [0, 1], [2, 0], ] ) binary_target_encoder = BinaryTargetEncoding() binary_target_encoder.adapt(data) print(binary_target_encoder([[0], [1], [2]])) ``` <div class="k-default-codeblock"> ``` tf.Tensor( [[6. 0. 0.85714287] [4. 3. 0.5 ] [1. 5. 0.14285715]], shape=(3, 3), dtype=float32) ``` </div> ### Create model inputs ```python def create_model_inputs(): inputs = {} for feature_name in NUMERIC_FEATURE_NAMES: inputs[feature_name] = layers.Input( name=feature_name, shape=(), dtype=tf.float32 ) for feature_name in CATEGORICAL_FEATURE_NAMES: inputs[feature_name] = layers.Input( name=feature_name, shape=(), dtype=tf.string ) return inputs ``` ### Implement a feature encoding with target encoding ```python def create_target_encoder(): inputs = create_model_inputs() target_values = train_data[[TARGET_COLUMN_NAME]].to_numpy() encoded_features = [] for feature_name in inputs: if feature_name in CATEGORICAL_FEATURE_NAMES: # Get the vocabulary of the categorical feature. vocabulary = sorted( [str(value) for value in list(train_data[feature_name].unique())] ) # Create a lookup to convert string values to an integer indices. # Since we are not using a mask token nor expecting any out of vocabulary # (oov) token, we set mask_token to None and num_oov_indices to 0. lookup = layers.StringLookup( vocabulary=vocabulary, mask_token=None, num_oov_indices=0 ) # Convert the string input values into integer indices. value_indices = lookup(inputs[feature_name]) # Prepare the data to adapt the target encoding. print("### Adapting target encoding for:", feature_name) feature_values = train_data[[feature_name]].to_numpy().astype(str) feature_value_indices = lookup(feature_values) data = tf.concat([feature_value_indices, target_values], axis=1) feature_encoder = BinaryTargetEncoding() feature_encoder.adapt(data) # Convert the feature value indices to target encoding representations. encoded_feature = feature_encoder(tf.expand_dims(value_indices, -1)) else: # Expand the dimensions of the numerical input feature and use it as-is. encoded_feature = tf.expand_dims(inputs[feature_name], -1) # Add the encoded feature to the list. encoded_features.append(encoded_feature) # Concatenate all the encoded features. encoded_features = tf.concat(encoded_features, axis=1) # Create and return a Keras model with encoded features as outputs. return keras.Model(inputs=inputs, outputs=encoded_features) ``` ### Create a Gradient Boosted Trees model with a preprocessor In this scenario, we use the target encoding as a preprocessor for the Gradient Boosted Tree model, and let the model infer semantics of the input features. ```python def create_gbt_with_preprocessor(preprocessor): gbt_model = tfdf.keras.GradientBoostedTreesModel( preprocessing=preprocessor, num_trees=NUM_TREES, max_depth=MAX_DEPTH, min_examples=MIN_EXAMPLES, subsample=SUBSAMPLE, validation_ratio=VALIDATION_RATIO, task=tfdf.keras.Task.CLASSIFICATION, ) gbt_model.compile(metrics=[keras.metrics.BinaryAccuracy(name="accuracy")]) return gbt_model ``` ### Train and evaluate the model ```python gbt_model = create_gbt_with_preprocessor(create_target_encoder()) run_experiment(gbt_model, train_data, test_data) ``` <div class="k-default-codeblock"> ``` ### Adapting target encoding for: class_of_worker ### Adapting target encoding for: detailed_industry_recode ### Adapting target encoding for: detailed_occupation_recode ### Adapting target encoding for: education ### Adapting target encoding for: enroll_in_edu_inst_last_wk ### Adapting target encoding for: marital_stat ### Adapting target encoding for: major_industry_code ### Adapting target encoding for: major_occupation_code ### Adapting target encoding for: race ### Adapting target encoding for: hispanic_origin ### Adapting target encoding for: sex ### Adapting target encoding for: member_of_a_labor_union ### Adapting target encoding for: reason_for_unemployment ### Adapting target encoding for: full_or_part_time_employment_stat ### Adapting target encoding for: tax_filer_stat ### Adapting target encoding for: region_of_previous_residence ### Adapting target encoding for: state_of_previous_residence ### Adapting target encoding for: detailed_household_and_family_stat ### Adapting target encoding for: detailed_household_summary_in_household ### Adapting target encoding for: migration_code-change_in_msa ### Adapting target encoding for: migration_code-change_in_reg ### Adapting target encoding for: migration_code-move_within_reg ### Adapting target encoding for: live_in_this_house_1_year_ago ### Adapting target encoding for: migration_prev_res_in_sunbelt ### Adapting target encoding for: family_members_under_18 ### Adapting target encoding for: country_of_birth_father ### Adapting target encoding for: country_of_birth_mother ### Adapting target encoding for: country_of_birth_self ### Adapting target encoding for: citizenship ### Adapting target encoding for: own_business_or_self_employed ### Adapting target encoding for: fill_inc_questionnaire_for_veteran's_admin ### Adapting target encoding for: veterans_benefits ### Adapting target encoding for: year Use /tmp/tmpj_0h78ld as temporary training directory Starting reading the dataset 198/200 [============================>.] - ETA: 0s Dataset read in 0:00:06.793717 Training model Model trained in 0:04:32.752691 Compiling model 200/200 [==============================] - 280s 1s/step Test accuracy: 95.81% ``` </div> --- ## Experiment 3: Decision Forests with trained embeddings In this scenario, we build an encoder model that codes the categorical features to embeddings, where the size of the embedding for a given categorical feature is the square root to the size of its vocabulary. We train these embeddings in a simple NN model through backpropagation. After the embedding encoder is trained, we used it as a preprocessor to the input features of a Gradient Boosted Tree model. Note that the embeddings and a decision forest model cannot be trained synergically in one phase, since decision forest models do not train with backpropagation. Rather, embeddings has to be trained in an initial phase, and then used as static inputs to the decision forest model. ### Implement feature encoding with embeddings ```python def create_embedding_encoder(size=None): inputs = create_model_inputs() encoded_features = [] for feature_name in inputs: if feature_name in CATEGORICAL_FEATURE_NAMES: # Get the vocabulary of the categorical feature. vocabulary = sorted( [str(value) for value in list(train_data[feature_name].unique())] ) # Create a lookup to convert string values to an integer indices. # Since we are not using a mask token nor expecting any out of vocabulary # (oov) token, we set mask_token to None and num_oov_indices to 0. lookup = layers.StringLookup( vocabulary=vocabulary, mask_token=None, num_oov_indices=0 ) # Convert the string input values into integer indices. value_index = lookup(inputs[feature_name]) # Create an embedding layer with the specified dimensions vocabulary_size = len(vocabulary) embedding_size = int(math.sqrt(vocabulary_size)) feature_encoder = layers.Embedding( input_dim=len(vocabulary), output_dim=embedding_size ) # Convert the index values to embedding representations. encoded_feature = feature_encoder(value_index) else: # Expand the dimensions of the numerical input feature and use it as-is. encoded_feature = tf.expand_dims(inputs[feature_name], -1) # Add the encoded feature to the list. encoded_features.append(encoded_feature) # Concatenate all the encoded features. encoded_features = layers.concatenate(encoded_features, axis=1) # Apply dropout. encoded_features = layers.Dropout(rate=0.25)(encoded_features) # Perform non-linearity projection. encoded_features = layers.Dense( units=size if size else encoded_features.shape[-1], activation="gelu" )(encoded_features) # Create and return a Keras model with encoded features as outputs. return keras.Model(inputs=inputs, outputs=encoded_features) ``` ### Build an NN model to train the embeddings ```python def create_nn_model(encoder): inputs = create_model_inputs() embeddings = encoder(inputs) output = layers.Dense(units=1, activation="sigmoid")(embeddings) nn_model = keras.Model(inputs=inputs, outputs=output) nn_model.compile( optimizer=keras.optimizers.Adam(), loss=keras.losses.BinaryCrossentropy(), metrics=[keras.metrics.BinaryAccuracy("accuracy")], ) return nn_model embedding_encoder = create_embedding_encoder(size=64) run_experiment( create_nn_model(embedding_encoder), train_data, test_data, num_epochs=5, batch_size=256, ) ``` <div class="k-default-codeblock"> ``` Epoch 1/5 200/200 [==============================] - 10s 27ms/step - loss: 8303.1455 - accuracy: 0.9193 Epoch 2/5 200/200 [==============================] - 5s 27ms/step - loss: 1019.4900 - accuracy: 0.9371 Epoch 3/5 200/200 [==============================] - 5s 27ms/step - loss: 612.2844 - accuracy: 0.9416 Epoch 4/5 200/200 [==============================] - 5s 27ms/step - loss: 858.9774 - accuracy: 0.9397 Epoch 5/5 200/200 [==============================] - 5s 26ms/step - loss: 842.3922 - accuracy: 0.9421 Test accuracy: 95.0% ``` </div> ### Train and evaluate a Gradient Boosted Tree model with embeddings ```python gbt_model = create_gbt_with_preprocessor(embedding_encoder) run_experiment(gbt_model, train_data, test_data) ``` <div class="k-default-codeblock"> ``` Use /tmp/tmpao5o88p6 as temporary training directory Starting reading the dataset 199/200 [============================>.] - ETA: 0s Dataset read in 0:00:06.722677 Training model Model trained in 0:05:18.350298 Compiling model 200/200 [==============================] - 325s 2s/step Test accuracy: 95.82% ``` </div> --- ## Concluding remarks TensorFlow Decision Forests provide powerful models, especially with structured data. In our experiments, the Gradient Boosted Tree model achieved 95.79% test accuracy. When using the target encoding with categorical feature, the same model achieved 95.81% test accuracy. When pretraining embeddings to be used as inputs to the Gradient Boosted Tree model, we achieved 95.82% test accuracy. Decision Forests can be used with Neural Networks, either by 1) using Neural Networks to learn useful representation of the input data, and then using Decision Forests for the supervised learning task, or by 2) creating an ensemble of both Decision Forests and Neural Network models. Note that TensorFlow Decision Forests does not (yet) support hardware accelerators. All training and inference is done on the CPU. Besides, Decision Forests require a finite dataset that fits in memory for their training procedures. However, there are diminishing returns for increasing the size of the dataset, and Decision Forests algorithms arguably need fewer examples for convergence than large Neural Network models.
keras-io/examples/structured_data/md/classification_with_tfdf.md/0
{ "file_path": "keras-io/examples/structured_data/md/classification_with_tfdf.md", "repo_id": "keras-io", "token_count": 35171 }
104
""" Title: Event classification for payment card fraud detection Author: [achoum](https://github.com/achoum/) Date created: 2024/02/01 Last modified: 2024/02/01 Description: Detection of fraudulent payment card transactions using Temporian and a feed-forward neural network. Accelerator: GPU """ """ This notebook depends on Keras 3, Temporian, and a few other libraries. You can install them as follow: ```shell pip install temporian keras pandas tf-nightly scikit-learn -U ``` """ import keras # To train the Machine Learning model import temporian as tp # To convert transactions into tabular data import numpy as np import os import pandas as pd import datetime import math import tensorflow as tf from sklearn.metrics import RocCurveDisplay """ ## Introduction Payment fraud detection is critical for banks, businesses, and consumers. In Europe alone, fraudulent transactions were estimated at [€1.89 billion in 2019](https://www.ecb.europa.eu/pub/pdf/cardfraud/ecb.cardfraudreport202110~cac4c418e8.en.pdf). Worldwide, approximately [3.6%](https://www.cybersource.com/content/dam/documents/campaign/fraud-report/global-fraud-report-2022.pdf) of commerce revenue is lost to fraud. In this notebook, we train and evaluate a model to detect fraudulent transactions using the synthetic dataset attached to the book [Reproducible Machine Learning for Credit Card Fraud Detection](https://fraud-detection-handbook.github.io/fraud-detection-handbook/Foreword.html) by Le Borgne et al. Fraudulent transactions often cannot be detected by looking at transactions in isolation. Instead, fraudulent transactions are detected by looking at patterns across multiple transactions from the same user, to the same merchant, or with other types of relationships. To express these relationships in a way that is understandable by a machine learning model, and to augment features with feature engineering, we We use the [Temporian](https://temporian.readthedocs.io/en/latest) preprocessing library. We preprocess a transaction dataset into a tabular dataset and use a feed-forward neural network to learn the patterns of fraud and make predictions. ## Loading the dataset The dataset contains payment transactions sampled between April 1, 2018 and September 30, 2018. The transactions are stored in CSV files, one for each day. **Note:** Downloading the dataset takes ~1 minute. """ start_date = datetime.date(2018, 4, 1) end_date = datetime.date(2018, 9, 30) # Load the dataset as a Pandas dataframe. cache_path = "fraud_detection_cache.csv" if not os.path.exists(cache_path): print("Download dataset") dataframes = [] num_files = (end_date - start_date).days counter = 0 while start_date <= end_date: if counter % (num_files // 10) == 0: print(f"[{100 * (counter+1) // num_files}%]", end="", flush=True) print(".", end="", flush=True) url = f"https://github.com/Fraud-Detection-Handbook/simulated-data-raw/raw/6e67dbd0a3bfe0d7ec33abc4bce5f37cd4ff0d6a/data/{start_date}.pkl" dataframes.append(pd.read_pickle(url)) start_date += datetime.timedelta(days=1) counter += 1 print("done", flush=True) transactions_dataframe = pd.concat(dataframes) transactions_dataframe.to_csv(cache_path, index=False) else: print("Load dataset from cache") transactions_dataframe = pd.read_csv( cache_path, dtype={"CUSTOMER_ID": bytes, "TERMINAL_ID": bytes} ) print(f"Found {len(transactions_dataframe)} transactions") """ Each transaction is represented by a single row, with the following columns of interest: - **TX_DATETIME**: The date and time of the transaction. - **CUSTOMER_ID**: The unique identifier of the customer. - **TERMINAL_ID**: The identifier of the terminal where the transaction was made. - **TX_AMOUNT**: The amount of the transaction. - **TX_FRAUD**: Whether the transaction is fraudulent (1) or not (0). """ transactions_dataframe = transactions_dataframe[ ["TX_DATETIME", "CUSTOMER_ID", "TERMINAL_ID", "TX_AMOUNT", "TX_FRAUD"] ] transactions_dataframe.head(4) """ The dataset is highly imbalanced, with the majority of transactions being legitimate. """ fraudulent_rate = transactions_dataframe["TX_FRAUD"].mean() print("Rate of fraudulent transactions:", fraudulent_rate) """ The [pandas dataframe](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html) is converted into a [Temporian EventSet](https://temporian.readthedocs.io/en/latest/reference/temporian/EventSet/), which is better suited for the data exploration and feature preprocessing of the next steps. """ transactions_evset = tp.from_pandas(transactions_dataframe, timestamps="TX_DATETIME") transactions_evset """ It is possible to plot the entire dataset, but the resulting plot will be difficult to read. Instead, we can group the transactions per client. """ transactions_evset.add_index("CUSTOMER_ID").plot(indexes="3774") """ Note the few fraudulent transactions for this client. ## Preparing the training data Fraudulent transactions in isolation cannot be detected. Instead, we need to connect related transactions. For each transaction, we compute the sum and count of transactions for the same terminal in the last `n` days. Because we don't know the correct value for `n`, we use multiple values for `n` and compute a set of features for each of them. """ # Group the transactions per terminal transactions_per_terminal = transactions_evset.add_index("TERMINAL_ID") # Moving statistics per terminal tmp_features = [] for n in [7, 14, 28]: tmp_features.append( transactions_per_terminal["TX_AMOUNT"] .moving_sum(tp.duration.days(n)) .rename(f"sum_transactions_{n}_days") ) tmp_features.append( transactions_per_terminal.moving_count(tp.duration.days(n)).rename( f"count_transactions_{n}_days" ) ) feature_set_1 = tp.glue(*tmp_features) feature_set_1 """ Let's look at the features of terminal "3774". """ feature_set_1.plot(indexes="3774") """ A transaction's fraudulent status is not known at the time of the transaction (otherwise, there would be no problem). However, the banks knows if a transacation is fraudulent one week after it is made. We create a set of features that indicate the number and ratio of fraudulent transactions in the last N days. """ # Lag the transactions by one week. lagged_transactions = transactions_per_terminal.lag(tp.duration.weeks(1)) # Moving statistics per customer tmp_features = [] for n in [7, 14, 28]: tmp_features.append( lagged_transactions["TX_FRAUD"] .moving_sum(tp.duration.days(n), sampling=transactions_per_terminal) .rename(f"count_fraud_transactions_{n}_days") ) tmp_features.append( lagged_transactions["TX_FRAUD"] .cast(tp.float32) .simple_moving_average(tp.duration.days(n), sampling=transactions_per_terminal) .rename(f"rate_fraud_transactions_{n}_days") ) feature_set_2 = tp.glue(*tmp_features) """ Transaction date and time can be correlated with fraud. While each transaction has a timestamp, a machine learning model might struggle to consume them directly. Instead, we extract various informative calendar features from the timestamps, such as hour, day of the week (e.g., Monday, Tuesday), and day of the month (1-31). """ feature_set_3 = tp.glue( transactions_per_terminal.calendar_hour(), transactions_per_terminal.calendar_day_of_week(), ) """ Finally, we group together all the features and the label. """ all_data = tp.glue( transactions_per_terminal, feature_set_1, feature_set_2, feature_set_3 ).drop_index() print("All the available features:") all_data.schema.feature_names() """ We extract the name of the input features. """ input_feature_names = [k for k in all_data.schema.feature_names() if k.islower()] print("The model's input features:") input_feature_names """ For neural networks to work correctly, numerical inputs must be normalized. A common approach is to apply z-normalization, which involves subtracting the mean and dividing by the standard deviation estimated from the training data to each value. In forecasting, such z-normalization is not recommended as it would lead to future leakage. Specifically, to classify a transaction at time t, we cannot rely on data after time t since, at serving time when making a prediction at time t, no subsequent data is available yet. In short, at time t, we are limited to using data that precedes or is concurrent with time t. The solution is therefore to apply z-normalization **over time**, which means that we normalize each transaction using the mean and standard deviation computed from the past data **for that transaction**. Future leakage is pernicious. Luckily, Temporian is here to help: the only operator that can cause future leakage is `EventSet.leak()`. If you are not using `EventSet.leak()`, your preprocessing is **guaranteed** not to create future leakage. **Note:** For advanced pipelines, you can also check programatically that a feature does not depends on an `EventSet.leak()` operation. """ # Cast all values (e.g. ints) to floats. values = all_data[input_feature_names].cast(tp.float32) # Apply z-normalization overtime. normalized_features = ( values - values.simple_moving_average(math.inf) ) / values.moving_standard_deviation(math.inf) # Restore the original name of the features. normalized_features = normalized_features.rename(values.schema.feature_names()) print(normalized_features) """ The first transactions will be normalized using poor estimates of the mean and standard deviation since there are only a few transactions before them. To mitigate this issue, we remove the first week of data from the training dataset. Notice that the first values contain NaN. In Temporian, NaN represents missing values, and all operators handle them accordingly. For instance, when calculating a moving average, NaN values are not included in the calculation and do not generate a NaN result. However, neural networks cannot natively handle NaN values. So, we replace them with zeros. """ normalized_features = normalized_features.fillna(0.0) """ Finally, we group together the features and the labels. """ normalized_all_data = tp.glue(normalized_features, all_data["TX_FRAUD"]) """ ## Split dataset into a train, validation and test set To evaluate the quality of our machine learning model, we need training, validation and test sets. Since the system is dynamic (new fraud patterns are being created all the time), it is important for the training set to come before the validation set, and the validation set come before the testing set: - **Training:** April 8, 2018 to July 31, 2018 - **Validation:** August 1, 2018 to August 31, 2018 - **Testing:** September 1, 2018 to September 30, 2018 For the example to run faster, we will effectively reduce the size of the training set to: - **Training:** July 1, 2018 to July 31, 2018 """ # begin_train = datetime.datetime(2018, 4, 8).timestamp() # Full training dataset begin_train = datetime.datetime(2018, 7, 1).timestamp() # Reduced training dataset begin_valid = datetime.datetime(2018, 8, 1).timestamp() begin_test = datetime.datetime(2018, 9, 1).timestamp() is_train = (normalized_all_data.timestamps() >= begin_train) & ( normalized_all_data.timestamps() < begin_valid ) is_valid = (normalized_all_data.timestamps() >= begin_valid) & ( normalized_all_data.timestamps() < begin_test ) is_test = normalized_all_data.timestamps() >= begin_test """ `is_train`, `is_valid` and `is_test` are boolean features overtime that indicate the limit of the tree folds. Let's plot them. """ tp.plot( [ is_train.rename("is_train"), is_valid.rename("is_valid"), is_test.rename("is_test"), ] ) """ We filter the input features and label in each fold. """ train_ds_evset = normalized_all_data.filter(is_train) valid_ds_evset = normalized_all_data.filter(is_valid) test_ds_evset = normalized_all_data.filter(is_test) print(f"Training examples: {train_ds_evset.num_events()}") print(f"Validation examples: {valid_ds_evset.num_events()}") print(f"Testing examples: {test_ds_evset.num_events()}") """ It is important to split the dataset **after** the features have been computed because some of the features for the training dataset are computed from transactions during the training window. ## Create TensorFlow datasets We convert the datasets from EventSets to TensorFlow Datasets as Keras consumes them natively. """ non_batched_train_ds = tp.to_tensorflow_dataset(train_ds_evset) non_batched_valid_ds = tp.to_tensorflow_dataset(valid_ds_evset) non_batched_test_ds = tp.to_tensorflow_dataset(test_ds_evset) """ The following processing steps are applied using TensorFlow datasets: 1. The features and labels are separated using `extract_features_and_label` in the format that Keras expects. 1. The dataset is batched, which means that the examples are grouped into mini-batches. 1. The training examples are shuffled to improve the quality of mini-batch training. As we noted before, the dataset is imbalanced in the direction of legitimate transactions. While we want to evaluate our model on this original distribution, neural networks often train poorly on strongly imbalanced datasets. Therefore, we resample the training dataset to a ratio of 80% legitimate / 20% fraudulent using `rejection_resample`. """ def extract_features_and_label(example): features = {k: example[k] for k in input_feature_names} labels = tf.cast(example["TX_FRAUD"], tf.int32) return features, labels # Target ratio of fraudulent transactions in the training dataset. target_rate = 0.2 # Number of examples in a mini-batch. batch_size = 32 train_ds = ( non_batched_train_ds.shuffle(10000) .rejection_resample( class_func=lambda x: tf.cast(x["TX_FRAUD"], tf.int32), target_dist=[1 - target_rate, target_rate], initial_dist=[1 - fraudulent_rate, fraudulent_rate], ) .map(lambda _, x: x) # Remove the label copy added by "rejection_resample". .batch(batch_size) .map(extract_features_and_label) .prefetch(tf.data.AUTOTUNE) ) # The test and validation dataset does not need resampling or shuffling. valid_ds = ( non_batched_valid_ds.batch(batch_size) .map(extract_features_and_label) .prefetch(tf.data.AUTOTUNE) ) test_ds = ( non_batched_test_ds.batch(batch_size) .map(extract_features_and_label) .prefetch(tf.data.AUTOTUNE) ) """ We print the first four examples of the training dataset. This is a simple way to identify some of the errors that could have been made above. """ for features, labels in train_ds.take(1): print("features") for feature_name, feature_value in features.items(): print(f"\t{feature_name}: {feature_value[:4]}") print(f"labels: {labels[:4]}") """ ## Train the model The original dataset is transactional, but the processed data is tabular and only contains normalized numerical values. Therefore, we train a feed-forward neural network. """ inputs = [keras.Input(shape=(1,), name=name) for name in input_feature_names] x = keras.layers.concatenate(inputs) x = keras.layers.Dense(32, activation="sigmoid")(x) x = keras.layers.Dense(16, activation="sigmoid")(x) x = keras.layers.Dense(1, activation="sigmoid")(x) model = keras.Model(inputs=inputs, outputs=x) """ Our goal is to differentiate between the fraudulent and legitimate transactions, so we use a binary classification objective. Because the dataset is imbalanced, accuracy is not an informative metric. Instead, we evaluate the model using the [area under the curve](https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve) (AUC). """ model.compile( optimizer=keras.optimizers.Adam(0.01), loss=keras.losses.BinaryCrossentropy(), metrics=[keras.metrics.Accuracy(), keras.metrics.AUC()], ) model.fit(train_ds, validation_data=valid_ds) """ We evaluate the model on the test dataset. """ model.evaluate(test_ds) """ With and AUC of ~83%, our simple fraud detector is showing encouraging results. Plotting the ROC curve is a good solution to understand and select the operation point of the model i.e. the threshold applied on the model output to differentiate between fraudulent and legitimate transactions. Compute the test predictions: """ predictions = model.predict(test_ds) predictions = np.nan_to_num(predictions, nan=0) """ Extract the labels from the test set: """ labels = np.concatenate([label for _, label in test_ds]) """ Finaly, we plot the ROC curve. """ _ = RocCurveDisplay.from_predictions(labels, predictions) """ The Keras model is ready to be used on transactions with an unknown fraud status, a.k.a. serving. We save the model on disk for future use. **Note:** The model does not include the data preparation and preprocessing steps done in Pandas and Temporian. They have to be applied manually to the data fed into the model. While not demonstrated here, Temporian preprocessing can also be saved to disk with [tp.save](https://temporian.readthedocs.io/en/latest/reference/temporian/serialization/save/). """ model.save("fraud_detection_model.keras") """ The model can be later reloaded with: """ loaded_model = keras.saving.load_model("fraud_detection_model.keras") # Generate predictions with the loaded model on 5 test examples. loaded_model.predict(test_ds.rebatch(5).take(1)) """ ## Conclusion We trained a feed-forward neural network to identify fraudulent transactions. To feed them into the model, the transactions were preprocessed and transformed into a tabular dataset using [Temporian](https://temporian.readthedocs.io/en/latest/). Now, a question to the reader: What could be done to further improve the model's performance? Here are some ideas: - Train the model on the entire dataset instead of a single month of data. - Train the model for more epochs and use early stopping to ensure that the model is fully trained without overfitting. - Make the feed-forward network more powerful by increasing the number of layers while ensuring that the model is regularized. - Compute additional preprocessing features. For example, in addition to aggregating transactions by terminal, aggregate transactions by client. - Use the Keras Tuner to perform hyperparameter tuning on the model. Note that the parameters of the preprocessing (e.g., the number of days of aggregations) are also hyperparameters that can be tuned. """
keras-io/examples/timeseries/event_classification_for_payment_card_fraud_detection.py/0
{ "file_path": "keras-io/examples/timeseries/event_classification_for_payment_card_fraud_detection.py", "repo_id": "keras-io", "token_count": 5777 }
105
# Electroencephalogram Signal Classification for action identification **Author:** [Suvaditya Mukherjee](https://github.com/suvadityamuk)<br> **Date created:** 2022/11/03<br> **Last modified:** 2022/11/05<br> **Description:** Training a Convolutional model to classify EEG signals produced by exposure to certain stimuli. <img class="k-inline-icon" src="https://colab.research.google.com/img/colab_favicon.ico"/> [**View in Colab**](https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/timeseries/ipynb/eeg_signal_classification.ipynb) <span class="k-dot">•</span><img class="k-inline-icon" src="https://github.com/favicon.ico"/> [**GitHub source**](https://github.com/keras-team/keras-io/blob/master/examples/timeseries/eeg_signal_classification.py) --- ## Introduction The following example explores how we can make a Convolution-based Neural Network to perform classification on Electroencephalogram signals captured when subjects were exposed to different stimuli. We train a model from scratch since such signal-classification models are fairly scarce in pre-trained format. The data we use is sourced from the UC Berkeley-Biosense Lab where the data was collected from 15 subjects at the same time. Our process is as follows: - Load the [UC Berkeley-Biosense Synchronized Brainwave Dataset](https://www.kaggle.com/datasets/berkeley-biosense/synchronized-brainwave-dataset) - Visualize random samples from the data - Pre-process, collate and scale the data to finally make a `tf.data.Dataset` - Prepare class weights in order to tackle major imbalances - Create a Conv1D and Dense-based model to perform classification - Define callbacks and hyperparameters - Train the model - Plot metrics from History and perform evaluation This example needs the following external dependencies (Gdown, Scikit-learn, Pandas, Numpy, Matplotlib). You can install it via the following commands. Gdown is an external package used to download large files from Google Drive. To know more, you can refer to its [PyPi page here](https://pypi.org/project/gdown) --- ## Setup and Data Downloads First, lets install our dependencies: ```python !pip install gdown -q !pip install sklearn -q !pip install pandas -q !pip install numpy -q !pip install matplotlib -q ``` Next, lets download our dataset. The gdown package makes it easy to download the data from Google Drive: ```python !gdown 1V5B7Bt6aJm0UHbR7cRKBEK8jx7lYPVuX !# gdown will download eeg-data.csv onto the local drive for use. Total size of !# eeg-data.csv is 105.7 MB ``` ```python import pandas as pd import matplotlib.pyplot as plt import json import numpy as np import keras from keras import layers import tensorflow as tf from sklearn import preprocessing, model_selection import random QUALITY_THRESHOLD = 128 BATCH_SIZE = 64 SHUFFLE_BUFFER_SIZE = BATCH_SIZE * 2 ``` <div class="k-default-codeblock"> ``` Downloading... From (uriginal): https://drive.google.com/uc?id=1V5B7Bt6aJm0UHbR7cRKBEK8jx7lYPVuX From (redirected): https://drive.google.com/uc?id=1V5B7Bt6aJm0UHbR7cRKBEK8jx7lYPVuX&confirm=t&uuid=4d50d1e7-44b5-4984-aa04-cb4e08803cb8 To: /home/fchollet/keras-io/scripts/tmp_3333846/eeg-data.csv 100%|█████████████████████████████████████████| 106M/106M [00:00<00:00, 259MB/s] ``` </div> --- ## Read data from `eeg-data.csv` We use the Pandas library to read the `eeg-data.csv` file and display the first 5 rows using the `.head()` command ```python eeg = pd.read_csv("eeg-data.csv") ``` We remove unlabeled samples from our dataset as they do not contribute to the model. We also perform a `.drop()` operation on the columns that are not required for training data preparation ```python unlabeled_eeg = eeg[eeg["label"] == "unlabeled"] eeg = eeg.loc[eeg["label"] != "unlabeled"] eeg = eeg.loc[eeg["label"] != "everyone paired"] eeg.drop( [ "indra_time", "Unnamed: 0", "browser_latency", "reading_time", "attention_esense", "meditation_esense", "updatedAt", "createdAt", ], axis=1, inplace=True, ) eeg.reset_index(drop=True, inplace=True) eeg.head() ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } <div class="k-default-codeblock"> ``` .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } ``` </div> </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>id</th> <th>eeg_power</th> <th>raw_values</th> <th>signal_quality</th> <th>label</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>7</td> <td>[56887.0, 45471.0, 20074.0, 5359.0, 22594.0, 7...</td> <td>[99.0, 96.0, 91.0, 89.0, 91.0, 89.0, 87.0, 93....</td> <td>0</td> <td>blinkInstruction</td> </tr> <tr> <th>1</th> <td>5</td> <td>[11626.0, 60301.0, 5805.0, 15729.0, 4448.0, 33...</td> <td>[23.0, 40.0, 64.0, 89.0, 86.0, 33.0, -14.0, -1...</td> <td>0</td> <td>blinkInstruction</td> </tr> <tr> <th>2</th> <td>1</td> <td>[15777.0, 33461.0, 21385.0, 44193.0, 11741.0, ...</td> <td>[41.0, 26.0, 16.0, 20.0, 34.0, 51.0, 56.0, 55....</td> <td>0</td> <td>blinkInstruction</td> </tr> <tr> <th>3</th> <td>13</td> <td>[311822.0, 44739.0, 19000.0, 19100.0, 2650.0, ...</td> <td>[208.0, 198.0, 122.0, 84.0, 161.0, 249.0, 216....</td> <td>0</td> <td>blinkInstruction</td> </tr> <tr> <th>4</th> <td>4</td> <td>[687393.0, 10289.0, 2942.0, 9874.0, 1059.0, 29...</td> <td>[129.0, 133.0, 114.0, 105.0, 101.0, 109.0, 99....</td> <td>0</td> <td>blinkInstruction</td> </tr> </tbody> </table> </div> In the data, the samples recorded are given a score from 0 to 128 based on how well-calibrated the sensor was (0 being best, 200 being worst). We filter the values based on an arbitrary cutoff limit of 128. ```python def convert_string_data_to_values(value_string): str_list = json.loads(value_string) return str_list eeg["raw_values"] = eeg["raw_values"].apply(convert_string_data_to_values) eeg = eeg.loc[eeg["signal_quality"] < QUALITY_THRESHOLD] eeg.head() ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } <div class="k-default-codeblock"> ``` .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } ``` </div> </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>id</th> <th>eeg_power</th> <th>raw_values</th> <th>signal_quality</th> <th>label</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>7</td> <td>[56887.0, 45471.0, 20074.0, 5359.0, 22594.0, 7...</td> <td>[99.0, 96.0, 91.0, 89.0, 91.0, 89.0, 87.0, 93....</td> <td>0</td> <td>blinkInstruction</td> </tr> <tr> <th>1</th> <td>5</td> <td>[11626.0, 60301.0, 5805.0, 15729.0, 4448.0, 33...</td> <td>[23.0, 40.0, 64.0, 89.0, 86.0, 33.0, -14.0, -1...</td> <td>0</td> <td>blinkInstruction</td> </tr> <tr> <th>2</th> <td>1</td> <td>[15777.0, 33461.0, 21385.0, 44193.0, 11741.0, ...</td> <td>[41.0, 26.0, 16.0, 20.0, 34.0, 51.0, 56.0, 55....</td> <td>0</td> <td>blinkInstruction</td> </tr> <tr> <th>3</th> <td>13</td> <td>[311822.0, 44739.0, 19000.0, 19100.0, 2650.0, ...</td> <td>[208.0, 198.0, 122.0, 84.0, 161.0, 249.0, 216....</td> <td>0</td> <td>blinkInstruction</td> </tr> <tr> <th>4</th> <td>4</td> <td>[687393.0, 10289.0, 2942.0, 9874.0, 1059.0, 29...</td> <td>[129.0, 133.0, 114.0, 105.0, 101.0, 109.0, 99....</td> <td>0</td> <td>blinkInstruction</td> </tr> </tbody> </table> </div> --- ## Visualize one random sample from the data We visualize one sample from the data to understand how the stimulus-induced signal looks like ```python def view_eeg_plot(idx): data = eeg.loc[idx, "raw_values"] plt.plot(data) plt.title(f"Sample random plot") plt.show() view_eeg_plot(7) ``` ![png](/img/examples/timeseries/eeg_signal_classification/eeg_signal_classification_15_0.png) --- ## Pre-process and collate data There are a total of 67 different labels present in the data, where there are numbered sub-labels. We collate them under a single label as per their numbering and replace them in the data itself. Following this process, we perform simple Label encoding to get them in an integer format. ```python print("Before replacing labels") print(eeg["label"].unique(), "\n") print(len(eeg["label"].unique()), "\n") eeg.replace( { "label": { "blink1": "blink", "blink2": "blink", "blink3": "blink", "blink4": "blink", "blink5": "blink", "math1": "math", "math2": "math", "math3": "math", "math4": "math", "math5": "math", "math6": "math", "math7": "math", "math8": "math", "math9": "math", "math10": "math", "math11": "math", "math12": "math", "thinkOfItems-ver1": "thinkOfItems", "thinkOfItems-ver2": "thinkOfItems", "video-ver1": "video", "video-ver2": "video", "thinkOfItemsInstruction-ver1": "thinkOfItemsInstruction", "thinkOfItemsInstruction-ver2": "thinkOfItemsInstruction", "colorRound1-1": "colorRound1", "colorRound1-2": "colorRound1", "colorRound1-3": "colorRound1", "colorRound1-4": "colorRound1", "colorRound1-5": "colorRound1", "colorRound1-6": "colorRound1", "colorRound2-1": "colorRound2", "colorRound2-2": "colorRound2", "colorRound2-3": "colorRound2", "colorRound2-4": "colorRound2", "colorRound2-5": "colorRound2", "colorRound2-6": "colorRound2", "colorRound3-1": "colorRound3", "colorRound3-2": "colorRound3", "colorRound3-3": "colorRound3", "colorRound3-4": "colorRound3", "colorRound3-5": "colorRound3", "colorRound3-6": "colorRound3", "colorRound4-1": "colorRound4", "colorRound4-2": "colorRound4", "colorRound4-3": "colorRound4", "colorRound4-4": "colorRound4", "colorRound4-5": "colorRound4", "colorRound4-6": "colorRound4", "colorRound5-1": "colorRound5", "colorRound5-2": "colorRound5", "colorRound5-3": "colorRound5", "colorRound5-4": "colorRound5", "colorRound5-5": "colorRound5", "colorRound5-6": "colorRound5", "colorInstruction1": "colorInstruction", "colorInstruction2": "colorInstruction", "readyRound1": "readyRound", "readyRound2": "readyRound", "readyRound3": "readyRound", "readyRound4": "readyRound", "readyRound5": "readyRound", "colorRound1": "colorRound", "colorRound2": "colorRound", "colorRound3": "colorRound", "colorRound4": "colorRound", "colorRound5": "colorRound", } }, inplace=True, ) print("After replacing labels") print(eeg["label"].unique()) print(len(eeg["label"].unique())) le = preprocessing.LabelEncoder() # Generates a look-up table le.fit(eeg["label"]) eeg["label"] = le.transform(eeg["label"]) ``` <div class="k-default-codeblock"> ``` Before replacing labels ['blinkInstruction' 'blink1' 'blink2' 'blink3' 'blink4' 'blink5' 'relaxInstruction' 'relax' 'mathInstruction' 'math1' 'math2' 'math3' 'math4' 'math5' 'math6' 'math7' 'math8' 'math9' 'math10' 'math11' 'math12' 'musicInstruction' 'music' 'videoInstruction' 'video-ver1' 'thinkOfItemsInstruction-ver1' 'thinkOfItems-ver1' 'colorInstruction1' 'colorInstruction2' 'readyRound1' 'colorRound1-1' 'colorRound1-2' 'colorRound1-3' 'colorRound1-4' 'colorRound1-5' 'colorRound1-6' 'readyRound2' 'colorRound2-1' 'colorRound2-2' 'colorRound2-3' 'colorRound2-4' 'colorRound2-5' 'colorRound2-6' 'readyRound3' 'colorRound3-1' 'colorRound3-2' 'colorRound3-3' 'colorRound3-4' 'colorRound3-5' 'colorRound3-6' 'readyRound4' 'colorRound4-1' 'colorRound4-2' 'colorRound4-3' 'colorRound4-4' 'colorRound4-5' 'colorRound4-6' 'readyRound5' 'colorRound5-1' 'colorRound5-2' 'colorRound5-3' 'colorRound5-4' 'colorRound5-5' 'colorRound5-6' 'video-ver2' 'thinkOfItemsInstruction-ver2' 'thinkOfItems-ver2'] ``` </div> <div class="k-default-codeblock"> ``` 67 ``` </div> <div class="k-default-codeblock"> ``` After replacing labels ['blinkInstruction' 'blink' 'relaxInstruction' 'relax' 'mathInstruction' 'math' 'musicInstruction' 'music' 'videoInstruction' 'video' 'thinkOfItemsInstruction' 'thinkOfItems' 'colorInstruction' 'readyRound' 'colorRound1' 'colorRound2' 'colorRound3' 'colorRound4' 'colorRound5'] 19 ``` </div> We extract the number of unique classes present in the data ```python num_classes = len(eeg["label"].unique()) print(num_classes) ``` <div class="k-default-codeblock"> ``` 19 ``` </div> We now visualize the number of samples present in each class using a Bar plot. ```python plt.bar(range(num_classes), eeg["label"].value_counts()) plt.title("Number of samples per class") plt.show() ``` ![png](/img/examples/timeseries/eeg_signal_classification/eeg_signal_classification_22_0.png) --- ## Scale and split data We perform a simple Min-Max scaling to bring the value-range between 0 and 1. We do not use Standard Scaling as the data does not follow a Gaussian distribution. ```python scaler = preprocessing.MinMaxScaler() series_list = [ scaler.fit_transform(np.asarray(i).reshape(-1, 1)) for i in eeg["raw_values"] ] labels_list = [i for i in eeg["label"]] ``` We now create a Train-test split with a 15% holdout set. Following this, we reshape the data to create a sequence of length 512. We also convert the labels from their current label-encoded form to a one-hot encoding to enable use of several different `keras.metrics` functions. ```python x_train, x_test, y_train, y_test = model_selection.train_test_split( series_list, labels_list, test_size=0.15, random_state=42, shuffle=True ) print( f"Length of x_train : {len(x_train)}\nLength of x_test : {len(x_test)}\nLength of y_train : {len(y_train)}\nLength of y_test : {len(y_test)}" ) x_train = np.asarray(x_train).astype(np.float32).reshape(-1, 512, 1) y_train = np.asarray(y_train).astype(np.float32).reshape(-1, 1) y_train = keras.utils.to_categorical(y_train) x_test = np.asarray(x_test).astype(np.float32).reshape(-1, 512, 1) y_test = np.asarray(y_test).astype(np.float32).reshape(-1, 1) y_test = keras.utils.to_categorical(y_test) ``` <div class="k-default-codeblock"> ``` Length of x_train : 8460 Length of x_test : 1494 Length of y_train : 8460 Length of y_test : 1494 ``` </div> --- ## Prepare `tf.data.Dataset` We now create a `tf.data.Dataset` from this data to prepare it for training. We also shuffle and batch the data for use later. ```python train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)) test_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)) train_dataset = train_dataset.shuffle(SHUFFLE_BUFFER_SIZE).batch(BATCH_SIZE) test_dataset = test_dataset.batch(BATCH_SIZE) ``` --- ## Make Class Weights using Naive method As we can see from the plot of number of samples per class, the dataset is imbalanced. Hence, we **calculate weights for each class** to make sure that the model is trained in a fair manner without preference to any specific class due to greater number of samples. We use a naive method to calculate these weights, finding an **inverse proportion** of each class and using that as the weight. ```python vals_dict = {} for i in eeg["label"]: if i in vals_dict.keys(): vals_dict[i] += 1 else: vals_dict[i] = 1 total = sum(vals_dict.values()) # Formula used - Naive method where # weight = 1 - (no. of samples present / total no. of samples) # So more the samples, lower the weight weight_dict = {k: (1 - (v / total)) for k, v in vals_dict.items()} print(weight_dict) ``` <div class="k-default-codeblock"> ``` {1: 0.9872413100261201, 0: 0.975989551938919, 14: 0.9841269841269842, 13: 0.9061683745228049, 9: 0.9838255977496484, 8: 0.9059674502712477, 11: 0.9847297568816556, 10: 0.9063692987743621, 18: 0.9838255977496484, 17: 0.9057665260196905, 16: 0.9373116335141651, 15: 0.9065702230259193, 2: 0.9211372312638135, 12: 0.9525818766325096, 3: 0.9245529435402853, 4: 0.943841671689773, 5: 0.9641350210970464, 6: 0.981514968856741, 7: 0.9443439823186659} ``` </div> --- ## Define simple function to plot all the metrics present in a `keras.callbacks.History` object ```python def plot_history_metrics(history: keras.callbacks.History): total_plots = len(history.history) cols = total_plots // 2 rows = total_plots // cols if total_plots % cols != 0: rows += 1 pos = range(1, total_plots + 1) plt.figure(figsize=(15, 10)) for i, (key, value) in enumerate(history.history.items()): plt.subplot(rows, cols, pos[i]) plt.plot(range(len(value)), value) plt.title(str(key)) plt.show() ``` --- ## Define function to generate Convolutional model ```python def create_model(): input_layer = keras.Input(shape=(512, 1)) x = layers.Conv1D( filters=32, kernel_size=3, strides=2, activation="relu", padding="same" )(input_layer) x = layers.BatchNormalization()(x) x = layers.Conv1D( filters=64, kernel_size=3, strides=2, activation="relu", padding="same" )(x) x = layers.BatchNormalization()(x) x = layers.Conv1D( filters=128, kernel_size=5, strides=2, activation="relu", padding="same" )(x) x = layers.BatchNormalization()(x) x = layers.Conv1D( filters=256, kernel_size=5, strides=2, activation="relu", padding="same" )(x) x = layers.BatchNormalization()(x) x = layers.Conv1D( filters=512, kernel_size=7, strides=2, activation="relu", padding="same" )(x) x = layers.BatchNormalization()(x) x = layers.Conv1D( filters=1024, kernel_size=7, strides=2, activation="relu", padding="same", )(x) x = layers.BatchNormalization()(x) x = layers.Dropout(0.2)(x) x = layers.Flatten()(x) x = layers.Dense(4096, activation="relu")(x) x = layers.Dropout(0.2)(x) x = layers.Dense( 2048, activation="relu", kernel_regularizer=keras.regularizers.L2() )(x) x = layers.Dropout(0.2)(x) x = layers.Dense( 1024, activation="relu", kernel_regularizer=keras.regularizers.L2() )(x) x = layers.Dropout(0.2)(x) x = layers.Dense( 128, activation="relu", kernel_regularizer=keras.regularizers.L2() )(x) output_layer = layers.Dense(num_classes, activation="softmax")(x) return keras.Model(inputs=input_layer, outputs=output_layer) ``` --- ## Get Model summary ```python conv_model = create_model() conv_model.summary() ``` <pre style="white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace"><span style="font-weight: bold">Model: "functional_1"</span> </pre> <pre style="white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace">┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓ ┃<span style="font-weight: bold"> Layer (type) </span>┃<span style="font-weight: bold"> Output Shape </span>┃<span style="font-weight: bold"> Param # </span>┃ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩ │ input_layer (<span style="color: #0087ff; text-decoration-color: #0087ff">InputLayer</span>) │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">512</span>, <span style="color: #00af00; text-decoration-color: #00af00">1</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">0</span> │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ conv1d (<span style="color: #0087ff; text-decoration-color: #0087ff">Conv1D</span>) │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">256</span>, <span style="color: #00af00; text-decoration-color: #00af00">32</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">128</span> │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ batch_normalization │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">256</span>, <span style="color: #00af00; text-decoration-color: #00af00">32</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">128</span> │ │ (<span style="color: #0087ff; text-decoration-color: #0087ff">BatchNormalization</span>) │ │ │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ conv1d_1 (<span style="color: #0087ff; text-decoration-color: #0087ff">Conv1D</span>) │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">128</span>, <span style="color: #00af00; text-decoration-color: #00af00">64</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">6,208</span> │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ batch_normalization_1 │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">128</span>, <span style="color: #00af00; text-decoration-color: #00af00">64</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">256</span> │ │ (<span style="color: #0087ff; text-decoration-color: #0087ff">BatchNormalization</span>) │ │ │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ conv1d_2 (<span style="color: #0087ff; text-decoration-color: #0087ff">Conv1D</span>) │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">64</span>, <span style="color: #00af00; text-decoration-color: #00af00">128</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">41,088</span> │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ batch_normalization_2 │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">64</span>, <span style="color: #00af00; text-decoration-color: #00af00">128</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">512</span> │ │ (<span style="color: #0087ff; text-decoration-color: #0087ff">BatchNormalization</span>) │ │ │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ conv1d_3 (<span style="color: #0087ff; text-decoration-color: #0087ff">Conv1D</span>) │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">32</span>, <span style="color: #00af00; text-decoration-color: #00af00">256</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">164,096</span> │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ batch_normalization_3 │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">32</span>, <span style="color: #00af00; text-decoration-color: #00af00">256</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">1,024</span> │ │ (<span style="color: #0087ff; text-decoration-color: #0087ff">BatchNormalization</span>) │ │ │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ conv1d_4 (<span style="color: #0087ff; text-decoration-color: #0087ff">Conv1D</span>) │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">16</span>, <span style="color: #00af00; text-decoration-color: #00af00">512</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">918,016</span> │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ batch_normalization_4 │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">16</span>, <span style="color: #00af00; text-decoration-color: #00af00">512</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">2,048</span> │ │ (<span style="color: #0087ff; text-decoration-color: #0087ff">BatchNormalization</span>) │ │ │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ conv1d_5 (<span style="color: #0087ff; text-decoration-color: #0087ff">Conv1D</span>) │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">8</span>, <span style="color: #00af00; text-decoration-color: #00af00">1024</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">3,671,040</span> │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ batch_normalization_5 │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">8</span>, <span style="color: #00af00; text-decoration-color: #00af00">1024</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">4,096</span> │ │ (<span style="color: #0087ff; text-decoration-color: #0087ff">BatchNormalization</span>) │ │ │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ dropout (<span style="color: #0087ff; text-decoration-color: #0087ff">Dropout</span>) │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">8</span>, <span style="color: #00af00; text-decoration-color: #00af00">1024</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">0</span> │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ flatten (<span style="color: #0087ff; text-decoration-color: #0087ff">Flatten</span>) │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">8192</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">0</span> │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ dense (<span style="color: #0087ff; text-decoration-color: #0087ff">Dense</span>) │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">4096</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">33,558,528</span> │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ dropout_1 (<span style="color: #0087ff; text-decoration-color: #0087ff">Dropout</span>) │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">4096</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">0</span> │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ dense_1 (<span style="color: #0087ff; text-decoration-color: #0087ff">Dense</span>) │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">2048</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">8,390,656</span> │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ dropout_2 (<span style="color: #0087ff; text-decoration-color: #0087ff">Dropout</span>) │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">2048</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">0</span> │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ dense_2 (<span style="color: #0087ff; text-decoration-color: #0087ff">Dense</span>) │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">1024</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">2,098,176</span> │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ dropout_3 (<span style="color: #0087ff; text-decoration-color: #0087ff">Dropout</span>) │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">1024</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">0</span> │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ dense_3 (<span style="color: #0087ff; text-decoration-color: #0087ff">Dense</span>) │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">128</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">131,200</span> │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ dense_4 (<span style="color: #0087ff; text-decoration-color: #0087ff">Dense</span>) │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">19</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">2,451</span> │ └─────────────────────────────────┴───────────────────────────┴────────────┘ </pre> <pre style="white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace"><span style="font-weight: bold"> Total params: </span><span style="color: #00af00; text-decoration-color: #00af00">48,989,651</span> (186.88 MB) </pre> <pre style="white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace"><span style="font-weight: bold"> Trainable params: </span><span style="color: #00af00; text-decoration-color: #00af00">48,985,619</span> (186.87 MB) </pre> <pre style="white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace"><span style="font-weight: bold"> Non-trainable params: </span><span style="color: #00af00; text-decoration-color: #00af00">4,032</span> (15.75 KB) </pre> --- ## Define callbacks, optimizer, loss and metrics We set the number of epochs at 30 after performing extensive experimentation. It was seen that this was the optimal number, after performing Early-Stopping analysis as well. We define a Model Checkpoint callback to make sure that we only get the best model weights. We also define a ReduceLROnPlateau as there were several cases found during experimentation where the loss stagnated after a certain point. On the other hand, a direct LRScheduler was found to be too aggressive in its decay. ```python epochs = 30 callbacks = [ keras.callbacks.ModelCheckpoint( "best_model.keras", save_best_only=True, monitor="loss" ), keras.callbacks.ReduceLROnPlateau( monitor="val_top_k_categorical_accuracy", factor=0.2, patience=2, min_lr=0.000001, ), ] optimizer = keras.optimizers.Adam(amsgrad=True, learning_rate=0.001) loss = keras.losses.CategoricalCrossentropy() ``` --- ## Compile model and call `model.fit()` We use the `Adam` optimizer since it is commonly considered the best choice for preliminary training, and was found to be the best optimizer. We use `CategoricalCrossentropy` as the loss as our labels are in a one-hot-encoded form. We define the `TopKCategoricalAccuracy(k=3)`, `AUC`, `Precision` and `Recall` metrics to further aid in understanding the model better. ```python conv_model.compile( optimizer=optimizer, loss=loss, metrics=[ keras.metrics.TopKCategoricalAccuracy(k=3), keras.metrics.AUC(), keras.metrics.Precision(), keras.metrics.Recall(), ], ) conv_model_history = conv_model.fit( train_dataset, epochs=epochs, callbacks=callbacks, validation_data=test_dataset, class_weight=weight_dict, ) ``` <div class="k-default-codeblock"> ``` Epoch 1/30 8/133 ━━━━━━━━━━━━━━━━━━━━ 1s 16ms/step - auc: 0.5550 - loss: 45.5990 - precision: 0.0183 - recall: 0.0049 - top_k_categorical_accuracy: 0.2154 WARNING: All log messages before absl::InitializeLog() is called are written to STDERR I0000 00:00:1699421521.552287 4412 device_compiler.h:186] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process. W0000 00:00:1699421521.578522 4412 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update 133/133 ━━━━━━━━━━━━━━━━━━━━ 0s 134ms/step - auc: 0.6119 - loss: 24.8582 - precision: 0.0465 - recall: 0.0022 - top_k_categorical_accuracy: 0.2479 W0000 00:00:1699421539.207966 4409 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update W0000 00:00:1699421541.374400 4408 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update W0000 00:00:1699421542.991471 4406 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update 133/133 ━━━━━━━━━━━━━━━━━━━━ 44s 180ms/step - auc: 0.6122 - loss: 24.7734 - precision: 0.0466 - recall: 0.0022 - top_k_categorical_accuracy: 0.2481 - val_auc: 0.6470 - val_loss: 4.1950 - val_precision: 0.0000e+00 - val_recall: 0.0000e+00 - val_top_k_categorical_accuracy: 0.2610 - learning_rate: 0.0010 Epoch 2/30 133/133 ━━━━━━━━━━━━━━━━━━━━ 8s 63ms/step - auc: 0.6958 - loss: 3.5651 - precision: 0.0000e+00 - recall: 0.0000e+00 - top_k_categorical_accuracy: 0.3162 - val_auc: 0.6364 - val_loss: 3.3169 - val_precision: 0.0000e+00 - val_recall: 0.0000e+00 - val_top_k_categorical_accuracy: 0.2436 - learning_rate: 0.0010 Epoch 3/30 133/133 ━━━━━━━━━━━━━━━━━━━━ 8s 63ms/step - auc: 0.7068 - loss: 2.8805 - precision: 0.1910 - recall: 1.2846e-04 - top_k_categorical_accuracy: 0.3220 - val_auc: 0.6313 - val_loss: 3.0662 - val_precision: 0.0000e+00 - val_recall: 0.0000e+00 - val_top_k_categorical_accuracy: 0.2503 - learning_rate: 0.0010 Epoch 4/30 133/133 ━━━━━━━━━━━━━━━━━━━━ 8s 63ms/step - auc: 0.7370 - loss: 2.6265 - precision: 0.0719 - recall: 2.8215e-04 - top_k_categorical_accuracy: 0.3572 - val_auc: 0.5952 - val_loss: 3.1744 - val_precision: 0.0000e+00 - val_recall: 0.0000e+00 - val_top_k_categorical_accuracy: 0.2282 - learning_rate: 2.0000e-04 Epoch 5/30 133/133 ━━━━━━━━━━━━━━━━━━━━ 9s 65ms/step - auc: 0.7703 - loss: 2.4886 - precision: 0.3738 - recall: 0.0022 - top_k_categorical_accuracy: 0.4029 - val_auc: 0.6320 - val_loss: 3.3036 - val_precision: 0.0000e+00 - val_recall: 0.0000e+00 - val_top_k_categorical_accuracy: 0.2564 - learning_rate: 2.0000e-04 Epoch 6/30 133/133 ━━━━━━━━━━━━━━━━━━━━ 9s 66ms/step - auc: 0.8187 - loss: 2.3009 - precision: 0.6264 - recall: 0.0082 - top_k_categorical_accuracy: 0.4852 - val_auc: 0.6743 - val_loss: 3.4905 - val_precision: 0.1957 - val_recall: 0.0060 - val_top_k_categorical_accuracy: 0.3179 - learning_rate: 4.0000e-05 Epoch 7/30 133/133 ━━━━━━━━━━━━━━━━━━━━ 8s 63ms/step - auc: 0.8577 - loss: 2.1272 - precision: 0.6079 - recall: 0.0307 - top_k_categorical_accuracy: 0.5553 - val_auc: 0.6674 - val_loss: 3.8436 - val_precision: 0.2184 - val_recall: 0.0127 - val_top_k_categorical_accuracy: 0.3286 - learning_rate: 4.0000e-05 Epoch 8/30 133/133 ━━━━━━━━━━━━━━━━━━━━ 8s 63ms/step - auc: 0.8875 - loss: 1.9671 - precision: 0.6614 - recall: 0.0580 - top_k_categorical_accuracy: 0.6400 - val_auc: 0.6577 - val_loss: 4.2607 - val_precision: 0.2212 - val_recall: 0.0167 - val_top_k_categorical_accuracy: 0.3186 - learning_rate: 4.0000e-05 Epoch 9/30 133/133 ━━━━━━━━━━━━━━━━━━━━ 8s 63ms/step - auc: 0.9143 - loss: 1.7926 - precision: 0.6770 - recall: 0.0992 - top_k_categorical_accuracy: 0.7189 - val_auc: 0.6465 - val_loss: 4.8088 - val_precision: 0.1780 - val_recall: 0.0228 - val_top_k_categorical_accuracy: 0.3112 - learning_rate: 4.0000e-05 Epoch 10/30 133/133 ━━━━━━━━━━━━━━━━━━━━ 8s 63ms/step - auc: 0.9347 - loss: 1.6323 - precision: 0.6741 - recall: 0.1508 - top_k_categorical_accuracy: 0.7832 - val_auc: 0.6483 - val_loss: 4.8556 - val_precision: 0.2424 - val_recall: 0.0268 - val_top_k_categorical_accuracy: 0.3072 - learning_rate: 8.0000e-06 Epoch 11/30 133/133 ━━━━━━━━━━━━━━━━━━━━ 9s 64ms/step - auc: 0.9442 - loss: 1.5469 - precision: 0.6985 - recall: 0.1855 - top_k_categorical_accuracy: 0.8095 - val_auc: 0.6443 - val_loss: 5.0003 - val_precision: 0.2216 - val_recall: 0.0288 - val_top_k_categorical_accuracy: 0.3052 - learning_rate: 8.0000e-06 Epoch 12/30 133/133 ━━━━━━━━━━━━━━━━━━━━ 9s 64ms/step - auc: 0.9490 - loss: 1.4935 - precision: 0.7196 - recall: 0.2063 - top_k_categorical_accuracy: 0.8293 - val_auc: 0.6411 - val_loss: 5.0008 - val_precision: 0.2383 - val_recall: 0.0341 - val_top_k_categorical_accuracy: 0.3112 - learning_rate: 1.6000e-06 Epoch 13/30 133/133 ━━━━━━━━━━━━━━━━━━━━ 9s 65ms/step - auc: 0.9514 - loss: 1.4739 - precision: 0.7071 - recall: 0.2147 - top_k_categorical_accuracy: 0.8371 - val_auc: 0.6411 - val_loss: 5.0279 - val_precision: 0.2356 - val_recall: 0.0355 - val_top_k_categorical_accuracy: 0.3126 - learning_rate: 1.6000e-06 Epoch 14/30 133/133 ━━━━━━━━━━━━━━━━━━━━ 2s 14ms/step - auc: 0.9512 - loss: 1.4739 - precision: 0.7102 - recall: 0.2141 - top_k_categorical_accuracy: 0.8349 - val_auc: 0.6407 - val_loss: 5.0457 - val_precision: 0.2340 - val_recall: 0.0368 - val_top_k_categorical_accuracy: 0.3099 - learning_rate: 1.0000e-06 Epoch 15/30 133/133 ━━━━━━━━━━━━━━━━━━━━ 9s 64ms/step - auc: 0.9533 - loss: 1.4524 - precision: 0.7206 - recall: 0.2240 - top_k_categorical_accuracy: 0.8421 - val_auc: 0.6400 - val_loss: 5.0557 - val_precision: 0.2292 - val_recall: 0.0368 - val_top_k_categorical_accuracy: 0.3092 - learning_rate: 1.0000e-06 Epoch 16/30 133/133 ━━━━━━━━━━━━━━━━━━━━ 8s 63ms/step - auc: 0.9536 - loss: 1.4489 - precision: 0.7201 - recall: 0.2218 - top_k_categorical_accuracy: 0.8367 - val_auc: 0.6401 - val_loss: 5.0850 - val_precision: 0.2336 - val_recall: 0.0382 - val_top_k_categorical_accuracy: 0.3072 - learning_rate: 1.0000e-06 Epoch 17/30 133/133 ━━━━━━━━━━━━━━━━━━━━ 8s 63ms/step - auc: 0.9542 - loss: 1.4429 - precision: 0.7207 - recall: 0.2353 - top_k_categorical_accuracy: 0.8404 - val_auc: 0.6397 - val_loss: 5.1047 - val_precision: 0.2249 - val_recall: 0.0375 - val_top_k_categorical_accuracy: 0.3086 - learning_rate: 1.0000e-06 Epoch 18/30 133/133 ━━━━━━━━━━━━━━━━━━━━ 8s 63ms/step - auc: 0.9547 - loss: 1.4353 - precision: 0.7195 - recall: 0.2323 - top_k_categorical_accuracy: 0.8455 - val_auc: 0.6389 - val_loss: 5.1215 - val_precision: 0.2305 - val_recall: 0.0395 - val_top_k_categorical_accuracy: 0.3072 - learning_rate: 1.0000e-06 Epoch 19/30 133/133 ━━━━━━━━━━━━━━━━━━━━ 8s 63ms/step - auc: 0.9554 - loss: 1.4271 - precision: 0.7254 - recall: 0.2326 - top_k_categorical_accuracy: 0.8492 - val_auc: 0.6386 - val_loss: 5.1395 - val_precision: 0.2269 - val_recall: 0.0395 - val_top_k_categorical_accuracy: 0.3072 - learning_rate: 1.0000e-06 Epoch 20/30 133/133 ━━━━━━━━━━━━━━━━━━━━ 8s 63ms/step - auc: 0.9559 - loss: 1.4221 - precision: 0.7248 - recall: 0.2471 - top_k_categorical_accuracy: 0.8439 - val_auc: 0.6385 - val_loss: 5.1655 - val_precision: 0.2264 - val_recall: 0.0402 - val_top_k_categorical_accuracy: 0.3052 - learning_rate: 1.0000e-06 Epoch 21/30 133/133 ━━━━━━━━━━━━━━━━━━━━ 8s 64ms/step - auc: 0.9565 - loss: 1.4170 - precision: 0.7169 - recall: 0.2421 - top_k_categorical_accuracy: 0.8543 - val_auc: 0.6385 - val_loss: 5.1851 - val_precision: 0.2271 - val_recall: 0.0415 - val_top_k_categorical_accuracy: 0.3072 - learning_rate: 1.0000e-06 Epoch 22/30 133/133 ━━━━━━━━━━━━━━━━━━━━ 8s 63ms/step - auc: 0.9577 - loss: 1.4029 - precision: 0.7305 - recall: 0.2518 - top_k_categorical_accuracy: 0.8536 - val_auc: 0.6384 - val_loss: 5.2043 - val_precision: 0.2279 - val_recall: 0.0415 - val_top_k_categorical_accuracy: 0.3059 - learning_rate: 1.0000e-06 Epoch 23/30 133/133 ━━━━━━━━━━━━━━━━━━━━ 8s 63ms/step - auc: 0.9574 - loss: 1.4048 - precision: 0.7285 - recall: 0.2575 - top_k_categorical_accuracy: 0.8527 - val_auc: 0.6382 - val_loss: 5.2247 - val_precision: 0.2308 - val_recall: 0.0442 - val_top_k_categorical_accuracy: 0.3106 - learning_rate: 1.0000e-06 Epoch 24/30 133/133 ━━━━━━━━━━━━━━━━━━━━ 8s 63ms/step - auc: 0.9579 - loss: 1.3998 - precision: 0.7426 - recall: 0.2588 - top_k_categorical_accuracy: 0.8503 - val_auc: 0.6386 - val_loss: 5.2479 - val_precision: 0.2308 - val_recall: 0.0442 - val_top_k_categorical_accuracy: 0.3092 - learning_rate: 1.0000e-06 Epoch 25/30 133/133 ━━━━━━━━━━━━━━━━━━━━ 8s 63ms/step - auc: 0.9585 - loss: 1.3918 - precision: 0.7348 - recall: 0.2609 - top_k_categorical_accuracy: 0.8607 - val_auc: 0.6378 - val_loss: 5.2648 - val_precision: 0.2287 - val_recall: 0.0448 - val_top_k_categorical_accuracy: 0.3106 - learning_rate: 1.0000e-06 Epoch 26/30 133/133 ━━━━━━━━━━━━━━━━━━━━ 8s 63ms/step - auc: 0.9587 - loss: 1.3881 - precision: 0.7425 - recall: 0.2669 - top_k_categorical_accuracy: 0.8544 - val_auc: 0.6380 - val_loss: 5.2877 - val_precision: 0.2226 - val_recall: 0.0448 - val_top_k_categorical_accuracy: 0.3099 - learning_rate: 1.0000e-06 Epoch 27/30 133/133 ━━━━━━━━━━━━━━━━━━━━ 8s 63ms/step - auc: 0.9590 - loss: 1.3834 - precision: 0.7469 - recall: 0.2665 - top_k_categorical_accuracy: 0.8599 - val_auc: 0.6379 - val_loss: 5.3021 - val_precision: 0.2252 - val_recall: 0.0455 - val_top_k_categorical_accuracy: 0.3072 - learning_rate: 1.0000e-06 Epoch 28/30 133/133 ━━━━━━━━━━━━━━━━━━━━ 8s 64ms/step - auc: 0.9597 - loss: 1.3763 - precision: 0.7600 - recall: 0.2701 - top_k_categorical_accuracy: 0.8628 - val_auc: 0.6380 - val_loss: 5.3241 - val_precision: 0.2244 - val_recall: 0.0469 - val_top_k_categorical_accuracy: 0.3119 - learning_rate: 1.0000e-06 Epoch 29/30 133/133 ━━━━━━━━━━━━━━━━━━━━ 8s 63ms/step - auc: 0.9601 - loss: 1.3692 - precision: 0.7549 - recall: 0.2761 - top_k_categorical_accuracy: 0.8634 - val_auc: 0.6372 - val_loss: 5.3494 - val_precision: 0.2229 - val_recall: 0.0469 - val_top_k_categorical_accuracy: 0.3119 - learning_rate: 1.0000e-06 Epoch 30/30 133/133 ━━━━━━━━━━━━━━━━━━━━ 8s 63ms/step - auc: 0.9604 - loss: 1.3694 - precision: 0.7447 - recall: 0.2723 - top_k_categorical_accuracy: 0.8648 - val_auc: 0.6372 - val_loss: 5.3667 - val_precision: 0.2226 - val_recall: 0.0475 - val_top_k_categorical_accuracy: 0.3119 - learning_rate: 1.0000e-06 ``` </div> --- ## Visualize model metrics during training We use the function defined above to see model metrics during training. ```python plot_history_metrics(conv_model_history) ``` ![png](/img/examples/timeseries/eeg_signal_classification/eeg_signal_classification_48_0.png) --- ## Evaluate model on test data ```python loss, accuracy, auc, precision, recall = conv_model.evaluate(test_dataset) print(f"Loss : {loss}") print(f"Top 3 Categorical Accuracy : {accuracy}") print(f"Area under the Curve (ROC) : {auc}") print(f"Precision : {precision}") print(f"Recall : {recall}") def view_evaluated_eeg_plots(model): start_index = random.randint(10, len(eeg)) end_index = start_index + 11 data = eeg.loc[start_index:end_index, "raw_values"] data_array = [scaler.fit_transform(np.asarray(i).reshape(-1, 1)) for i in data] data_array = [np.asarray(data_array).astype(np.float32).reshape(-1, 512, 1)] original_labels = eeg.loc[start_index:end_index, "label"] predicted_labels = np.argmax(model.predict(data_array, verbose=0), axis=1) original_labels = [ le.inverse_transform(np.array(label).reshape(-1))[0] for label in original_labels ] predicted_labels = [ le.inverse_transform(np.array(label).reshape(-1))[0] for label in predicted_labels ] total_plots = 12 cols = total_plots // 3 rows = total_plots // cols if total_plots % cols != 0: rows += 1 pos = range(1, total_plots + 1) fig = plt.figure(figsize=(20, 10)) for i, (plot_data, og_label, pred_label) in enumerate( zip(data, original_labels, predicted_labels) ): plt.subplot(rows, cols, pos[i]) plt.plot(plot_data) plt.title(f"Actual Label : {og_label}\nPredicted Label : {pred_label}") fig.subplots_adjust(hspace=0.5) plt.show() view_evaluated_eeg_plots(conv_model) ``` <div class="k-default-codeblock"> ``` 24/24 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - auc: 0.6438 - loss: 5.3150 - precision: 0.2589 - recall: 0.0565 - top_k_categorical_accuracy: 0.3281 Loss : 5.366718769073486 Top 3 Categorical Accuracy : 0.6372398138046265 Area under the Curve (ROC) : 0.222570538520813 Precision : 0.04752342775464058 Recall : 0.311914324760437 W0000 00:00:1699421785.101645 4408 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update ``` </div> ![png](/img/examples/timeseries/eeg_signal_classification/eeg_signal_classification_50_2.png)
keras-io/examples/timeseries/md/eeg_signal_classification.md/0
{ "file_path": "keras-io/examples/timeseries/md/eeg_signal_classification.md", "repo_id": "keras-io", "token_count": 20720 }
106
""" Title: Barlow Twins for Contrastive SSL Author: [Abhiraam Eranti](https://github.com/dewball345) Date created: 11/4/21 Last modified: 12/20/21 Description: A keras implementation of Barlow Twins (constrastive SSL with redundancy reduction). Accelerator: GPU """ """ ## Introduction """ """ Self-supervised learning (SSL) is a relatively novel technique in which a model learns from unlabeled data, and is often used when the data is corrupted or if there is very little of it. A practical use for SSL is to create intermediate embeddings that are learned from the data. These embeddings are based on the dataset itself, with similar images having similar embeddings, and vice versa. They are then attached to the rest of the model, which uses those embeddings as information and effectively learns and makes predictions properly. These embeddings, ideally, should contain as much information and insight about the data as possible, so that the model can make better predictions. However, a common problem that arises is that the model creates embeddings that are redundant. For example, if two images are similar, the model will create embeddings that are just a string of 1's, or some other value that contains repeating bits of information. This is no better than a one-hot encoding or just having one bit as the model’s representations; it defeats the purpose of the embeddings, as they do not learn as much about the dataset as possible. For other approaches, the solution to the problem was to carefully configure the model such that it tries not to be redundant. Barlow Twins is a new approach to this problem; while other solutions mainly tackle the first goal of invariance (similar images have similar embeddings), the Barlow Twins method also prioritizes the goal of reducing redundancy. It also has the advantage of being much simpler than other methods, and its model architecture is symmetric, meaning that both twins in the model do the same thing. It is also near state-of-the-art on imagenet, even exceeding methods like SimCLR. One disadvantage of Barlow Twins is that it is heavily dependent on augmentation, suffering major performance decreases in accuracy without them. TL, DR: Barlow twins creates representations that are: * Invariant. * Not redundant, and carry as much info about the dataset. Also, it is simpler than other methods. This notebook can train a Barlow Twins model and reach up to 64% validation accuracy on the CIFAR-10 dataset. """ """ ![image](https://i.imgur.com/G6LnEPT.png) """ """ ### High-Level Theory """ """ The model takes two versions of the same image(with different augmentations) as input. Then it takes a prediction of each of them, creating representations. They are then used to make a cross-correlation matrix. Cross-correlation matrix: ``` (pred_1.T @ pred_2) / batch_size ``` The cross-correlation matrix measures the correlation between the output neurons in the two representations made by the model predictions of the two augmented versions of data. Ideally, a cross-correlation matrix should look like an identity matrix if the two images are the same. When this happens, it means that the representations: 1. Are invariant. The diagonal shows the correlation between each representation's neurons and its corresponding augmented one. Because the two versions come from the same image, the diagonal of the matrix should show that there is a strong correlation between them. If the images are different, there shouldn't be a diagonal. 2. Do not show signs of redundancy. If the neurons show correlation with a non-diagonal neuron, it means that it is not correctly identifying similarities between the two augmented images. This means that it is redundant. Here is a good way of understanding in pseudocode(information from the original paper): ``` c[i][i] = 1 c[i][j] = 0 where: c is the cross-correlation matrix i is the index of one representation's neuron j is the index of the second representation's neuron ``` """ """ Taken from the original paper: [Barlow Twins: Self-Supervised Learning via Redundancy Reduction](https://arxiv.org/abs/2103.03230) """ """ ### References """ """ Paper: [Barlow Twins: Self-Supervised Learning via Redundancy Reduction](https://arxiv.org/abs/2103.03230) Original Implementation: [facebookresearch/barlowtwins](https://github.com/facebookresearch/barlowtwins) """ """ ## Setup """ """shell pip install tensorflow-addons """ import os # slightly faster improvements, on the first epoch 30 second decrease and a 1-2 second # decrease in epoch time. Overall saves approx. 5 min of training time # Allocates two threads for a gpu private which allows more operations to be # done faster os.environ["TF_GPU_THREAD_MODE"] = "gpu_private" import tensorflow as tf # framework from tensorflow import keras # for tf.keras import tensorflow_addons as tfa # LAMB optimizer and gaussian_blur_2d function import numpy as np # np.random.random import matplotlib.pyplot as plt # graphs import datetime # tensorboard logs naming # XLA optimization for faster performance(up to 10-15 minutes total time saved) tf.config.optimizer.set_jit(True) """ ## Load the CIFAR-10 dataset """ [ (train_features, train_labels), (test_features, test_labels), ] = keras.datasets.cifar10.load_data() train_features = train_features / 255.0 test_features = test_features / 255.0 """ ## Necessary Hyperparameters """ # Batch size of dataset BATCH_SIZE = 512 # Width and height of image IMAGE_SIZE = 32 """ ## Augmentation Utilities The Barlow twins algorithm is heavily reliant on Augmentation. One unique feature of the method is that sometimes, augmentations probabilistically occur. **Augmentations** * *RandomToGrayscale*: randomly applies grayscale to image 20% of the time * *RandomColorJitter*: randomly applies color jitter 80% of the time * *RandomFlip*: randomly flips image horizontally 50% of the time * *RandomResizedCrop*: randomly crops an image to a random size then resizes. This happens 100% of the time * *RandomSolarize*: randomly applies solarization to an image 20% of the time * *RandomBlur*: randomly blurs an image 20% of the time """ class Augmentation(keras.layers.Layer): """Base augmentation class. Base augmentation class. Contains the random_execute method. Methods: random_execute: method that returns true or false based on a probability. Used to determine whether an augmentation will be run. """ def __init__(self): super().__init__() @tf.function def random_execute(self, prob: float) -> bool: """random_execute function. Arguments: prob: a float value from 0-1 that determines the probability. Returns: returns true or false based on the probability. """ return tf.random.uniform([], minval=0, maxval=1) < prob class RandomToGrayscale(Augmentation): """RandomToGrayscale class. RandomToGrayscale class. Randomly makes an image grayscaled based on the random_execute method. There is a 20% chance that an image will be grayscaled. Methods: call: method that grayscales an image 20% of the time. """ @tf.function def call(self, x: tf.Tensor) -> tf.Tensor: """call function. Arguments: x: a tf.Tensor representing the image. Returns: returns a grayscaled version of the image 20% of the time and the original image 80% of the time. """ if self.random_execute(0.2): x = tf.image.rgb_to_grayscale(x) x = tf.tile(x, [1, 1, 3]) return x class RandomColorJitter(Augmentation): """RandomColorJitter class. RandomColorJitter class. Randomly adds color jitter to an image. Color jitter means to add random brightness, contrast, saturation, and hue to an image. There is a 80% chance that an image will be randomly color-jittered. Methods: call: method that color-jitters an image 80% of the time. """ @tf.function def call(self, x: tf.Tensor) -> tf.Tensor: """call function. Adds color jitter to image, including: Brightness change by a max-delta of 0.8 Contrast change by a max-delta of 0.8 Saturation change by a max-delta of 0.8 Hue change by a max-delta of 0.2 Originally, the same deltas of the original paper were used, but a performance boost of almost 2% was found when doubling them. Arguments: x: a tf.Tensor representing the image. Returns: returns a color-jittered version of the image 80% of the time and the original image 20% of the time. """ if self.random_execute(0.8): x = tf.image.random_brightness(x, 0.8) x = tf.image.random_contrast(x, 0.4, 1.6) x = tf.image.random_saturation(x, 0.4, 1.6) x = tf.image.random_hue(x, 0.2) return x class RandomFlip(Augmentation): """RandomFlip class. RandomFlip class. Randomly flips image horizontally. There is a 50% chance that an image will be randomly flipped. Methods: call: method that flips an image 50% of the time. """ @tf.function def call(self, x: tf.Tensor) -> tf.Tensor: """call function. Randomly flips the image. Arguments: x: a tf.Tensor representing the image. Returns: returns a flipped version of the image 50% of the time and the original image 50% of the time. """ if self.random_execute(0.5): x = tf.image.random_flip_left_right(x) return x class RandomResizedCrop(Augmentation): """RandomResizedCrop class. RandomResizedCrop class. Randomly crop an image to a random size, then resize the image back to the original size. Attributes: image_size: The dimension of the image Methods: __call__: method that does random resize crop to the image. """ def __init__(self, image_size): super().__init__() self.image_size = image_size def call(self, x: tf.Tensor) -> tf.Tensor: """call function. Does random resize crop by randomly cropping an image to a random size 75% - 100% the size of the image. Then resizes it. Arguments: x: a tf.Tensor representing the image. Returns: returns a randomly cropped image. """ rand_size = tf.random.uniform( shape=[], minval=int(0.75 * self.image_size), maxval=1 * self.image_size, dtype=tf.int32, ) crop = tf.image.random_crop(x, (rand_size, rand_size, 3)) crop_resize = tf.image.resize(crop, (self.image_size, self.image_size)) return crop_resize class RandomSolarize(Augmentation): """RandomSolarize class. RandomSolarize class. Randomly solarizes an image. Solarization is when pixels accidentally flip to an inverted state. Methods: call: method that does random solarization 20% of the time. """ @tf.function def call(self, x: tf.Tensor) -> tf.Tensor: """call function. Randomly solarizes the image. Arguments: x: a tf.Tensor representing the image. Returns: returns a solarized version of the image 20% of the time and the original image 80% of the time. """ if self.random_execute(0.2): # flips abnormally low pixels to abnormally high pixels x = tf.where(x < 10, x, 255 - x) return x class RandomBlur(Augmentation): """RandomBlur class. RandomBlur class. Randomly blurs an image. Methods: call: method that does random blur 20% of the time. """ @tf.function def call(self, x: tf.Tensor) -> tf.Tensor: """call function. Randomly solarizes the image. Arguments: x: a tf.Tensor representing the image. Returns: returns a blurred version of the image 20% of the time and the original image 80% of the time. """ if self.random_execute(0.2): s = np.random.random() return tfa.image.gaussian_filter2d(image=x, sigma=s) return x class RandomAugmentor(keras.Model): """RandomAugmentor class. RandomAugmentor class. Chains all the augmentations into one pipeline. Attributes: image_size: An integer represing the width and height of the image. Designed to be used for square images. random_resized_crop: Instance variable representing the RandomResizedCrop layer. random_flip: Instance variable representing the RandomFlip layer. random_color_jitter: Instance variable representing the RandomColorJitter layer. random_blur: Instance variable representing the RandomBlur layer random_to_grayscale: Instance variable representing the RandomToGrayscale layer random_solarize: Instance variable representing the RandomSolarize layer Methods: call: chains layers in pipeline together """ def __init__(self, image_size: int): super().__init__() self.image_size = image_size self.random_resized_crop = RandomResizedCrop(image_size) self.random_flip = RandomFlip() self.random_color_jitter = RandomColorJitter() self.random_blur = RandomBlur() self.random_to_grayscale = RandomToGrayscale() self.random_solarize = RandomSolarize() def call(self, x: tf.Tensor) -> tf.Tensor: x = self.random_resized_crop(x) x = self.random_flip(x) x = self.random_color_jitter(x) x = self.random_blur(x) x = self.random_to_grayscale(x) x = self.random_solarize(x) x = tf.clip_by_value(x, 0, 1) return x bt_augmentor = RandomAugmentor(IMAGE_SIZE) """ ## Data Loading A class that creates the barlow twins' dataset. The dataset consists of two copies of each image, with each copy receiving different augmentations. """ class BTDatasetCreator: """Barlow twins dataset creator class. BTDatasetCreator class. Responsible for creating the barlow twins' dataset. Attributes: options: tf.data.Options needed to configure a setting that may improve performance. seed: random seed for shuffling. Used to synchronize two augmented versions. augmentor: augmentor used for augmentation. Methods: __call__: creates barlow dataset. augmented_version: creates 1 half of the dataset. """ def __init__(self, augmentor: RandomAugmentor, seed: int = 1024): self.options = tf.data.Options() self.options.threading.max_intra_op_parallelism = 1 self.seed = seed self.augmentor = augmentor def augmented_version(self, ds: list) -> tf.data.Dataset: return ( tf.data.Dataset.from_tensor_slices(ds) .shuffle(1000, seed=self.seed) .map(self.augmentor, num_parallel_calls=tf.data.AUTOTUNE) .batch(BATCH_SIZE, drop_remainder=True) .prefetch(tf.data.AUTOTUNE) .with_options(self.options) ) def __call__(self, ds: list) -> tf.data.Dataset: a1 = self.augmented_version(ds) a2 = self.augmented_version(ds) return tf.data.Dataset.zip((a1, a2)).with_options(self.options) augment_versions = BTDatasetCreator(bt_augmentor)(train_features) """ View examples of dataset. """ sample_augment_versions = iter(augment_versions) def plot_values(batch: tuple): fig, axs = plt.subplots(3, 3) fig1, axs1 = plt.subplots(3, 3) fig.suptitle("Augmentation 1") fig1.suptitle("Augmentation 2") a1, a2 = batch # plots images on both tables for i in range(3): for j in range(3): # CHANGE(add / 255) axs[i][j].imshow(a1[3 * i + j]) axs[i][j].axis("off") axs1[i][j].imshow(a2[3 * i + j]) axs1[i][j].axis("off") plt.show() plot_values(next(sample_augment_versions)) """ ## Pseudocode of loss and model The following sections follow the original author's pseudocode containing both model and loss functions(see diagram below). Also contains a reference of variables used. """ """ ![pseudocode](https://i.imgur.com/Tlrootj.png) """ """ Reference: ``` y_a: first augmented version of original image. y_b: second augmented version of original image. z_a: model representation(embeddings) of y_a. z_b: model representation(embeddings) of y_b. z_a_norm: normalized z_a. z_b_norm: normalized z_b. c: cross correlation matrix. c_diff: diagonal portion of loss(invariance term). off_diag: off-diagonal portion of loss(redundancy reduction term). ``` """ """ ## BarlowLoss: barlow twins model's loss function Barlow Twins uses the cross correlation matrix for its loss. There are two parts to the loss function: * ***The invariance term***(diagonal). This part is used to make the diagonals of the matrix into 1s. When this is the case, the matrix shows that the images are correlated(same). * The loss function subtracts 1 from the diagonal and squares the values. * ***The redundancy reduction term***(off-diagonal). Here, the barlow twins loss function aims to make these values zero. As mentioned before, it is redundant if the representation neurons are correlated with values that are not on the diagonal. * Off diagonals are squared. After this the two parts are summed together. """ class BarlowLoss(keras.losses.Loss): """BarlowLoss class. BarlowLoss class. Creates a loss function based on the cross-correlation matrix. Attributes: batch_size: the batch size of the dataset lambda_amt: the value for lambda(used in cross_corr_matrix_loss) Methods: __init__: gets instance variables call: gets the loss based on the cross-correlation matrix make_diag_zeros: Used in calculating off-diagonal section of loss function; makes diagonals zeros. cross_corr_matrix_loss: creates loss based on cross correlation matrix. """ def __init__(self, batch_size: int): """__init__ method. Gets the instance variables Arguments: batch_size: An integer value representing the batch size of the dataset. Used for cross correlation matrix calculation. """ super().__init__() self.lambda_amt = 5e-3 self.batch_size = batch_size def get_off_diag(self, c: tf.Tensor) -> tf.Tensor: """get_off_diag method. Makes the diagonals of the cross correlation matrix zeros. This is used in the off-diagonal portion of the loss function, where we take the squares of the off-diagonal values and sum them. Arguments: c: A tf.tensor that represents the cross correlation matrix Returns: Returns a tf.tensor which represents the cross correlation matrix with its diagonals as zeros. """ zero_diag = tf.zeros(c.shape[-1]) return tf.linalg.set_diag(c, zero_diag) def cross_corr_matrix_loss(self, c: tf.Tensor) -> tf.Tensor: """cross_corr_matrix_loss method. Gets the loss based on the cross correlation matrix. We want the diagonals to be 1's and everything else to be zeros to show that the two augmented images are similar. Loss function procedure: take the diagonal of the cross-correlation matrix, subtract by 1, and square that value so no negatives. Take the off-diagonal of the cc-matrix(see get_off_diag()), square those values to get rid of negatives and increase the value, and multiply it by a lambda to weight it such that it is of equal value to the optimizer as the diagonal(there are more values off-diag then on-diag) Take the sum of the first and second parts and then sum them together. Arguments: c: A tf.tensor that represents the cross correlation matrix Returns: Returns a tf.tensor which represents the cross correlation matrix with its diagonals as zeros. """ # subtracts diagonals by one and squares them(first part) c_diff = tf.pow(tf.linalg.diag_part(c) - 1, 2) # takes off diagonal, squares it, multiplies with lambda(second part) off_diag = tf.pow(self.get_off_diag(c), 2) * self.lambda_amt # sum first and second parts together loss = tf.reduce_sum(c_diff) + tf.reduce_sum(off_diag) return loss def normalize(self, output: tf.Tensor) -> tf.Tensor: """normalize method. Normalizes the model prediction. Arguments: output: the model prediction. Returns: Returns a normalized version of the model prediction. """ return (output - tf.reduce_mean(output, axis=0)) / tf.math.reduce_std( output, axis=0 ) def cross_corr_matrix(self, z_a_norm: tf.Tensor, z_b_norm: tf.Tensor) -> tf.Tensor: """cross_corr_matrix method. Creates a cross correlation matrix from the predictions. It transposes the first prediction and multiplies this with the second, creating a matrix with shape (n_dense_units, n_dense_units). See build_twin() for more info. Then it divides this with the batch size. Arguments: z_a_norm: A normalized version of the first prediction. z_b_norm: A normalized version of the second prediction. Returns: Returns a cross correlation matrix. """ return (tf.transpose(z_a_norm) @ z_b_norm) / self.batch_size def call(self, z_a: tf.Tensor, z_b: tf.Tensor) -> tf.Tensor: """call method. Makes the cross-correlation loss. Uses the CreateCrossCorr class to make the cross corr matrix, then finds the loss and returns it(see cross_corr_matrix_loss()). Arguments: z_a: The prediction of the first set of augmented data. z_b: the prediction of the second set of augmented data. Returns: Returns a (rank-0) tf.Tensor that represents the loss. """ z_a_norm, z_b_norm = self.normalize(z_a), self.normalize(z_b) c = self.cross_corr_matrix(z_a_norm, z_b_norm) loss = self.cross_corr_matrix_loss(c) return loss """ ## Barlow Twins' Model Architecture The model has two parts: * The encoder network, which is a resnet-34. * The projector network, which creates the model embeddings. * This consists of an MLP with 3 dense-batchnorm-relu layers. """ """ Resnet encoder network implementation: """ class ResNet34: """Resnet34 class. Responsible for the Resnet 34 architecture. Modified from https://www.analyticsvidhya.com/blog/2021/08/how-to-code-your-resnet-from-scratch-in-tensorflow/#h2_2. https://www.analyticsvidhya.com/blog/2021/08/how-to-code-your-resnet-from-scratch-in-tensorflow/#h2_2. View their website for more information. """ def identity_block(self, x, filter): # copy tensor to variable called x_skip x_skip = x # Layer 1 x = tf.keras.layers.Conv2D(filter, (3, 3), padding="same")(x) x = tf.keras.layers.BatchNormalization(axis=3)(x) x = tf.keras.layers.Activation("relu")(x) # Layer 2 x = tf.keras.layers.Conv2D(filter, (3, 3), padding="same")(x) x = tf.keras.layers.BatchNormalization(axis=3)(x) # Add Residue x = tf.keras.layers.Add()([x, x_skip]) x = tf.keras.layers.Activation("relu")(x) return x def convolutional_block(self, x, filter): # copy tensor to variable called x_skip x_skip = x # Layer 1 x = tf.keras.layers.Conv2D(filter, (3, 3), padding="same", strides=(2, 2))(x) x = tf.keras.layers.BatchNormalization(axis=3)(x) x = tf.keras.layers.Activation("relu")(x) # Layer 2 x = tf.keras.layers.Conv2D(filter, (3, 3), padding="same")(x) x = tf.keras.layers.BatchNormalization(axis=3)(x) # Processing Residue with conv(1,1) x_skip = tf.keras.layers.Conv2D(filter, (1, 1), strides=(2, 2))(x_skip) # Add Residue x = tf.keras.layers.Add()([x, x_skip]) x = tf.keras.layers.Activation("relu")(x) return x def __call__(self, shape=(32, 32, 3)): # Step 1 (Setup Input Layer) x_input = tf.keras.layers.Input(shape) x = tf.keras.layers.ZeroPadding2D((3, 3))(x_input) # Step 2 (Initial Conv layer along with maxPool) x = tf.keras.layers.Conv2D(64, kernel_size=7, strides=2, padding="same")(x) x = tf.keras.layers.BatchNormalization()(x) x = tf.keras.layers.Activation("relu")(x) x = tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding="same")(x) # Define size of sub-blocks and initial filter size block_layers = [3, 4, 6, 3] filter_size = 64 # Step 3 Add the Resnet Blocks for i in range(4): if i == 0: # For sub-block 1 Residual/Convolutional block not needed for j in range(block_layers[i]): x = self.identity_block(x, filter_size) else: # One Residual/Convolutional Block followed by Identity blocks # The filter size will go on increasing by a factor of 2 filter_size = filter_size * 2 x = self.convolutional_block(x, filter_size) for j in range(block_layers[i] - 1): x = self.identity_block(x, filter_size) # Step 4 End Dense Network x = tf.keras.layers.AveragePooling2D((2, 2), padding="same")(x) x = tf.keras.layers.Flatten()(x) model = tf.keras.models.Model(inputs=x_input, outputs=x, name="ResNet34") return model """ Projector network: """ def build_twin() -> keras.Model: """build_twin method. Builds a barlow twins model consisting of an encoder(resnet-34) and a projector, which generates embeddings for the images Returns: returns a barlow twins model """ # number of dense neurons in the projector n_dense_neurons = 5000 # encoder network resnet = ResNet34()() last_layer = resnet.layers[-1].output # intermediate layers of the projector network n_layers = 2 for i in range(n_layers): dense = tf.keras.layers.Dense(n_dense_neurons, name=f"projector_dense_{i}") if i == 0: x = dense(last_layer) else: x = dense(x) x = tf.keras.layers.BatchNormalization(name=f"projector_bn_{i}")(x) x = tf.keras.layers.ReLU(name=f"projector_relu_{i}")(x) x = tf.keras.layers.Dense(n_dense_neurons, name=f"projector_dense_{n_layers}")(x) model = keras.Model(resnet.input, x) return model """ ## Training Loop Model See pseudocode for reference. """ class BarlowModel(keras.Model): """BarlowModel class. BarlowModel class. Responsible for making predictions and handling gradient descent with the optimizer. Attributes: model: the barlow model architecture. loss_tracker: the loss metric. Methods: train_step: one train step; do model predictions, loss, and optimizer step. metrics: Returns metrics. """ def __init__(self): super().__init__() self.model = build_twin() self.loss_tracker = keras.metrics.Mean(name="loss") @property def metrics(self): return [self.loss_tracker] def train_step(self, batch: tf.Tensor) -> tf.Tensor: """train_step method. Do one train step. Make model predictions, find loss, pass loss to optimizer, and make optimizer apply gradients. Arguments: batch: one batch of data to be given to the loss function. Returns: Returns a dictionary with the loss metric. """ # get the two augmentations from the batch y_a, y_b = batch with tf.GradientTape() as tape: # get two versions of predictions z_a, z_b = self.model(y_a, training=True), self.model(y_b, training=True) loss = self.loss(z_a, z_b) grads_model = tape.gradient(loss, self.model.trainable_variables) self.optimizer.apply_gradients(zip(grads_model, self.model.trainable_variables)) self.loss_tracker.update_state(loss) return {"loss": self.loss_tracker.result()} """ ## Model Training * Used the LAMB optimizer, instead of ADAM or SGD. * Similar to the LARS optimizer used in the paper, and lets the model converge much faster than other methods. * Expected training time: 1 hour 30 min. Go and eat a snack or take a nap or something. """ # sets up model, optimizer, loss bm = BarlowModel() # chose the LAMB optimizer due to high batch sizes. Converged MUCH faster # than ADAM or SGD optimizer = tfa.optimizers.LAMB() loss = BarlowLoss(BATCH_SIZE) bm.compile(optimizer=optimizer, loss=loss) # Expected training time: 1 hours 30 min history = bm.fit(augment_versions, epochs=160) plt.plot(history.history["loss"]) plt.show() """ ## Evaluation **Linear evaluation:** to evaluate the model's performance, we add a linear dense layer at the end and freeze the main model's weights, only letting the dense layer to be tuned. If the model actually learned something, then the accuracy would be significantly higher than random chance. **Accuracy on CIFAR-10** : 64% for this notebook. This is much better than the 10% we get from random guessing. """ # Approx: 64% accuracy with this barlow twins model. xy_ds = ( tf.data.Dataset.from_tensor_slices((train_features, train_labels)) .shuffle(1000) .batch(BATCH_SIZE, drop_remainder=True) .prefetch(tf.data.AUTOTUNE) ) test_ds = ( tf.data.Dataset.from_tensor_slices((test_features, test_labels)) .shuffle(1000) .batch(BATCH_SIZE, drop_remainder=True) .prefetch(tf.data.AUTOTUNE) ) model = keras.models.Sequential( [ bm.model, keras.layers.Dense( 10, activation="softmax", kernel_regularizer=keras.regularizers.l2(0.02) ), ] ) model.layers[0].trainable = False linear_optimizer = tfa.optimizers.LAMB() model.compile( optimizer=linear_optimizer, loss="sparse_categorical_crossentropy", metrics=["accuracy"], ) model.fit(xy_ds, epochs=35, validation_data=test_ds) """ ## Conclusion * Barlow Twins is a simple and concise method for contrastive and self-supervised learning. * With this resnet-34 model architecture, we were able to reach 62-64% validation accuracy. ## Use-Cases of Barlow-Twins(and contrastive learning in General) * Semi-supervised learning: You can see that this model gave a 62-64% boost in accuracy when it wasn't even trained with the labels. It can be used when you have little labeled data but a lot of unlabeled data. * You do barlow twins training on the unlabeled data, and then you do secondary training with the labeled data. ## Helpful links * [Paper](https://arxiv.org/abs/2103.03230) * [Original Pytorch Implementation](https://github.com/facebookresearch/barlowtwins) * [Sayak Paul's Implementation](https://colab.research.google.com/github/sayakpaul/Barlow-Twins-TF/blob/main/Barlow_Twins.ipynb#scrollTo=GlWepkM8_prl). * Thanks to Sayak Paul for his implementation. It helped me with debugging and comparisons of accuracy, loss. * [resnet34 implementation](https://www.analyticsvidhya.com/blog/2021/08/how-to-code-your-resnet-from-scratch-in-tensorflow/#h2_2) * Thanks to Yashowardhan Shinde for writing the article. """
keras-io/examples/vision/barlow_twins.py/0
{ "file_path": "keras-io/examples/vision/barlow_twins.py", "repo_id": "keras-io", "token_count": 12437 }
107
""" Title: Focal Modulation: A replacement for Self-Attention Author: [Aritra Roy Gosthipaty](https://twitter.com/ariG23498), [Ritwik Raha](https://twitter.com/ritwik_raha) Date created: 2023/01/25 Last modified: 2023/02/15 Description: Image classification with Focal Modulation Networks. Accelerator: GPU """ """ ## Introduction This tutorial aims to provide a comprehensive guide to the implementation of Focal Modulation Networks, as presented in [Yang et al.](https://arxiv.org/abs/2203.11926). This tutorial will provide a formal, minimalistic approach to implementing Focal Modulation Networks and explore its potential applications in the field of Deep Learning. **Problem statement** The Transformer architecture ([Vaswani et al.](https://arxiv.org/abs/1706.03762)), which has become the de facto standard in most Natural Language Processing tasks, has also been applied to the field of computer vision, e.g. Vision Transformers ([Dosovitskiy et al.](https://arxiv.org/abs/2010.11929v2)). > In Transformers, the self-attention (SA) is arguably the key to its success which enables input-dependent global interactions, in contrast to convolution operation which constraints interactions in a local region with a shared kernel. The **Attention** module is mathematically written as shown in **Equation 1**. | ![Attention Equation](https://i.imgur.com/thdHvQx.png) | | :--: | | Equation 1: The mathematical equation of attention (Source: Aritra and Ritwik) | Where: - `Q` is the query - `K` is the key - `V` is the value - `d_k` is the dimension of the key With **self-attention**, the query, key, and value are all sourced from the input sequence. Let us rewrite the attention equation for self-attention as shown in **Equation 2**. | ![Self-Attention Equation](https://i.imgur.com/OFsmVdP.png) | | :--: | | Equation 2: The mathematical equation of self-attention (Source: Aritra and Ritwik) | Upon looking at the equation of self-attention, we see that it is a quadratic equation. Therefore, as the number of tokens increase, so does the computation time (cost too). To mitigate this problem and make Transformers more interpretable, Yang et al. have tried to replace the Self-Attention module with better components. **The Solution** Yang et al. introduce the Focal Modulation layer to serve as a seamless replacement for the Self-Attention Layer. The layer boasts high interpretability, making it a valuable tool for Deep Learning practitioners. In this tutorial, we will delve into the practical application of this layer by training the entire model on the CIFAR-10 dataset and visually interpreting the layer's performance. Note: We try to align our implementation with the [official implementation](https://github.com/microsoft/FocalNet). """ """ ## Setup and Imports We use tensorflow version `2.11.0` for this tutorial. """ import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.optimizers.experimental import AdamW from typing import Optional, Tuple, List from matplotlib import pyplot as plt from random import randint # Set seed for reproducibility. tf.keras.utils.set_random_seed(42) """ ## Global Configuration We do not have any strong rationale behind choosing these hyperparameters. Please feel free to change the configuration and train the model. """ # DATA TRAIN_SLICE = 40000 BUFFER_SIZE = 2048 BATCH_SIZE = 1024 AUTO = tf.data.AUTOTUNE INPUT_SHAPE = (32, 32, 3) IMAGE_SIZE = 48 NUM_CLASSES = 10 # OPTIMIZER LEARNING_RATE = 1e-4 WEIGHT_DECAY = 1e-4 # TRAINING EPOCHS = 25 """ ## Load and process the CIFAR-10 dataset """ (x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data() (x_train, y_train), (x_val, y_val) = ( (x_train[:TRAIN_SLICE], y_train[:TRAIN_SLICE]), (x_train[TRAIN_SLICE:], y_train[TRAIN_SLICE:]), ) """ ### Build the augmentations We use the `keras.Sequential` API to compose all the individual augmentation steps into one API. """ # Build the `train` augmentation pipeline. train_aug = keras.Sequential( [ layers.Rescaling(1 / 255.0), layers.Resizing(INPUT_SHAPE[0] + 20, INPUT_SHAPE[0] + 20), layers.RandomCrop(IMAGE_SIZE, IMAGE_SIZE), layers.RandomFlip("horizontal"), ], name="train_data_augmentation", ) # Build the `val` and `test` data pipeline. test_aug = keras.Sequential( [ layers.Rescaling(1 / 255.0), layers.Resizing(IMAGE_SIZE, IMAGE_SIZE), ], name="test_data_augmentation", ) """ ### Build `tf.data` pipeline """ train_ds = tf.data.Dataset.from_tensor_slices((x_train, y_train)) train_ds = ( train_ds.map( lambda image, label: (train_aug(image), label), num_parallel_calls=AUTO ) .shuffle(BUFFER_SIZE) .batch(BATCH_SIZE) .prefetch(AUTO) ) val_ds = tf.data.Dataset.from_tensor_slices((x_val, y_val)) val_ds = ( val_ds.map(lambda image, label: (test_aug(image), label), num_parallel_calls=AUTO) .batch(BATCH_SIZE) .prefetch(AUTO) ) test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)) test_ds = ( test_ds.map(lambda image, label: (test_aug(image), label), num_parallel_calls=AUTO) .batch(BATCH_SIZE) .prefetch(AUTO) ) """ ## Architecture We pause here to take a quick look at the Architecture of the Focal Modulation Network. **Figure 1** shows how every individual layer is compiled into a single model. This gives us a bird's eye view of the entire architecture. | ![Diagram of the model](https://i.imgur.com/v5HYV5R.png) | | :--: | | Figure 1: A diagram of the Focal Modulation model (Source: Aritra and Ritwik) | We dive deep into each of these layers in the following sections. This is the order we will follow: - Patch Embedding Layer - Focal Modulation Block - Multi-Layer Perceptron - Focal Modulation Layer - Hierarchical Contextualization - Gated Aggregation - Building Focal Modulation Block - Building the Basic Layer To better understand the architecture in a format we are well versed in, let us see how the Focal Modulation Network would look when drawn like a Transformer architecture. **Figure 2** shows the encoder layer of a traditional Transformer architecture where Self Attention is replaced with the Focal Modulation layer. The <font color="blue">blue</font> blocks represent the Focal Modulation block. A stack of these blocks builds a single Basic Layer. The <font color="green">green</font> blocks represent the Focal Modulation layer. | ![The Entire Architecture](https://i.imgur.com/PduYD6m.png) | | :--: | | Figure 2: The Entire Architecture (Source: Aritra and Ritwik) | """ """ ## Patch Embedding Layer The patch embedding layer is used to patchify the input images and project them into a latent space. This layer is also used as the down-sampling layer in the architecture. """ class PatchEmbed(layers.Layer): """Image patch embedding layer, also acts as the down-sampling layer. Args: image_size (Tuple[int]): Input image resolution. patch_size (Tuple[int]): Patch spatial resolution. embed_dim (int): Embedding dimension. """ def __init__( self, image_size: Tuple[int] = (224, 224), patch_size: Tuple[int] = (4, 4), embed_dim: int = 96, **kwargs, ): super().__init__(**kwargs) patch_resolution = [ image_size[0] // patch_size[0], image_size[1] // patch_size[1], ] self.image_size = image_size self.patch_size = patch_size self.embed_dim = embed_dim self.patch_resolution = patch_resolution self.num_patches = patch_resolution[0] * patch_resolution[1] self.proj = layers.Conv2D( filters=embed_dim, kernel_size=patch_size, strides=patch_size ) self.flatten = layers.Reshape(target_shape=(-1, embed_dim)) self.norm = keras.layers.LayerNormalization(epsilon=1e-7) def call(self, x: tf.Tensor) -> Tuple[tf.Tensor, int, int, int]: """Patchifies the image and converts into tokens. Args: x: Tensor of shape (B, H, W, C) Returns: A tuple of the processed tensor, height of the projected feature map, width of the projected feature map, number of channels of the projected feature map. """ # Project the inputs. x = self.proj(x) # Obtain the shape from the projected tensor. height = tf.shape(x)[1] width = tf.shape(x)[2] channels = tf.shape(x)[3] # B, H, W, C -> B, H*W, C x = self.norm(self.flatten(x)) return x, height, width, channels """ ## Focal Modulation block A Focal Modulation block can be considered as a single Transformer Block with the Self Attention (SA) module being replaced with Focal Modulation module, as we saw in **Figure 2**. Let us recall how a focal modulation block is supposed to look like with the aid of the **Figure 3**. | ![Focal Modulation Block](https://i.imgur.com/bPYTSiB.png) | | :--: | | Figure 3: The isolated view of the Focal Modulation Block (Source: Aritra and Ritwik) | The Focal Modulation Block consists of: - Multilayer Perceptron - Focal Modulation layer """ """ ### Multilayer Perceptron """ def MLP( in_features: int, hidden_features: Optional[int] = None, out_features: Optional[int] = None, mlp_drop_rate: float = 0.0, ): hidden_features = hidden_features or in_features out_features = out_features or in_features return keras.Sequential( [ layers.Dense(units=hidden_features, activation=keras.activations.gelu), layers.Dense(units=out_features), layers.Dropout(rate=mlp_drop_rate), ] ) """ ### Focal Modulation layer In a typical Transformer architecture, for each visual token (**query**) `x_i in R^C` in an input feature map `X in R^{HxWxC}` a **generic encoding process** produces a feature representation `y_i in R^C`. The encoding process consists of **interaction** (with its surroundings for e.g. a dot product), and **aggregation** (over the contexts for e.g weighted mean). We will talk about two types of encoding here: - Interaction and then Aggregation in **Self-Attention** - Aggregation and then Interaction in **Focal Modulation** **Self-Attention** | ![Self-Attention Expression](https://i.imgur.com/heBYp0F.png) | | :--: | | **Figure 4**: Self-Attention module. (Source: Aritra and Ritwik) | | ![Aggregation and Interaction for Self-Attention](https://i.imgur.com/j1k8Xmy.png) | | :--: | | **Equation 3:** Aggregation and Interaction in Self-Attention(Surce: Aritra and Ritwik)| As shown in **Figure 4** the query and the key interact (in the interaction step) with each other to output the attention scores. The weighted aggregation of the value comes next, known as the aggregation step. **Focal Modulation** | ![Focal Modulation module](https://i.imgur.com/tmbLgQl.png) | | :--: | | **Figure 5**: Focal Modulation module. (Source: Aritra and Ritwik) | | ![Aggregation and Interaction in Focal Modulation](https://i.imgur.com/gsvJfWp.png) | | :--: | | **Equation 4:** Aggregation and Interaction in Focal Modulation (Source: Aritra and Ritwik) | **Figure 5** depicts the Focal Modulation layer. `q()` is the query projection function. It is a **linear layer** that projects the query into a latent space. `m ()` is the context aggregation function. Unlike self-attention, the aggregation step takes place in focal modulation before the interaction step. """ """ While `q()` is pretty straightforward to understand, the context aggregation function `m()` is more complex. Therefore, this section will focus on `m()`. | ![Context Aggregation](https://i.imgur.com/uqIRXI7.png)| | :--: | | **Figure 6**: Context Aggregation function `m()`. (Source: Aritra and Ritwik) | The context aggregation function `m()` consists of two parts as shown in **Figure 6**: - Hierarchical Contextualization - Gated Aggregation """ """ #### Hierarchical Contextualization | ![Hierarchical Contextualization](https://i.imgur.com/q875c83.png)| | :--: | | **Figure 7**: Hierarchical Contextualization (Source: Aritra and Ritwik) | In **Figure 7**, we see that the input is first projected linearly. This linear projection produces `Z^0`. Where `Z^0` can be expressed as follows: | ![Linear projection of z_not](https://i.imgur.com/pd0Z2Of.png) | | :--: | | Equation 5: Linear projection of `Z^0` (Source: Aritra and Ritwik) | `Z^0` is then passed on to a series of Depth-Wise (DWConv) Conv and [GeLU](https://www.tensorflow.org/api_docs/python/tf/keras/activations/gelu) layers. The authors term each block of DWConv and GeLU as levels denoted by `l`. In **Figure 6** we have two levels. Mathematically this is represented as: | ![Levels of modulation](https://i.imgur.com/ijGD1Df.png) | | :--: | | Equation 6: Levels of the modulation layer (Source: Aritra and Ritwik) | where `l in {1, ... , L}` The final feature map goes through a Global Average Pooling Layer. This can be expressed as follows: | ![Avg Pool](https://i.imgur.com/MQzQhbo.png) | | :--: | | Equation 7: Average Pooling of the final feature (Source: Aritra and Ritwik)| """ """ #### Gated Aggregation | ![Gated Aggregation](https://i.imgur.com/LwrdDKo.png[/img)| | :--: | | **Figure 8**: Gated Aggregation (Source: Aritra and Ritwik) | Now that we have `L+1` intermediate feature maps by virtue of the Hierarchical Contextualization step, we need a gating mechanism that lets some features pass and prohibits others. This can be implemented with the attention module. Later in the tutorial, we will visualize these gates to better understand their usefulness. First, we build the weights for aggregation. Here we apply a **linear layer** on the input feature map that projects it into `L+1` dimensions. | ![Gates](https://i.imgur.com/1CgEo1G.png) | | :--: | | Eqation 8: Gates (Source: Aritra and Ritwik) | Next we perform the weighted aggregation over the contexts. | ![z out](https://i.imgur.com/mpJ712R.png) | | :--: | | Eqation 9: Final feature map (Source: Aritra and Ritwik) | To enable communication across different channels, we use another linear layer `h()` to obtain the modulator | ![Modulator](https://i.imgur.com/0EpT3Ti.png) | | :--: | | Eqation 10: Modulator (Source: Aritra and Ritwik) | To sum up the Focal Modulation layer we have: | ![Focal Modulation Layer](https://i.imgur.com/1QIhvYA.png) | | :--: | | Eqation 11: Focal Modulation Layer (Source: Aritra and Ritwik) | """ class FocalModulationLayer(layers.Layer): """The Focal Modulation layer includes query projection & context aggregation. Args: dim (int): Projection dimension. focal_window (int): Window size for focal modulation. focal_level (int): The current focal level. focal_factor (int): Factor of focal modulation. proj_drop_rate (float): Rate of dropout. """ def __init__( self, dim: int, focal_window: int, focal_level: int, focal_factor: int = 2, proj_drop_rate: float = 0.0, **kwargs, ): super().__init__(**kwargs) self.dim = dim self.focal_window = focal_window self.focal_level = focal_level self.focal_factor = focal_factor self.proj_drop_rate = proj_drop_rate # Project the input feature into a new feature space using a # linear layer. Note the `units` used. We will be projecting the input # feature all at once and split the projection into query, context, # and gates. self.initial_proj = layers.Dense( units=(2 * self.dim) + (self.focal_level + 1), use_bias=True, ) self.focal_layers = list() self.kernel_sizes = list() for idx in range(self.focal_level): kernel_size = (self.focal_factor * idx) + self.focal_window depth_gelu_block = keras.Sequential( [ layers.ZeroPadding2D(padding=(kernel_size // 2, kernel_size // 2)), layers.Conv2D( filters=self.dim, kernel_size=kernel_size, activation=keras.activations.gelu, groups=self.dim, use_bias=False, ), ] ) self.focal_layers.append(depth_gelu_block) self.kernel_sizes.append(kernel_size) self.activation = keras.activations.gelu self.gap = layers.GlobalAveragePooling2D(keepdims=True) self.modulator_proj = layers.Conv2D( filters=self.dim, kernel_size=(1, 1), use_bias=True, ) self.proj = layers.Dense(units=self.dim) self.proj_drop = layers.Dropout(self.proj_drop_rate) def call(self, x: tf.Tensor, training: Optional[bool] = None) -> tf.Tensor: """Forward pass of the layer. Args: x: Tensor of shape (B, H, W, C) """ # Apply the linear projecion to the input feature map x_proj = self.initial_proj(x) # Split the projected x into query, context and gates query, context, self.gates = tf.split( value=x_proj, num_or_size_splits=[self.dim, self.dim, self.focal_level + 1], axis=-1, ) # Context aggregation context = self.focal_layers[0](context) context_all = context * self.gates[..., 0:1] for idx in range(1, self.focal_level): context = self.focal_layers[idx](context) context_all += context * self.gates[..., idx : idx + 1] # Build the global context context_global = self.activation(self.gap(context)) context_all += context_global * self.gates[..., self.focal_level :] # Focal Modulation self.modulator = self.modulator_proj(context_all) x_output = query * self.modulator # Project the output and apply dropout x_output = self.proj(x_output) x_output = self.proj_drop(x_output) return x_output """ ### The Focal Modulation block Finally, we have all the components we need to build the Focal Modulation block. Here we take the MLP and Focal Modulation layer together and build the Focal Modulation block. """ class FocalModulationBlock(layers.Layer): """Combine FFN and Focal Modulation Layer. Args: dim (int): Number of input channels. input_resolution (Tuple[int]): Input resulotion. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. drop (float): Dropout rate. drop_path (float): Stochastic depth rate. focal_level (int): Number of focal levels. focal_window (int): Focal window size at first focal level """ def __init__( self, dim: int, input_resolution: Tuple[int], mlp_ratio: float = 4.0, drop: float = 0.0, drop_path: float = 0.0, focal_level: int = 1, focal_window: int = 3, **kwargs, ): super().__init__(**kwargs) self.dim = dim self.input_resolution = input_resolution self.mlp_ratio = mlp_ratio self.focal_level = focal_level self.focal_window = focal_window self.norm = layers.LayerNormalization(epsilon=1e-5) self.modulation = FocalModulationLayer( dim=self.dim, focal_window=self.focal_window, focal_level=self.focal_level, proj_drop_rate=drop, ) mlp_hidden_dim = int(self.dim * self.mlp_ratio) self.mlp = MLP( in_features=self.dim, hidden_features=mlp_hidden_dim, mlp_drop_rate=drop, ) def call(self, x: tf.Tensor, height: int, width: int, channels: int) -> tf.Tensor: """Processes the input tensor through the focal modulation block. Args: x (tf.Tensor): Inputs of the shape (B, L, C) height (int): The height of the feature map width (int): The width of the feature map channels (int): The number of channels of the feature map Returns: The processed tensor. """ shortcut = x # Focal Modulation x = tf.reshape(x, shape=(-1, height, width, channels)) x = self.modulation(x) x = tf.reshape(x, shape=(-1, height * width, channels)) # FFN x = shortcut + x x = x + self.mlp(self.norm(x)) return x """ ## The Basic Layer The basic layer consists of a collection of Focal Modulation blocks. This is illustrated in **Figure 9**. | ![Basic Layer](https://i.imgur.com/UcZV0K6.png) | | :--: | | **Figure 9**: Basic Layer, a collection of focal modulation blocks. (Source: Aritra and Ritwik) | Notice how in **Fig. 9** there are more than one focal modulation blocks denoted by `Nx`. This shows how the Basic Layer is a collection of Focal Modulation blocks. """ class BasicLayer(layers.Layer): """Collection of Focal Modulation Blocks. Args: dim (int): Dimensions of the model. out_dim (int): Dimension used by the Patch Embedding Layer. input_resolution (Tuple[int]): Input image resolution. depth (int): The number of Focal Modulation Blocks. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. drop (float): Dropout rate. downsample (tf.keras.layers.Layer): Downsampling layer at the end of the layer. focal_level (int): The current focal level. focal_window (int): Focal window used. """ def __init__( self, dim: int, out_dim: int, input_resolution: Tuple[int], depth: int, mlp_ratio: float = 4.0, drop: float = 0.0, downsample=None, focal_level: int = 1, focal_window: int = 1, **kwargs, ): super().__init__(**kwargs) self.dim = dim self.input_resolution = input_resolution self.depth = depth self.blocks = [ FocalModulationBlock( dim=dim, input_resolution=input_resolution, mlp_ratio=mlp_ratio, drop=drop, focal_level=focal_level, focal_window=focal_window, ) for i in range(self.depth) ] # Downsample layer at the end of the layer if downsample is not None: self.downsample = downsample( image_size=input_resolution, patch_size=(2, 2), embed_dim=out_dim, ) else: self.downsample = None def call( self, x: tf.Tensor, height: int, width: int, channels: int ) -> Tuple[tf.Tensor, int, int, int]: """Forward pass of the layer. Args: x (tf.Tensor): Tensor of shape (B, L, C) height (int): Height of feature map width (int): Width of feature map channels (int): Embed Dim of feature map Returns: A tuple of the processed tensor, changed height, width, and dim of the tensor. """ # Apply Focal Modulation Blocks for block in self.blocks: x = block(x, height, width, channels) # Except the last Basic Layer, all the layers have # downsample at the end of it. if self.downsample is not None: x = tf.reshape(x, shape=(-1, height, width, channels)) x, height_o, width_o, channels_o = self.downsample(x) else: height_o, width_o, channels_o = height, width, channels return x, height_o, width_o, channels_o """ ## The Focal Modulation Network model This is the model that ties everything together. It consists of a collection of Basic Layers with a classification head. For a recap of how this is structured refer to **Figure 1**. """ class FocalModulationNetwork(keras.Model): """The Focal Modulation Network. Parameters: image_size (Tuple[int]): Spatial size of images used. patch_size (Tuple[int]): Patch size of each patch. num_classes (int): Number of classes used for classification. embed_dim (int): Patch embedding dimension. depths (List[int]): Depth of each Focal Transformer block. mlp_ratio (float): Ratio of expansion for the intermediate layer of MLP. drop_rate (float): The dropout rate for FM and MLP layers. focal_levels (list): How many focal levels at all stages. Note that this excludes the finest-grain level. focal_windows (list): The focal window size at all stages. """ def __init__( self, image_size: Tuple[int] = (48, 48), patch_size: Tuple[int] = (4, 4), num_classes: int = 10, embed_dim: int = 256, depths: List[int] = [2, 3, 2], mlp_ratio: float = 4.0, drop_rate: float = 0.1, focal_levels=[2, 2, 2], focal_windows=[3, 3, 3], **kwargs, ): super().__init__(**kwargs) self.num_layers = len(depths) embed_dim = [embed_dim * (2**i) for i in range(self.num_layers)] self.num_classes = num_classes self.embed_dim = embed_dim self.num_features = embed_dim[-1] self.mlp_ratio = mlp_ratio self.patch_embed = PatchEmbed( image_size=image_size, patch_size=patch_size, embed_dim=embed_dim[0], ) num_patches = self.patch_embed.num_patches patches_resolution = self.patch_embed.patch_resolution self.patches_resolution = patches_resolution self.pos_drop = layers.Dropout(drop_rate) self.basic_layers = list() for i_layer in range(self.num_layers): layer = BasicLayer( dim=embed_dim[i_layer], out_dim=( embed_dim[i_layer + 1] if (i_layer < self.num_layers - 1) else None ), input_resolution=( patches_resolution[0] // (2**i_layer), patches_resolution[1] // (2**i_layer), ), depth=depths[i_layer], mlp_ratio=self.mlp_ratio, drop=drop_rate, downsample=PatchEmbed if (i_layer < self.num_layers - 1) else None, focal_level=focal_levels[i_layer], focal_window=focal_windows[i_layer], ) self.basic_layers.append(layer) self.norm = keras.layers.LayerNormalization(epsilon=1e-7) self.avgpool = layers.GlobalAveragePooling1D() self.flatten = layers.Flatten() self.head = layers.Dense(self.num_classes, activation="softmax") def call(self, x: tf.Tensor) -> tf.Tensor: """Forward pass of the layer. Args: x: Tensor of shape (B, H, W, C) Returns: The logits. """ # Patch Embed the input images. x, height, width, channels = self.patch_embed(x) x = self.pos_drop(x) for idx, layer in enumerate(self.basic_layers): x, height, width, channels = layer(x, height, width, channels) x = self.norm(x) x = self.avgpool(x) x = self.flatten(x) x = self.head(x) return x """ ## Train the model Now with all the components in place and the architecture actually built, we are ready to put it to good use. In this section, we train our Focal Modulation model on the CIFAR-10 dataset. """ """ ### Visualization Callback A key feature of the Focal Modulation Network is explicit input-dependency. This means the modulator is calculated by looking at the local features around the target location, so it depends on the input. In very simple terms, this makes interpretation easy. We can simply lay down the gating values and the original image, next to each other to see how the gating mechanism works. The authors of the paper visualize the gates and the modulator in order to focus on the interpretability of the Focal Modulation layer. Below is a visualization callback that shows the gates and modulator of a specific layer in the model while the model trains. We will notice later that as the model trains, the visualizations get better. The gates appear to selectively permit certain aspects of the input image to pass through, while gently disregarding others, ultimately leading to improved classification accuracy. """ def display_grid( test_images: tf.Tensor, gates: tf.Tensor, modulator: tf.Tensor, ): """Displays the image with the gates and modulator overlayed. Args: test_images (tf.Tensor): A batch of test images. gates (tf.Tensor): The gates of the Focal Modualtion Layer. modulator (tf.Tensor): The modulator of the Focal Modulation Layer. """ fig, ax = plt.subplots(nrows=1, ncols=5, figsize=(25, 5)) # Radomly sample an image from the batch. index = randint(0, BATCH_SIZE - 1) orig_image = test_images[index] gate_image = gates[index] modulator_image = modulator[index] # Original Image ax[0].imshow(orig_image) ax[0].set_title("Original:") ax[0].axis("off") for index in range(1, 5): img = ax[index].imshow(orig_image) if index != 4: overlay_image = gate_image[..., index - 1] title = f"G {index}:" else: overlay_image = tf.norm(modulator_image, ord=2, axis=-1) title = f"MOD:" ax[index].imshow( overlay_image, cmap="inferno", alpha=0.6, extent=img.get_extent() ) ax[index].set_title(title) ax[index].axis("off") plt.axis("off") plt.show() plt.close() """ ### TrainMonitor """ # Taking a batch of test inputs to measure the model's progress. test_images, test_labels = next(iter(test_ds)) upsampler = tf.keras.layers.UpSampling2D( size=(4, 4), interpolation="bilinear", ) class TrainMonitor(keras.callbacks.Callback): def __init__(self, epoch_interval=None): self.epoch_interval = epoch_interval def on_epoch_end(self, epoch, logs=None): if self.epoch_interval and epoch % self.epoch_interval == 0: _ = self.model(test_images) # Take the mid layer for visualization gates = self.model.basic_layers[1].blocks[-1].modulation.gates gates = upsampler(gates) modulator = self.model.basic_layers[1].blocks[-1].modulation.modulator modulator = upsampler(modulator) # Display the grid of gates and modulator. display_grid(test_images=test_images, gates=gates, modulator=modulator) """ ### Learning Rate scheduler """ # Some code is taken from: # https://www.kaggle.com/ashusma/training-rfcx-tensorflow-tpu-effnet-b2. class WarmUpCosine(keras.optimizers.schedules.LearningRateSchedule): def __init__( self, learning_rate_base, total_steps, warmup_learning_rate, warmup_steps ): super().__init__() self.learning_rate_base = learning_rate_base self.total_steps = total_steps self.warmup_learning_rate = warmup_learning_rate self.warmup_steps = warmup_steps self.pi = tf.constant(np.pi) def __call__(self, step): if self.total_steps < self.warmup_steps: raise ValueError("Total_steps must be larger or equal to warmup_steps.") cos_annealed_lr = tf.cos( self.pi * (tf.cast(step, tf.float32) - self.warmup_steps) / float(self.total_steps - self.warmup_steps) ) learning_rate = 0.5 * self.learning_rate_base * (1 + cos_annealed_lr) if self.warmup_steps > 0: if self.learning_rate_base < self.warmup_learning_rate: raise ValueError( "Learning_rate_base must be larger or equal to " "warmup_learning_rate." ) slope = ( self.learning_rate_base - self.warmup_learning_rate ) / self.warmup_steps warmup_rate = slope * tf.cast(step, tf.float32) + self.warmup_learning_rate learning_rate = tf.where( step < self.warmup_steps, warmup_rate, learning_rate ) return tf.where( step > self.total_steps, 0.0, learning_rate, name="learning_rate" ) total_steps = int((len(x_train) / BATCH_SIZE) * EPOCHS) warmup_epoch_percentage = 0.15 warmup_steps = int(total_steps * warmup_epoch_percentage) scheduled_lrs = WarmUpCosine( learning_rate_base=LEARNING_RATE, total_steps=total_steps, warmup_learning_rate=0.0, warmup_steps=warmup_steps, ) """ ### Initialize, compile and train the model """ focal_mod_net = FocalModulationNetwork() optimizer = AdamW(learning_rate=scheduled_lrs, weight_decay=WEIGHT_DECAY) # Compile and train the model. focal_mod_net.compile( optimizer=optimizer, loss="sparse_categorical_crossentropy", metrics=["accuracy"], ) history = focal_mod_net.fit( train_ds, epochs=EPOCHS, validation_data=val_ds, callbacks=[TrainMonitor(epoch_interval=10)], ) """ ## Plot loss and accuracy """ plt.plot(history.history["loss"], label="loss") plt.plot(history.history["val_loss"], label="val_loss") plt.legend() plt.show() plt.plot(history.history["accuracy"], label="accuracy") plt.plot(history.history["val_accuracy"], label="val_accuracy") plt.legend() plt.show() """ ## Test visualizations Let's test our model on some test images and see how the gates look like. """ test_images, test_labels = next(iter(test_ds)) _ = focal_mod_net(test_images) # Take the mid layer for visualization gates = focal_mod_net.basic_layers[1].blocks[-1].modulation.gates gates = upsampler(gates) modulator = focal_mod_net.basic_layers[1].blocks[-1].modulation.modulator modulator = upsampler(modulator) # Plot the test images with the gates and modulator overlayed. for row in range(5): display_grid( test_images=test_images, gates=gates, modulator=modulator, ) """ ## Conclusion The proposed architecture, the Focal Modulation Network architecture is a mechanism that allows different parts of an image to interact with each other in a way that depends on the image itself. It works by first gathering different levels of context information around each part of the image (the "query token"), then using a gate to decide which context information is most relevant, and finally combining the chosen information in a simple but effective way. This is meant as a replacement of Self-Attention mechanism from the Transformer architecture. The key feature that makes this research notable is not the conception of attention-less networks, but rather the introduction of a equally powerful architecture that is interpretable. The authors also mention that they created a series of Focal Modulation Networks (FocalNets) that significantly outperform Self-Attention counterparts and with a fraction of parameters and pretraining data. The FocalNets architecture has the potential to deliver impressive results and offers a simple implementation. Its promising performance and ease of use make it an attractive alternative to Self-Attention for researchers to explore in their own projects. It could potentially become widely adopted by the Deep Learning community in the near future. ## Acknowledgement We would like to thank [PyImageSearch](https://pyimagesearch.com/) for providing with a Colab Pro account, [JarvisLabs.ai](https://cloud.jarvislabs.ai/) for GPU credits, and also Microsoft Research for providing an [official implementation](https://github.com/microsoft/FocalNet) of their paper. We would also like to extend our gratitude to the first author of the paper [Jianwei Yang](https://twitter.com/jw2yang4ai) who reviewed this tutorial extensively. """
keras-io/examples/vision/focal_modulation_network.py/0
{ "file_path": "keras-io/examples/vision/focal_modulation_network.py", "repo_id": "keras-io", "token_count": 14237 }
108
<jupyter_start><jupyter_text>Distilling Vision Transformers**Author:** [Sayak Paul](https://twitter.com/RisingSayak)**Date created:** 2022/04/05**Last modified:** 2022/04/08**Description:** Distillation of Vision Transformers through attention. IntroductionIn the original *Vision Transformers* (ViT) paper([Dosovitskiy et al.](https://arxiv.org/abs/2010.11929)),the authors concluded that to perform on par with Convolutional Neural Networks (CNNs),ViTs need to be pre-trained on larger datasets. The larger the better. This is mainlydue to the lack of inductive biases in the ViT architecture -- unlike CNNs,they don't have layers that exploit locality. In a follow-up paper([Steiner et al.](https://arxiv.org/abs/2106.10270)),the authors show that it is possible to substantially improve the performance of ViTswith stronger regularization and longer training.Many groups have proposed different ways to deal with the problemof data-intensiveness of ViT training.One such way was shown in the *Data-efficient image Transformers*,(DeiT) paper ([Touvron et al.](https://arxiv.org/abs/2012.12877)). Theauthors introduced a distillation technique that is specific to transformer-based visionmodels. DeiT is among the first works to show that it's possible to train ViTs wellwithout using larger datasets.In this example, we implement the distillation recipe proposed in DeiT. Thisrequires us to slightly tweak the original ViT architecture and write a custom trainingloop to implement the distillation recipe.To run the example, you'll need TensorFlow Addons, which you can install with thefollowing command:```pip install tensorflow-addons```To comfortably navigate through this example, you'll be expected to know how a ViT andknowledge distillation work. The following are good resources in case you needed arefresher:* [ViT on keras.io](https://keras.io/examples/vision/image_classification_with_vision_transformer)* [Knowledge distillation on keras.io](https://keras.io/examples/vision/knowledge_distillation/) Imports<jupyter_code>from typing import List import tensorflow as tf import tensorflow_addons as tfa import tensorflow_datasets as tfds import tensorflow_hub as hub from tensorflow import keras from tensorflow.keras import layers tfds.disable_progress_bar() tf.keras.utils.set_random_seed(42)<jupyter_output><empty_output><jupyter_text>Constants<jupyter_code># Model MODEL_TYPE = "deit_distilled_tiny_patch16_224" RESOLUTION = 224 PATCH_SIZE = 16 NUM_PATCHES = (RESOLUTION // PATCH_SIZE) ** 2 LAYER_NORM_EPS = 1e-6 PROJECTION_DIM = 192 NUM_HEADS = 3 NUM_LAYERS = 12 MLP_UNITS = [ PROJECTION_DIM * 4, PROJECTION_DIM, ] DROPOUT_RATE = 0.0 DROP_PATH_RATE = 0.1 # Training NUM_EPOCHS = 20 BASE_LR = 0.0005 WEIGHT_DECAY = 0.0001 # Data BATCH_SIZE = 256 AUTO = tf.data.AUTOTUNE NUM_CLASSES = 5<jupyter_output><empty_output><jupyter_text>You probably noticed that `DROPOUT_RATE` has been set 0.0. Dropout has been usedin the implementation to keep it complete. For smaller models (like the one used inthis example), you don't need it, but for bigger models, using dropout helps. Load the `tf_flowers` dataset and prepare preprocessing utilitiesThe authors use an array of different augmentation techniques, including MixUp([Zhang et al.](https://arxiv.org/abs/1710.09412)),RandAugment ([Cubuk et al.](https://arxiv.org/abs/1909.13719)),and so on. However, to keep the example simple to work through, we'll discard them.<jupyter_code>def preprocess_dataset(is_training=True): def fn(image, label): if is_training: # Resize to a bigger spatial resolution and take the random # crops. image = tf.image.resize(image, (RESOLUTION + 20, RESOLUTION + 20)) image = tf.image.random_crop(image, (RESOLUTION, RESOLUTION, 3)) image = tf.image.random_flip_left_right(image) else: image = tf.image.resize(image, (RESOLUTION, RESOLUTION)) label = tf.one_hot(label, depth=NUM_CLASSES) return image, label return fn def prepare_dataset(dataset, is_training=True): if is_training: dataset = dataset.shuffle(BATCH_SIZE * 10) dataset = dataset.map(preprocess_dataset(is_training), num_parallel_calls=AUTO) return dataset.batch(BATCH_SIZE).prefetch(AUTO) train_dataset, val_dataset = tfds.load( "tf_flowers", split=["train[:90%]", "train[90%:]"], as_supervised=True ) num_train = train_dataset.cardinality() num_val = val_dataset.cardinality() print(f"Number of training examples: {num_train}") print(f"Number of validation examples: {num_val}") train_dataset = prepare_dataset(train_dataset, is_training=True) val_dataset = prepare_dataset(val_dataset, is_training=False)<jupyter_output><empty_output><jupyter_text>Implementing the DeiT variants of ViTSince DeiT is an extension of ViT it'd make sense to first implement ViT and then extendit to support DeiT's components.First, we'll implement a layer for Stochastic Depth([Huang et al.](https://arxiv.org/abs/1603.09382))which is used in DeiT for regularization.<jupyter_code># Referred from: github.com:rwightman/pytorch-image-models. class StochasticDepth(layers.Layer): def __init__(self, drop_prop, **kwargs): super().__init__(**kwargs) self.drop_prob = drop_prop def call(self, x, training=True): if training: keep_prob = 1 - self.drop_prob shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1) random_tensor = keep_prob + tf.random.uniform(shape, 0, 1) random_tensor = tf.floor(random_tensor) return (x / keep_prob) * random_tensor return x<jupyter_output><empty_output><jupyter_text>Now, we'll implement the MLP and Transformer blocks.<jupyter_code>def mlp(x, dropout_rate: float, hidden_units: List): """FFN for a Transformer block.""" # Iterate over the hidden units and # add Dense => Dropout. for (idx, units) in enumerate(hidden_units): x = layers.Dense( units, activation=tf.nn.gelu if idx == 0 else None, )(x) x = layers.Dropout(dropout_rate)(x) return x def transformer(drop_prob: float, name: str) -> keras.Model: """Transformer block with pre-norm.""" num_patches = NUM_PATCHES + 2 if "distilled" in MODEL_TYPE else NUM_PATCHES + 1 encoded_patches = layers.Input((num_patches, PROJECTION_DIM)) # Layer normalization 1. x1 = layers.LayerNormalization(epsilon=LAYER_NORM_EPS)(encoded_patches) # Multi Head Self Attention layer 1. attention_output = layers.MultiHeadAttention( num_heads=NUM_HEADS, key_dim=PROJECTION_DIM, dropout=DROPOUT_RATE, )(x1, x1) attention_output = ( StochasticDepth(drop_prob)(attention_output) if drop_prob else attention_output ) # Skip connection 1. x2 = layers.Add()([attention_output, encoded_patches]) # Layer normalization 2. x3 = layers.LayerNormalization(epsilon=LAYER_NORM_EPS)(x2) # MLP layer 1. x4 = mlp(x3, hidden_units=MLP_UNITS, dropout_rate=DROPOUT_RATE) x4 = StochasticDepth(drop_prob)(x4) if drop_prob else x4 # Skip connection 2. outputs = layers.Add()([x2, x4]) return keras.Model(encoded_patches, outputs, name=name)<jupyter_output><empty_output><jupyter_text>We'll now implement a `ViTClassifier` class building on top of the components we justdeveloped. Here we'll be following the original pooling strategy used in the ViT paper --use a class token and use the feature representations corresponding to it forclassification.<jupyter_code>class ViTClassifier(keras.Model): """Vision Transformer base class.""" def __init__(self, **kwargs): super().__init__(**kwargs) # Patchify + linear projection + reshaping. self.projection = keras.Sequential( [ layers.Conv2D( filters=PROJECTION_DIM, kernel_size=(PATCH_SIZE, PATCH_SIZE), strides=(PATCH_SIZE, PATCH_SIZE), padding="VALID", name="conv_projection", ), layers.Reshape( target_shape=(NUM_PATCHES, PROJECTION_DIM), name="flatten_projection", ), ], name="projection", ) # Positional embedding. init_shape = ( 1, NUM_PATCHES + 1, PROJECTION_DIM, ) self.positional_embedding = tf.Variable( tf.zeros(init_shape), name="pos_embedding" ) # Transformer blocks. dpr = [x for x in tf.linspace(0.0, DROP_PATH_RATE, NUM_LAYERS)] self.transformer_blocks = [ transformer(drop_prob=dpr[i], name=f"transformer_block_{i}") for i in range(NUM_LAYERS) ] # CLS token. initial_value = tf.zeros((1, 1, PROJECTION_DIM)) self.cls_token = tf.Variable( initial_value=initial_value, trainable=True, name="cls" ) # Other layers. self.dropout = layers.Dropout(DROPOUT_RATE) self.layer_norm = layers.LayerNormalization(epsilon=LAYER_NORM_EPS) self.head = layers.Dense( NUM_CLASSES, name="classification_head", ) def call(self, inputs, training=True): n = tf.shape(inputs)[0] # Create patches and project the patches. projected_patches = self.projection(inputs) # Append class token if needed. cls_token = tf.tile(self.cls_token, (n, 1, 1)) cls_token = tf.cast(cls_token, projected_patches.dtype) projected_patches = tf.concat([cls_token, projected_patches], axis=1) # Add positional embeddings to the projected patches. encoded_patches = ( self.positional_embedding + projected_patches ) # (B, number_patches, projection_dim) encoded_patches = self.dropout(encoded_patches) # Iterate over the number of layers and stack up blocks of # Transformer. for transformer_module in self.transformer_blocks: # Add a Transformer block. encoded_patches = transformer_module(encoded_patches) # Final layer normalization. representation = self.layer_norm(encoded_patches) # Pool representation. encoded_patches = representation[:, 0] # Classification head. output = self.head(encoded_patches) return output<jupyter_output><empty_output><jupyter_text>This class can be used standalone as ViT and is end-to-end trainable. Just remove the`distilled` phrase in `MODEL_TYPE` and it should work with `vit_tiny = ViTClassifier()`.Let's now extend it to DeiT. The following figure presents the schematic of DeiT (takenfrom the DeiT paper):Apart from the class token, DeiT has another token for distillation. During distillation,the logits corresponding to the class token are compared to the true labels, and thelogits corresponding to the distillation token are compared to the teacher's predictions.<jupyter_code>class ViTDistilled(ViTClassifier): def __init__(self, regular_training=False, **kwargs): super().__init__(**kwargs) self.num_tokens = 2 self.regular_training = regular_training # CLS and distillation tokens, positional embedding. init_value = tf.zeros((1, 1, PROJECTION_DIM)) self.dist_token = tf.Variable(init_value, name="dist_token") self.positional_embedding = tf.Variable( tf.zeros( ( 1, NUM_PATCHES + self.num_tokens, PROJECTION_DIM, ) ), name="pos_embedding", ) # Head layers. self.head = layers.Dense( NUM_CLASSES, name="classification_head", ) self.head_dist = layers.Dense( NUM_CLASSES, name="distillation_head", ) def call(self, inputs, training=True): n = tf.shape(inputs)[0] # Create patches and project the patches. projected_patches = self.projection(inputs) # Append the tokens. cls_token = tf.tile(self.cls_token, (n, 1, 1)) dist_token = tf.tile(self.dist_token, (n, 1, 1)) cls_token = tf.cast(cls_token, projected_patches.dtype) dist_token = tf.cast(dist_token, projected_patches.dtype) projected_patches = tf.concat( [cls_token, dist_token, projected_patches], axis=1 ) # Add positional embeddings to the projected patches. encoded_patches = ( self.positional_embedding + projected_patches ) # (B, number_patches, projection_dim) encoded_patches = self.dropout(encoded_patches) # Iterate over the number of layers and stack up blocks of # Transformer. for transformer_module in self.transformer_blocks: # Add a Transformer block. encoded_patches = transformer_module(encoded_patches) # Final layer normalization. representation = self.layer_norm(encoded_patches) # Classification heads. x, x_dist = ( self.head(representation[:, 0]), self.head_dist(representation[:, 1]), ) if not training or self.regular_training: # During standard train / finetune, inference average the classifier # predictions. return (x + x_dist) / 2 elif training: # Only return separate classification predictions when training in distilled # mode. return x, x_dist<jupyter_output><empty_output><jupyter_text>Let's verify if the `ViTDistilled` class can be initialized and called as expected.<jupyter_code>deit_tiny_distilled = ViTDistilled() dummy_inputs = tf.ones((2, 224, 224, 3)) outputs = deit_tiny_distilled(dummy_inputs, training=False) print(outputs.shape)<jupyter_output><empty_output><jupyter_text>Implementing the trainerUnlike what happens in standard knowledge distillation([Hinton et al.](https://arxiv.org/abs/1503.02531)),where a temperature-scaled softmax is used as well as KL divergence,DeiT authors use the following loss function:Here,* CE is cross-entropy* `psi` is the softmax function* Z_s denotes student predictions* y denotes true labels* y_t denotes teacher predictions<jupyter_code>class DeiT(keras.Model): # Reference: # https://keras.io/examples/vision/knowledge_distillation/ def __init__(self, student, teacher, **kwargs): super().__init__(**kwargs) self.student = student self.teacher = teacher self.student_loss_tracker = keras.metrics.Mean(name="student_loss") self.dist_loss_tracker = keras.metrics.Mean(name="distillation_loss") @property def metrics(self): metrics = super().metrics metrics.append(self.student_loss_tracker) metrics.append(self.dist_loss_tracker) return metrics def compile( self, optimizer, metrics, student_loss_fn, distillation_loss_fn, ): super().compile(optimizer=optimizer, metrics=metrics) self.student_loss_fn = student_loss_fn self.distillation_loss_fn = distillation_loss_fn def train_step(self, data): # Unpack data. x, y = data # Forward pass of teacher teacher_predictions = tf.nn.softmax(self.teacher(x, training=False), -1) teacher_predictions = tf.argmax(teacher_predictions, -1) with tf.GradientTape() as tape: # Forward pass of student. cls_predictions, dist_predictions = self.student(x / 255.0, training=True) # Compute losses. student_loss = self.student_loss_fn(y, cls_predictions) distillation_loss = self.distillation_loss_fn( teacher_predictions, dist_predictions ) loss = (student_loss + distillation_loss) / 2 # Compute gradients. trainable_vars = self.student.trainable_variables gradients = tape.gradient(loss, trainable_vars) # Update weights. self.optimizer.apply_gradients(zip(gradients, trainable_vars)) # Update the metrics configured in `compile()`. student_predictions = (cls_predictions + dist_predictions) / 2 self.compiled_metrics.update_state(y, student_predictions) self.dist_loss_tracker.update_state(distillation_loss) self.student_loss_tracker.update_state(student_loss) # Return a dict of performance. results = {m.name: m.result() for m in self.metrics} return results def test_step(self, data): # Unpack the data. x, y = data # Compute predictions. y_prediction = self.student(x / 255.0, training=False) # Calculate the loss. student_loss = self.student_loss_fn(y, y_prediction) # Update the metrics. self.compiled_metrics.update_state(y, y_prediction) self.student_loss_tracker.update_state(student_loss) # Return a dict of performance. results = {m.name: m.result() for m in self.metrics} return results def call(self, inputs): return self.student(inputs / 255.0, training=False)<jupyter_output><empty_output><jupyter_text>Load the teacher modelThis model is based on the BiT family of ResNets([Kolesnikov et al.](https://arxiv.org/abs/1912.11370))fine-tuned on the `tf_flowers` dataset. You can refer to[this notebook](https://github.com/sayakpaul/deit-tf/blob/main/notebooks/bit-teacher.ipynb)to know how the training was performed. The teacher model has about 212 Million parameterswhich is about **40x more** than the student.<jupyter_code>!wget -q https://github.com/sayakpaul/deit-tf/releases/download/v0.1.0/bit_teacher_flowers.zip !unzip -q bit_teacher_flowers.zip bit_teacher_flowers = keras.models.load_model("bit_teacher_flowers")<jupyter_output><empty_output><jupyter_text>Training through distillation<jupyter_code>deit_tiny = ViTDistilled() deit_distiller = DeiT(student=deit_tiny, teacher=bit_teacher_flowers) lr_scaled = (BASE_LR / 512) * BATCH_SIZE deit_distiller.compile( optimizer=tfa.optimizers.AdamW(weight_decay=WEIGHT_DECAY, learning_rate=lr_scaled), metrics=["accuracy"], student_loss_fn=keras.losses.CategoricalCrossentropy( from_logits=True, label_smoothing=0.1 ), distillation_loss_fn=keras.losses.SparseCategoricalCrossentropy(from_logits=True), ) _ = deit_distiller.fit(train_dataset, validation_data=val_dataset, epochs=NUM_EPOCHS)<jupyter_output><empty_output>
keras-io/examples/vision/ipynb/deit.ipynb/0
{ "file_path": "keras-io/examples/vision/ipynb/deit.ipynb", "repo_id": "keras-io", "token_count": 7554 }
109
<jupyter_start><jupyter_text>Self-supervised contrastive learning with NNCLR**Author:** [Rishit Dagli](https://twitter.com/rishit_dagli)**Date created:** 2021/09/13**Last modified:** 2024/01/22**Description:** Implementation of NNCLR, a self-supervised learning method for computer vision. Introduction Self-supervised learningSelf-supervised representation learning aims to obtain robust representations of samplesfrom raw data without expensive labels or annotations. Early methods in this fieldfocused on defining pretraining tasks which involved a surrogate task on a domain with ampleweak supervision labels. Encoders trained to solve such tasks are expected tolearn general features that might be useful for other downstream tasks requiringexpensive annotations like image classification. Contrastive LearningA broad category of self-supervised learning techniques are those that use *contrastivelosses*, which have been used in a wide range of computer vision applications like[image similarity](https://www.jmlr.org/papers/v11/chechik10a.html),[dimensionality reduction (DrLIM)](http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf)and [face verification/identification](https://openaccess.thecvf.com/content_cvpr_2015/html/Schroff_FaceNet_A_Unified_2015_CVPR_paper.html).These methods learn a latent space that clusters positive samples together whilepushing apart negative samples. NNCLRIn this example, we implement NNCLR as proposed in the paper[With a Little Help from My Friends: Nearest-Neighbor Contrastive Learning of Visual Representations](https://arxiv.org/abs/2104.14548),by Google Research and DeepMind.NNCLR learns self-supervised representations that go beyond single-instance positives, whichallows for learning better features that are invariant to different viewpoints, deformations,and even intra-class variations.Clustering based methods offer a great approach to go beyond single instance positives,but assuming the entire cluster to be positives could hurt performance due to earlyover-generalization. Instead, NNCLR uses nearest neighbors in the learned representationspace as positives.In addition, NNCLR increases the performance of existing contrastive learning methods like[SimCLR](https://arxiv.org/abs/2002.05709)([Keras Example](https://keras.io/examples/vision/semisupervised_simclr))and reduces the reliance of self-supervised methods on data augmentation strategies.Here is a great visualization by the paper authors showing how NNCLR builds on ideas fromSimCLR:We can see that SimCLR uses two views of the same image as the positive pair. These twoviews, which are produced using random data augmentations, are fed through an encoder toobtain the positive embedding pair, we end up using two augmentations. NNCLR insteadkeeps a _support set_ of embeddings representing the full data distribution, and formsthe positive pairs using nearest-neighbours. A support set is used as memory duringtraining, similar to a queue (i.e. first-in-first-out) as in[MoCo](https://arxiv.org/abs/1911.05722).This example requires `tensorflow_datasets`, which canbe installed with this command:<jupyter_code>!pip install tensorflow-datasets<jupyter_output><empty_output><jupyter_text>Setup<jupyter_code>import matplotlib.pyplot as plt import tensorflow as tf import tensorflow_datasets as tfds import os os.environ["KERAS_BACKEND"] = "tensorflow" import keras import keras_cv from keras import ops from keras import layers<jupyter_output><empty_output><jupyter_text>HyperparametersA greater `queue_size` most likely means better performance as shown in the originalpaper, but introduces significant computational overhead. The authors show that the bestresults of NNCLR are achieved with a queue size of 98,304 (the largest `queue_size` theyexperimented on). We here use 10,000 to show a working example.<jupyter_code>AUTOTUNE = tf.data.AUTOTUNE shuffle_buffer = 5000 # The below two values are taken from https://www.tensorflow.org/datasets/catalog/stl10 labelled_train_images = 5000 unlabelled_images = 100000 temperature = 0.1 queue_size = 10000 contrastive_augmenter = { "brightness": 0.5, "name": "contrastive_augmenter", "scale": (0.2, 1.0), } classification_augmenter = { "brightness": 0.2, "name": "classification_augmenter", "scale": (0.5, 1.0), } input_shape = (96, 96, 3) width = 128 num_epochs = 5 # Use 25 for better results steps_per_epoch = 50 # Use 200 for better results<jupyter_output><empty_output><jupyter_text>Load the DatasetWe load the [STL-10](http://ai.stanford.edu/~acoates/stl10/) dataset fromTensorFlow Datasets, an image recognition dataset for developing unsupervisedfeature learning, deep learning, self-taught learning algorithms. It is inspired by theCIFAR-10 dataset, with some modifications.<jupyter_code>dataset_name = "stl10" def prepare_dataset(): unlabeled_batch_size = unlabelled_images // steps_per_epoch labeled_batch_size = labelled_train_images // steps_per_epoch batch_size = unlabeled_batch_size + labeled_batch_size unlabeled_train_dataset = ( tfds.load( dataset_name, split="unlabelled", as_supervised=True, shuffle_files=True ) .shuffle(buffer_size=shuffle_buffer) .batch(unlabeled_batch_size, drop_remainder=True) ) labeled_train_dataset = ( tfds.load(dataset_name, split="train", as_supervised=True, shuffle_files=True) .shuffle(buffer_size=shuffle_buffer) .batch(labeled_batch_size, drop_remainder=True) ) test_dataset = ( tfds.load(dataset_name, split="test", as_supervised=True) .batch(batch_size) .prefetch(buffer_size=AUTOTUNE) ) train_dataset = tf.data.Dataset.zip( (unlabeled_train_dataset, labeled_train_dataset) ).prefetch(buffer_size=AUTOTUNE) return batch_size, train_dataset, labeled_train_dataset, test_dataset batch_size, train_dataset, labeled_train_dataset, test_dataset = prepare_dataset()<jupyter_output><empty_output><jupyter_text>AugmentationsOther self-supervised techniques like [SimCLR](https://arxiv.org/abs/2002.05709),[BYOL](https://arxiv.org/abs/2006.07733), [SwAV](https://arxiv.org/abs/2006.09882) etc.rely heavily on a well-designed data augmentation pipeline to get the best performance.However, NNCLR is _less_ dependent on complex augmentations as nearest-neighbors alreadyprovide richness in sample variations. A few common techniques often includedaugmentation pipelines are:- Random resized crops- Multiple color distortions- Gaussian blurSince NNCLR is less dependent on complex augmentations, we will only use randomcrops and random brightness for augmenting the input images. Prepare augmentation module<jupyter_code>def augmenter(brightness, name, scale): return keras.Sequential( [ layers.Input(shape=input_shape), layers.Rescaling(1 / 255), layers.RandomFlip("horizontal"), keras_cv.layers.RandomCropAndResize( target_size=(input_shape[0], input_shape[1]), crop_area_factor=scale, aspect_ratio_factor=(3 / 4, 4 / 3), ), keras_cv.layers.RandomBrightness(factor=brightness, value_range=(0.0, 1.0)), ], name=name, )<jupyter_output><empty_output><jupyter_text>Encoder architectureUsing a ResNet-50 as the encoder architectureis standard in the literature. In the original paper, the authors use ResNet-50 asthe encoder architecture and spatially average the outputs of ResNet-50. However, keep inmind that more powerful models will not only increase training time but will alsorequire more memory and will limit the maximal batch size you can use. For the purpose ofthis example, we just use four convolutional layers.<jupyter_code>def encoder(): return keras.Sequential( [ layers.Input(shape=input_shape), layers.Conv2D(width, kernel_size=3, strides=2, activation="relu"), layers.Conv2D(width, kernel_size=3, strides=2, activation="relu"), layers.Conv2D(width, kernel_size=3, strides=2, activation="relu"), layers.Conv2D(width, kernel_size=3, strides=2, activation="relu"), layers.Flatten(), layers.Dense(width, activation="relu"), ], name="encoder", )<jupyter_output><empty_output><jupyter_text>The NNCLR model for contrastive pre-trainingWe train an encoder on unlabeled images with a contrastive loss. A nonlinear projectionhead is attached to the top of the encoder, as it improves the quality of representationsof the encoder.<jupyter_code>class NNCLR(keras.Model): def __init__( self, temperature, queue_size, ): super().__init__() self.probe_accuracy = keras.metrics.SparseCategoricalAccuracy() self.correlation_accuracy = keras.metrics.SparseCategoricalAccuracy() self.contrastive_accuracy = keras.metrics.SparseCategoricalAccuracy() self.probe_loss = keras.losses.SparseCategoricalCrossentropy(from_logits=True) self.contrastive_augmenter = augmenter(**contrastive_augmenter) self.classification_augmenter = augmenter(**classification_augmenter) self.encoder = encoder() self.projection_head = keras.Sequential( [ layers.Input(shape=(width,)), layers.Dense(width, activation="relu"), layers.Dense(width), ], name="projection_head", ) self.linear_probe = keras.Sequential( [layers.Input(shape=(width,)), layers.Dense(10)], name="linear_probe" ) self.temperature = temperature feature_dimensions = self.encoder.output_shape[1] self.feature_queue = keras.Variable( keras.utils.normalize( keras.random.normal(shape=(queue_size, feature_dimensions)), axis=1, order=2, ), trainable=False, ) def compile(self, contrastive_optimizer, probe_optimizer, **kwargs): super().compile(**kwargs) self.contrastive_optimizer = contrastive_optimizer self.probe_optimizer = probe_optimizer def nearest_neighbour(self, projections): support_similarities = ops.matmul(projections, ops.transpose(self.feature_queue)) nn_projections = ops.take( self.feature_queue, ops.argmax(support_similarities, axis=1), axis=0 ) return projections + ops.stop_gradient(nn_projections - projections) def update_contrastive_accuracy(self, features_1, features_2): features_1 = keras.utils.normalize(features_1, axis=1, order=2) features_2 = keras.utils.normalize(features_2, axis=1, order=2) similarities = ops.matmul(features_1, ops.transpose(features_2)) batch_size = ops.shape(features_1)[0] contrastive_labels = ops.arange(batch_size) self.contrastive_accuracy.update_state( ops.concatenate([contrastive_labels, contrastive_labels], axis=0), ops.concatenate([similarities, ops.transpose(similarities)], axis=0), ) def update_correlation_accuracy(self, features_1, features_2): features_1 = (features_1 - ops.mean(features_1, axis=0)) / ops.std( features_1, axis=0 ) features_2 = (features_2 - ops.mean(features_2, axis=0)) / ops.std( features_2, axis=0 ) batch_size = ops.shape(features_1)[0] cross_correlation = ( ops.matmul(ops.transpose(features_1), features_2) / batch_size ) feature_dim = ops.shape(features_1)[1] correlation_labels = ops.arange(feature_dim) self.correlation_accuracy.update_state( ops.concatenate([correlation_labels, correlation_labels], axis=0), ops.concatenate( [cross_correlation, ops.transpose(cross_correlation)], axis=0 ), ) def contrastive_loss(self, projections_1, projections_2): projections_1 = keras.utils.normalize(projections_1, axis=1, order=2) projections_2 = keras.utils.normalize(projections_2, axis=1, order=2) similarities_1_2_1 = ( ops.matmul( self.nearest_neighbour(projections_1), ops.transpose(projections_2) ) / self.temperature ) similarities_1_2_2 = ( ops.matmul( projections_2, ops.transpose(self.nearest_neighbour(projections_1)) ) / self.temperature ) similarities_2_1_1 = ( # ops.matmul( self.nearest_neighbour(projections_2), ops.transpose(projections_1) ) / self.temperature ) similarities_2_1_2 = ( ops.matmul( projections_1, ops.transpose(self.nearest_neighbour(projections_2)) ) / self.temperature ) batch_size = ops.shape(projections_1)[0] contrastive_labels = ops.arange(batch_size) loss = keras.losses.sparse_categorical_crossentropy( ops.concatenate( [ contrastive_labels, contrastive_labels, contrastive_labels, contrastive_labels, ], axis=0, ), ops.concatenate( [ similarities_1_2_1, similarities_1_2_2, similarities_2_1_1, similarities_2_1_2, ], axis=0, ), from_logits=True, ) self.feature_queue.assign( ops.concatenate([projections_1, self.feature_queue[:-batch_size]], axis=0) ) return loss def train_step(self, data): (unlabeled_images, _), (labeled_images, labels) = data images = ops.concatenate((unlabeled_images, labeled_images), axis=0) augmented_images_1 = self.contrastive_augmenter(images) augmented_images_2 = self.contrastive_augmenter(images) with tf.GradientTape() as tape: features_1 = self.encoder(augmented_images_1) features_2 = self.encoder(augmented_images_2) projections_1 = self.projection_head(features_1) projections_2 = self.projection_head(features_2) contrastive_loss = self.contrastive_loss(projections_1, projections_2) gradients = tape.gradient( contrastive_loss, self.encoder.trainable_weights + self.projection_head.trainable_weights, ) self.contrastive_optimizer.apply_gradients( zip( gradients, self.encoder.trainable_weights + self.projection_head.trainable_weights, ) ) self.update_contrastive_accuracy(features_1, features_2) self.update_correlation_accuracy(features_1, features_2) preprocessed_images = self.classification_augmenter(labeled_images) with tf.GradientTape() as tape: features = self.encoder(preprocessed_images) class_logits = self.linear_probe(features) probe_loss = self.probe_loss(labels, class_logits) gradients = tape.gradient(probe_loss, self.linear_probe.trainable_weights) self.probe_optimizer.apply_gradients( zip(gradients, self.linear_probe.trainable_weights) ) self.probe_accuracy.update_state(labels, class_logits) return { "c_loss": contrastive_loss, "c_acc": self.contrastive_accuracy.result(), "r_acc": self.correlation_accuracy.result(), "p_loss": probe_loss, "p_acc": self.probe_accuracy.result(), } def test_step(self, data): labeled_images, labels = data preprocessed_images = self.classification_augmenter( labeled_images, training=False ) features = self.encoder(preprocessed_images, training=False) class_logits = self.linear_probe(features, training=False) probe_loss = self.probe_loss(labels, class_logits) self.probe_accuracy.update_state(labels, class_logits) return {"p_loss": probe_loss, "p_acc": self.probe_accuracy.result()}<jupyter_output><empty_output><jupyter_text>Pre-train NNCLRWe train the network using a `temperature` of 0.1 as suggested in the paper anda `queue_size` of 10,000 as explained earlier. We use Adam as our contrastive and probeoptimizer. For this example we train the model for only 30 epochs but it should betrained for more epochs for better performance.The following two metrics can be used for monitoring the pretraining performancewhich we also log (taken from[this Keras example](https://keras.io/examples/vision/semisupervised_simclr/selfsupervised-model-for-contrastive-pretraining)):- Contrastive accuracy: self-supervised metric, the ratio of cases in which therepresentation of an image is more similar to its differently augmented version's one,than to the representation of any other image in the current batch. Self-supervisedmetrics can be used for hyperparameter tuning even in the case when there are no labeledexamples.- Linear probing accuracy: linear probing is a popular metric to evaluate self-supervisedclassifiers. It is computed as the accuracy of a logistic regression classifier trainedon top of the encoder's features. In our case, this is done by training a single denselayer on top of the frozen encoder. Note that contrary to traditional approach where theclassifier is trained after the pretraining phase, in this example we train it duringpretraining. This might slightly decrease its accuracy, but that way we can monitor itsvalue during training, which helps with experimentation and debugging.<jupyter_code>model = NNCLR(temperature=temperature, queue_size=queue_size) model.compile( contrastive_optimizer=keras.optimizers.Adam(), probe_optimizer=keras.optimizers.Adam(), jit_compile=False, ) pretrain_history = model.fit( train_dataset, epochs=num_epochs, validation_data=test_dataset )<jupyter_output><empty_output><jupyter_text>Evaluate our modelA popular way to evaluate a SSL method in computer vision or for that fact any otherpre-training method as such is to learn a linear classifier on the frozen features of thetrained backbone model and evaluate the classifier on unseen images. Other methods ofteninclude fine-tuning on the source dataset or even a target dataset with 5% or 10% labelspresent. You can use the backbone we just trained for any downstream task such as imageclassification (like we do here) or segmentation or detection, where the backbone modelsare usually pre-trained with supervised learning.<jupyter_code>finetuning_model = keras.Sequential( [ layers.Input(shape=input_shape), augmenter(**classification_augmenter), model.encoder, layers.Dense(10), ], name="finetuning_model", ) finetuning_model.compile( optimizer=keras.optimizers.Adam(), loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=[keras.metrics.SparseCategoricalAccuracy(name="acc")], jit_compile=False, ) finetuning_history = finetuning_model.fit( labeled_train_dataset, epochs=num_epochs, validation_data=test_dataset )<jupyter_output><empty_output>
keras-io/examples/vision/ipynb/nnclr.ipynb/0
{ "file_path": "keras-io/examples/vision/ipynb/nnclr.ipynb", "repo_id": "keras-io", "token_count": 7497 }
110
# Image classification with ConvMixer **Author:** [Sayak Paul](https://twitter.com/RisingSayak)<br> **Date created:** 2021/10/12<br> **Last modified:** 2021/10/12<br> **Description:** An all-convolutional network applied to patches of images. <img class="k-inline-icon" src="https://colab.research.google.com/img/colab_favicon.ico"/> [**View in Colab**](https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/vision/ipynb/convmixer.ipynb) <span class="k-dot">•</span><img class="k-inline-icon" src="https://github.com/favicon.ico"/> [**GitHub source**](https://github.com/keras-team/keras-io/blob/master/examples/vision/convmixer.py) --- ## Introduction Vision Transformers (ViT; [Dosovitskiy et al.](https://arxiv.org/abs/1612.00593)) extract small patches from the input images, linearly project them, and then apply the Transformer ([Vaswani et al.](https://arxiv.org/abs/1706.03762)) blocks. The application of ViTs to image recognition tasks is quickly becoming a promising area of research, because ViTs eliminate the need to have strong inductive biases (such as convolutions) for modeling locality. This presents them as a general computation primititive capable of learning just from the training data with as minimal inductive priors as possible. ViTs yield great downstream performance when trained with proper regularization, data augmentation, and relatively large datasets. In the [Patches Are All You Need](https://openreview.net/pdf?id=TVHS5Y4dNvM) paper (note: at the time of writing, it is a submission to the ICLR 2022 conference), the authors extend the idea of using patches to train an all-convolutional network and demonstrate competitive results. Their architecture namely **ConvMixer** uses recipes from the recent isotrophic architectures like ViT, MLP-Mixer ([Tolstikhin et al.](https://arxiv.org/abs/2105.01601)), such as using the same depth and resolution across different layers in the network, residual connections, and so on. In this example, we will implement the ConvMixer model and demonstrate its performance on the CIFAR-10 dataset. --- ## Imports ```python import keras from keras import layers import matplotlib.pyplot as plt import tensorflow as tf import numpy as np ``` --- ## Hyperparameters To keep run time short, we will train the model for only 10 epochs. To focus on the core ideas of ConvMixer, we will not use other training-specific elements like RandAugment ([Cubuk et al.](https://arxiv.org/abs/1909.13719)). If you are interested in learning more about those details, please refer to the [original paper](https://openreview.net/pdf?id=TVHS5Y4dNvM). ```python learning_rate = 0.001 weight_decay = 0.0001 batch_size = 128 num_epochs = 10 ``` --- ## Load the CIFAR-10 dataset ```python (x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data() val_split = 0.1 val_indices = int(len(x_train) * val_split) new_x_train, new_y_train = x_train[val_indices:], y_train[val_indices:] x_val, y_val = x_train[:val_indices], y_train[:val_indices] print(f"Training data samples: {len(new_x_train)}") print(f"Validation data samples: {len(x_val)}") print(f"Test data samples: {len(x_test)}") ``` <div class="k-default-codeblock"> ``` Training data samples: 45000 Validation data samples: 5000 Test data samples: 10000 ``` </div> --- ## Prepare `tf.data.Dataset` objects Our data augmentation pipeline is different from what the authors used for the CIFAR-10 dataset, which is fine for the purpose of the example. Note that, it's ok to use **TF APIs for data I/O and preprocessing** with other backends (jax, torch) as it is feature-complete framework when it comes to data preprocessing. ```python image_size = 32 auto = tf.data.AUTOTUNE augmentation_layers = [ keras.layers.RandomCrop(image_size, image_size), keras.layers.RandomFlip("horizontal"), ] def augment_images(images): for layer in augmentation_layers: images = layer(images, training=True) return images def make_datasets(images, labels, is_train=False): dataset = tf.data.Dataset.from_tensor_slices((images, labels)) if is_train: dataset = dataset.shuffle(batch_size * 10) dataset = dataset.batch(batch_size) if is_train: dataset = dataset.map( lambda x, y: (augment_images(x), y), num_parallel_calls=auto ) return dataset.prefetch(auto) train_dataset = make_datasets(new_x_train, new_y_train, is_train=True) val_dataset = make_datasets(x_val, y_val) test_dataset = make_datasets(x_test, y_test) ``` --- ## ConvMixer utilities The following figure (taken from the original paper) depicts the ConvMixer model: ![](https://i.imgur.com/yF8actg.png) ConvMixer is very similar to the MLP-Mixer, model with the following key differences: * Instead of using fully-connected layers, it uses standard convolution layers. * Instead of LayerNorm (which is typical for ViTs and MLP-Mixers), it uses BatchNorm. Two types of convolution layers are used in ConvMixer. **(1)**: Depthwise convolutions, for mixing spatial locations of the images, **(2)**: Pointwise convolutions (which follow the depthwise convolutions), for mixing channel-wise information across the patches. Another keypoint is the use of *larger kernel sizes* to allow a larger receptive field. ```python def activation_block(x): x = layers.Activation("gelu")(x) return layers.BatchNormalization()(x) def conv_stem(x, filters: int, patch_size: int): x = layers.Conv2D(filters, kernel_size=patch_size, strides=patch_size)(x) return activation_block(x) def conv_mixer_block(x, filters: int, kernel_size: int): # Depthwise convolution. x0 = x x = layers.DepthwiseConv2D(kernel_size=kernel_size, padding="same")(x) x = layers.Add()([activation_block(x), x0]) # Residual. # Pointwise convolution. x = layers.Conv2D(filters, kernel_size=1)(x) x = activation_block(x) return x def get_conv_mixer_256_8( image_size=32, filters=256, depth=8, kernel_size=5, patch_size=2, num_classes=10 ): """ConvMixer-256/8: https://openreview.net/pdf?id=TVHS5Y4dNvM. The hyperparameter values are taken from the paper. """ inputs = keras.Input((image_size, image_size, 3)) x = layers.Rescaling(scale=1.0 / 255)(inputs) # Extract patch embeddings. x = conv_stem(x, filters, patch_size) # ConvMixer blocks. for _ in range(depth): x = conv_mixer_block(x, filters, kernel_size) # Classification block. x = layers.GlobalAvgPool2D()(x) outputs = layers.Dense(num_classes, activation="softmax")(x) return keras.Model(inputs, outputs) ``` The model used in this experiment is termed as **ConvMixer-256/8** where 256 denotes the number of channels and 8 denotes the depth. The resulting model only has 0.8 million parameters. --- ## Model training and evaluation utility ```python # Code reference: # https://keras.io/examples/vision/image_classification_with_vision_transformer/. def run_experiment(model): optimizer = keras.optimizers.AdamW( learning_rate=learning_rate, weight_decay=weight_decay ) model.compile( optimizer=optimizer, loss="sparse_categorical_crossentropy", metrics=["accuracy"], ) checkpoint_filepath = "/tmp/checkpoint.keras" checkpoint_callback = keras.callbacks.ModelCheckpoint( checkpoint_filepath, monitor="val_accuracy", save_best_only=True, save_weights_only=False, ) history = model.fit( train_dataset, validation_data=val_dataset, epochs=num_epochs, callbacks=[checkpoint_callback], ) model.load_weights(checkpoint_filepath) _, accuracy = model.evaluate(test_dataset) print(f"Test accuracy: {round(accuracy * 100, 2)}%") return history, model ``` --- ## Train and evaluate model ```python conv_mixer_model = get_conv_mixer_256_8() history, conv_mixer_model = run_experiment(conv_mixer_model) ``` <div class="k-default-codeblock"> ``` Epoch 1/10 352/352 ━━━━━━━━━━━━━━━━━━━━ 46s 103ms/step - accuracy: 0.4594 - loss: 1.4780 - val_accuracy: 0.1536 - val_loss: 4.0766 Epoch 2/10 352/352 ━━━━━━━━━━━━━━━━━━━━ 14s 39ms/step - accuracy: 0.6996 - loss: 0.8479 - val_accuracy: 0.7240 - val_loss: 0.7926 Epoch 3/10 352/352 ━━━━━━━━━━━━━━━━━━━━ 14s 39ms/step - accuracy: 0.7823 - loss: 0.6287 - val_accuracy: 0.7800 - val_loss: 0.6532 Epoch 4/10 352/352 ━━━━━━━━━━━━━━━━━━━━ 14s 39ms/step - accuracy: 0.8264 - loss: 0.5003 - val_accuracy: 0.8074 - val_loss: 0.5895 Epoch 5/10 352/352 ━━━━━━━━━━━━━━━━━━━━ 21s 60ms/step - accuracy: 0.8605 - loss: 0.4092 - val_accuracy: 0.7996 - val_loss: 0.6037 Epoch 6/10 352/352 ━━━━━━━━━━━━━━━━━━━━ 13s 38ms/step - accuracy: 0.8788 - loss: 0.3527 - val_accuracy: 0.8072 - val_loss: 0.6162 Epoch 7/10 352/352 ━━━━━━━━━━━━━━━━━━━━ 21s 61ms/step - accuracy: 0.8972 - loss: 0.2984 - val_accuracy: 0.8226 - val_loss: 0.5604 Epoch 8/10 352/352 ━━━━━━━━━━━━━━━━━━━━ 21s 61ms/step - accuracy: 0.9087 - loss: 0.2608 - val_accuracy: 0.8310 - val_loss: 0.5303 Epoch 9/10 352/352 ━━━━━━━━━━━━━━━━━━━━ 14s 39ms/step - accuracy: 0.9176 - loss: 0.2302 - val_accuracy: 0.8458 - val_loss: 0.5051 Epoch 10/10 352/352 ━━━━━━━━━━━━━━━━━━━━ 14s 38ms/step - accuracy: 0.9336 - loss: 0.1918 - val_accuracy: 0.8316 - val_loss: 0.5848 79/79 ━━━━━━━━━━━━━━━━━━━━ 3s 32ms/step - accuracy: 0.8371 - loss: 0.5501 Test accuracy: 83.69% ``` </div> The gap in training and validation performance can be mitigated by using additional regularization techniques. Nevertheless, being able to get to ~83% accuracy within 10 epochs with 0.8 million parameters is a strong result. --- ## Visualizing the internals of ConvMixer We can visualize the patch embeddings and the learned convolution filters. Recall that each patch embedding and intermediate feature map have the same number of channels (256 in this case). This will make our visualization utility easier to implement. ```python # Code reference: https://bit.ly/3awIRbP. def visualization_plot(weights, idx=1): # First, apply min-max normalization to the # given weights to avoid isotrophic scaling. p_min, p_max = weights.min(), weights.max() weights = (weights - p_min) / (p_max - p_min) # Visualize all the filters. num_filters = 256 plt.figure(figsize=(8, 8)) for i in range(num_filters): current_weight = weights[:, :, :, i] if current_weight.shape[-1] == 1: current_weight = current_weight.squeeze() ax = plt.subplot(16, 16, idx) ax.set_xticks([]) ax.set_yticks([]) plt.imshow(current_weight) idx += 1 # We first visualize the learned patch embeddings. patch_embeddings = conv_mixer_model.layers[2].get_weights()[0] visualization_plot(patch_embeddings) ``` ![png](/img/examples/vision/convmixer/convmixer_19_0.png) Even though we did not train the network to convergence, we can notice that different patches show different patterns. Some share similarity with others while some are very different. These visualizations are more salient with larger image sizes. Similarly, we can visualize the raw convolution kernels. This can help us understand the patterns to which a given kernel is receptive. ```python # First, print the indices of the convolution layers that are not # pointwise convolutions. for i, layer in enumerate(conv_mixer_model.layers): if isinstance(layer, layers.DepthwiseConv2D): if layer.get_config()["kernel_size"] == (5, 5): print(i, layer) idx = 26 # Taking a kernel from the middle of the network. kernel = conv_mixer_model.layers[idx].get_weights()[0] kernel = np.expand_dims(kernel.squeeze(), axis=2) visualization_plot(kernel) ``` <div class="k-default-codeblock"> ``` 5 <DepthwiseConv2D name=depthwise_conv2d, built=True> 12 <DepthwiseConv2D name=depthwise_conv2d_1, built=True> 19 <DepthwiseConv2D name=depthwise_conv2d_2, built=True> 26 <DepthwiseConv2D name=depthwise_conv2d_3, built=True> 33 <DepthwiseConv2D name=depthwise_conv2d_4, built=True> 40 <DepthwiseConv2D name=depthwise_conv2d_5, built=True> 47 <DepthwiseConv2D name=depthwise_conv2d_6, built=True> 54 <DepthwiseConv2D name=depthwise_conv2d_7, built=True> ``` </div> ![png](/img/examples/vision/convmixer/convmixer_21_1.png) We see that different filters in the kernel have different locality spans, and this pattern is likely to evolve with more training. --- ## Final notes There's been a recent trend on fusing convolutions with other data-agnostic operations like self-attention. Following works are along this line of research: * ConViT ([d'Ascoli et al.](https://arxiv.org/abs/2103.10697)) * CCT ([Hassani et al.](https://arxiv.org/abs/2104.05704)) * CoAtNet ([Dai et al.](https://arxiv.org/abs/2106.04803))
keras-io/examples/vision/md/convmixer.md/0
{ "file_path": "keras-io/examples/vision/md/convmixer.md", "repo_id": "keras-io", "token_count": 4781 }
111
# Image classification from scratch **Author:** [fchollet](https://twitter.com/fchollet)<br> **Date created:** 2020/04/27<br> **Last modified:** 2023/11/09<br> **Description:** Training an image classifier from scratch on the Kaggle Cats vs Dogs dataset. <img class="k-inline-icon" src="https://colab.research.google.com/img/colab_favicon.ico"/> [**View in Colab**](https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/vision/ipynb/image_classification_from_scratch.ipynb) <span class="k-dot">•</span><img class="k-inline-icon" src="https://github.com/favicon.ico"/> [**GitHub source**](https://github.com/keras-team/keras-io/blob/master/examples/vision/image_classification_from_scratch.py) --- ## Introduction This example shows how to do image classification from scratch, starting from JPEG image files on disk, without leveraging pre-trained weights or a pre-made Keras Application model. We demonstrate the workflow on the Kaggle Cats vs Dogs binary classification dataset. We use the `image_dataset_from_directory` utility to generate the datasets, and we use Keras image preprocessing layers for image standardization and data augmentation. --- ## Setup ```python import os import numpy as np import keras from keras import layers from tensorflow import data as tf_data import matplotlib.pyplot as plt ``` --- ## Load the data: the Cats vs Dogs dataset ### Raw data download First, let's download the 786M ZIP archive of the raw data: ```python !curl -O https://download.microsoft.com/download/3/E/1/3E1C3F21-ECDB-4869-8368-6DEBA77B919F/kagglecatsanddogs_5340.zip ``` ```python !unzip -q kagglecatsanddogs_5340.zip !ls ``` <div class="k-default-codeblock"> ``` % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 786M 100 786M 0 0 11.1M 0 0:01:10 0:01:10 --:--:-- 11.8M CDLA-Permissive-2.0.pdf kagglecatsanddogs_5340.zip PetImages 'readme[1].txt' image_classification_from_scratch.ipynb ``` </div> Now we have a `PetImages` folder which contain two subfolders, `Cat` and `Dog`. Each subfolder contains image files for each category. ```python !ls PetImages ``` <div class="k-default-codeblock"> ``` Cat Dog ``` </div> ### Filter out corrupted images When working with lots of real-world image data, corrupted images are a common occurence. Let's filter out badly-encoded images that do not feature the string "JFIF" in their header. ```python num_skipped = 0 for folder_name in ("Cat", "Dog"): folder_path = os.path.join("PetImages", folder_name) for fname in os.listdir(folder_path): fpath = os.path.join(folder_path, fname) try: fobj = open(fpath, "rb") is_jfif = b"JFIF" in fobj.peek(10) finally: fobj.close() if not is_jfif: num_skipped += 1 # Delete corrupted image os.remove(fpath) print(f"Deleted {num_skipped} images.") ``` <div class="k-default-codeblock"> ``` Deleted 1590 images. ``` </div> --- ## Generate a `Dataset` ```python image_size = (180, 180) batch_size = 128 train_ds, val_ds = keras.utils.image_dataset_from_directory( "PetImages", validation_split=0.2, subset="both", seed=1337, image_size=image_size, batch_size=batch_size, ) ``` <div class="k-default-codeblock"> ``` Found 23410 files belonging to 2 classes. Using 18728 files for training. Using 4682 files for validation. ``` </div> --- ## Visualize the data Here are the first 9 images in the training dataset. ```python plt.figure(figsize=(10, 10)) for images, labels in train_ds.take(1): for i in range(9): ax = plt.subplot(3, 3, i + 1) plt.imshow(np.array(images[i]).astype("uint8")) plt.title(int(labels[i])) plt.axis("off") ``` ![png](/img/examples/vision/image_classification_from_scratch/image_classification_from_scratch_14_1.png) --- ## Using image data augmentation When you don't have a large image dataset, it's a good practice to artificially introduce sample diversity by applying random yet realistic transformations to the training images, such as random horizontal flipping or small random rotations. This helps expose the model to different aspects of the training data while slowing down overfitting. ```python data_augmentation_layers = [ layers.RandomFlip("horizontal"), layers.RandomRotation(0.1), ] def data_augmentation(images): for layer in data_augmentation_layers: images = layer(images) return images ``` Let's visualize what the augmented samples look like, by applying `data_augmentation` repeatedly to the first few images in the dataset: ```python plt.figure(figsize=(10, 10)) for images, _ in train_ds.take(1): for i in range(9): augmented_images = data_augmentation(images) ax = plt.subplot(3, 3, i + 1) plt.imshow(np.array(augmented_images[0]).astype("uint8")) plt.axis("off") ``` ![png](/img/examples/vision/image_classification_from_scratch/image_classification_from_scratch_18_1.png) --- ## Standardizing the data Our image are already in a standard size (180x180), as they are being yielded as contiguous `float32` batches by our dataset. However, their RGB channel values are in the `[0, 255]` range. This is not ideal for a neural network; in general you should seek to make your input values small. Here, we will standardize values to be in the `[0, 1]` by using a `Rescaling` layer at the start of our model. --- ## Two options to preprocess the data There are two ways you could be using the `data_augmentation` preprocessor: **Option 1: Make it part of the model**, like this: ```python inputs = keras.Input(shape=input_shape) x = data_augmentation(inputs) x = layers.Rescaling(1./255)(x) ... # Rest of the model ``` With this option, your data augmentation will happen *on device*, synchronously with the rest of the model execution, meaning that it will benefit from GPU acceleration. Note that data augmentation is inactive at test time, so the input samples will only be augmented during `fit()`, not when calling `evaluate()` or `predict()`. If you're training on GPU, this may be a good option. **Option 2: apply it to the dataset**, so as to obtain a dataset that yields batches of augmented images, like this: ```python augmented_train_ds = train_ds.map( lambda x, y: (data_augmentation(x, training=True), y)) ``` With this option, your data augmentation will happen **on CPU**, asynchronously, and will be buffered before going into the model. If you're training on CPU, this is the better option, since it makes data augmentation asynchronous and non-blocking. In our case, we'll go with the second option. If you're not sure which one to pick, this second option (asynchronous preprocessing) is always a solid choice. --- ## Configure the dataset for performance Let's apply data augmentation to our training dataset, and let's make sure to use buffered prefetching so we can yield data from disk without having I/O becoming blocking: ```python # Apply `data_augmentation` to the training images. train_ds = train_ds.map( lambda img, label: (data_augmentation(img), label), num_parallel_calls=tf_data.AUTOTUNE, ) # Prefetching samples in GPU memory helps maximize GPU utilization. train_ds = train_ds.prefetch(tf_data.AUTOTUNE) val_ds = val_ds.prefetch(tf_data.AUTOTUNE) ``` --- ## Build a model We'll build a small version of the Xception network. We haven't particularly tried to optimize the architecture; if you want to do a systematic search for the best model configuration, consider using [KerasTuner](https://github.com/keras-team/keras-tuner). Note that: - We start the model with the `data_augmentation` preprocessor, followed by a `Rescaling` layer. - We include a `Dropout` layer before the final classification layer. ```python def make_model(input_shape, num_classes): inputs = keras.Input(shape=input_shape) # Entry block x = layers.Rescaling(1.0 / 255)(inputs) x = layers.Conv2D(128, 3, strides=2, padding="same")(x) x = layers.BatchNormalization()(x) x = layers.Activation("relu")(x) previous_block_activation = x # Set aside residual for size in [256, 512, 728]: x = layers.Activation("relu")(x) x = layers.SeparableConv2D(size, 3, padding="same")(x) x = layers.BatchNormalization()(x) x = layers.Activation("relu")(x) x = layers.SeparableConv2D(size, 3, padding="same")(x) x = layers.BatchNormalization()(x) x = layers.MaxPooling2D(3, strides=2, padding="same")(x) # Project residual residual = layers.Conv2D(size, 1, strides=2, padding="same")( previous_block_activation ) x = layers.add([x, residual]) # Add back residual previous_block_activation = x # Set aside next residual x = layers.SeparableConv2D(1024, 3, padding="same")(x) x = layers.BatchNormalization()(x) x = layers.Activation("relu")(x) x = layers.GlobalAveragePooling2D()(x) if num_classes == 2: units = 1 else: units = num_classes x = layers.Dropout(0.25)(x) # We specify activation=None so as to return logits outputs = layers.Dense(units, activation=None)(x) return keras.Model(inputs, outputs) model = make_model(input_shape=image_size + (3,), num_classes=2) keras.utils.plot_model(model, show_shapes=True) ``` ![png](/img/examples/vision/image_classification_from_scratch/image_classification_from_scratch_24_0.png) --- ## Train the model ```python epochs = 25 callbacks = [ keras.callbacks.ModelCheckpoint("save_at_{epoch}.keras"), ] model.compile( optimizer=keras.optimizers.Adam(3e-4), loss=keras.losses.BinaryCrossentropy(from_logits=True), metrics=[keras.metrics.BinaryAccuracy(name="acc")], ) model.fit( train_ds, epochs=epochs, callbacks=callbacks, validation_data=val_ds, ) ``` <div class="k-default-codeblock"> ``` Epoch 1/25 ... Epoch 25/25 147/147 ━━━━━━━━━━━━━━━━━━━━ 53s 354ms/step - acc: 0.9638 - loss: 0.0903 - val_acc: 0.9382 - val_loss: 0.1542 <keras.src.callbacks.history.History at 0x7f41003c24a0> ``` </div> We get to >90% validation accuracy after training for 25 epochs on the full dataset (in practice, you can train for 50+ epochs before validation performance starts degrading). --- ## Run inference on new data Note that data augmentation and dropout are inactive at inference time. ```python img = keras.utils.load_img("PetImages/Cat/6779.jpg", target_size=image_size) plt.imshow(img) img_array = keras.utils.img_to_array(img) img_array = keras.ops.expand_dims(img_array, 0) # Create batch axis predictions = model.predict(img_array) score = float(keras.ops.sigmoid(predictions[0][0])) print(f"This image is {100 * (1 - score):.2f}% cat and {100 * score:.2f}% dog.") ``` <div class="k-default-codeblock"> ``` 1/1 ━━━━━━━━━━━━━━━━━━━━ 2s 2s/step This image is 94.30% cat and 5.70% dog. ``` </div> ![png](/img/examples/vision/image_classification_from_scratch/image_classification_from_scratch_29_1.png)
keras-io/examples/vision/md/image_classification_from_scratch.md/0
{ "file_path": "keras-io/examples/vision/md/image_classification_from_scratch.md", "repo_id": "keras-io", "token_count": 4166 }
112
# Pneumonia Classification on TPU **Author:** Amy MiHyun Jang<br> **Date created:** 2020/07/28<br> **Last modified:** 2024/02/12<br> **Description:** Medical image classification on TPU. <img class="k-inline-icon" src="https://colab.research.google.com/img/colab_favicon.ico"/> [**View in Colab**](https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/vision/ipynb/xray_classification_with_tpus.ipynb) <span class="k-dot">•</span><img class="k-inline-icon" src="https://github.com/favicon.ico"/> [**GitHub source**](https://github.com/keras-team/keras-io/blob/master/examples/vision/xray_classification_with_tpus.py) --- ## Introduction + Set-up This tutorial will explain how to build an X-ray image classification model to predict whether an X-ray scan shows presence of pneumonia. ```python import re import os import random import numpy as np import pandas as pd import tensorflow as tf import matplotlib.pyplot as plt try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver.connect() print("Device:", tpu.master()) strategy = tf.distribute.TPUStrategy(tpu) except: strategy = tf.distribute.get_strategy() print("Number of replicas:", strategy.num_replicas_in_sync) ``` <div class="k-default-codeblock"> ``` Device: grpc://10.0.27.122:8470 INFO:tensorflow:Initializing the TPU system: grpc://10.0.27.122:8470 INFO:tensorflow:Initializing the TPU system: grpc://10.0.27.122:8470 INFO:tensorflow:Clearing out eager caches INFO:tensorflow:Clearing out eager caches INFO:tensorflow:Finished initializing TPU system. INFO:tensorflow:Finished initializing TPU system. WARNING:absl:`tf.distribute.TPUStrategy` is deprecated, please use the non experimental symbol `tf.distribute.TPUStrategy` instead. INFO:tensorflow:Found TPU system: INFO:tensorflow:Found TPU system: INFO:tensorflow:*** Num TPU Cores: 8 INFO:tensorflow:*** Num TPU Cores: 8 INFO:tensorflow:*** Num TPU Workers: 1 INFO:tensorflow:*** Num TPU Workers: 1 INFO:tensorflow:*** Num TPU Cores Per Worker: 8 INFO:tensorflow:*** Num TPU Cores Per Worker: 8 INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:CPU:0, CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:CPU:0, CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0) Number of replicas: 8 ``` </div> We need a Google Cloud link to our data to load the data using a TPU. Below, we define key configuration parameters we'll use in this example. To run on TPU, this example must be on Colab with the TPU runtime selected. ```python AUTOTUNE = tf.data.AUTOTUNE BATCH_SIZE = 25 * strategy.num_replicas_in_sync IMAGE_SIZE = [180, 180] CLASS_NAMES = ["NORMAL", "PNEUMONIA"] ``` --- ## Load the data The Chest X-ray data we are using from [*Cell*](https://www.cell.com/cell/fulltext/S0092-8674(18)30154-5) divides the data into training and test files. Let's first load in the training TFRecords. ```python train_images = tf.data.TFRecordDataset( "gs://download.tensorflow.org/data/ChestXRay2017/train/images.tfrec" ) train_paths = tf.data.TFRecordDataset( "gs://download.tensorflow.org/data/ChestXRay2017/train/paths.tfrec" ) ds = tf.data.Dataset.zip((train_images, train_paths)) ``` Let's count how many healthy/normal chest X-rays we have and how many pneumonia chest X-rays we have: ```python COUNT_NORMAL = len( [ filename for filename in train_paths if "NORMAL" in filename.numpy().decode("utf-8") ] ) print("Normal images count in training set: " + str(COUNT_NORMAL)) COUNT_PNEUMONIA = len( [ filename for filename in train_paths if "PNEUMONIA" in filename.numpy().decode("utf-8") ] ) print("Pneumonia images count in training set: " + str(COUNT_PNEUMONIA)) ``` <div class="k-default-codeblock"> ``` Normal images count in training set: 1349 Pneumonia images count in training set: 3883 ``` </div> Notice that there are way more images that are classified as pneumonia than normal. This shows that we have an imbalance in our data. We will correct for this imbalance later on in our notebook. We want to map each filename to the corresponding (image, label) pair. The following methods will help us do that. As we only have two labels, we will encode the label so that `1` or `True` indicates pneumonia and `0` or `False` indicates normal. ```python def get_label(file_path): # convert the path to a list of path components parts = tf.strings.split(file_path, "/") # The second to last is the class-directory if parts[-2] == "PNEUMONIA": return 1 else: return 0 def decode_img(img): # convert the compressed string to a 3D uint8 tensor img = tf.image.decode_jpeg(img, channels=3) # resize the image to the desired size. return tf.image.resize(img, IMAGE_SIZE) def process_path(image, path): label = get_label(path) # load the raw data from the file as a string img = decode_img(image) return img, label ds = ds.map(process_path, num_parallel_calls=AUTOTUNE) ``` Let's split the data into a training and validation datasets. ```python ds = ds.shuffle(10000) train_ds = ds.take(4200) val_ds = ds.skip(4200) ``` Let's visualize the shape of an (image, label) pair. ```python for image, label in train_ds.take(1): print("Image shape: ", image.numpy().shape) print("Label: ", label.numpy()) ``` <div class="k-default-codeblock"> ``` Image shape: (180, 180, 3) Label: False ``` </div> Load and format the test data as well. ```python test_images = tf.data.TFRecordDataset( "gs://download.tensorflow.org/data/ChestXRay2017/test/images.tfrec" ) test_paths = tf.data.TFRecordDataset( "gs://download.tensorflow.org/data/ChestXRay2017/test/paths.tfrec" ) test_ds = tf.data.Dataset.zip((test_images, test_paths)) test_ds = test_ds.map(process_path, num_parallel_calls=AUTOTUNE) test_ds = test_ds.batch(BATCH_SIZE) ``` --- ## Visualize the dataset First, let's use buffered prefetching so we can yield data from disk without having I/O become blocking. Please note that large image datasets should not be cached in memory. We do it here because the dataset is not very large and we want to train on TPU. ```python def prepare_for_training(ds, cache=True): # This is a small dataset, only load it once, and keep it in memory. # use `.cache(filename)` to cache preprocessing work for datasets that don't # fit in memory. if cache: if isinstance(cache, str): ds = ds.cache(cache) else: ds = ds.cache() ds = ds.batch(BATCH_SIZE) # `prefetch` lets the dataset fetch batches in the background while the model # is training. ds = ds.prefetch(buffer_size=AUTOTUNE) return ds ``` Call the next batch iteration of the training data. ```python train_ds = prepare_for_training(train_ds) val_ds = prepare_for_training(val_ds) image_batch, label_batch = next(iter(train_ds)) ``` Define the method to show the images in the batch. ```python def show_batch(image_batch, label_batch): plt.figure(figsize=(10, 10)) for n in range(25): ax = plt.subplot(5, 5, n + 1) plt.imshow(image_batch[n] / 255) if label_batch[n]: plt.title("PNEUMONIA") else: plt.title("NORMAL") plt.axis("off") ``` As the method takes in NumPy arrays as its parameters, call the numpy function on the batches to return the tensor in NumPy array form. ```python show_batch(image_batch.numpy(), label_batch.numpy()) ``` ![png](/img/examples/vision/xray_classification_with_tpus/xray_classification_with_tpus_25_0.png) --- ## Build the CNN To make our model more modular and easier to understand, let's define some blocks. As we're building a convolution neural network, we'll create a convolution block and a dense layer block. The architecture for this CNN has been inspired by this [article](https://towardsdatascience.com/deep-learning-for-detecting-pneumonia-from-x-ray-images-fc9a3d9fdba8). ```python import os os.environ['KERAS_BACKEND'] = 'tensorflow' import keras from keras import layers def conv_block(filters, inputs): x = layers.SeparableConv2D(filters, 3, activation="relu", padding="same")(inputs) x = layers.SeparableConv2D(filters, 3, activation="relu", padding="same")(x) x = layers.BatchNormalization()(x) outputs = layers.MaxPool2D()(x) return outputs def dense_block(units, dropout_rate, inputs): x = layers.Dense(units, activation="relu")(inputs) x = layers.BatchNormalization()(x) outputs = layers.Dropout(dropout_rate)(x) return outputs ``` The following method will define the function to build our model for us. The images originally have values that range from [0, 255]. CNNs work better with smaller numbers so we will scale this down for our input. The Dropout layers are important, as they reduce the likelikhood of the model overfitting. We want to end the model with a `Dense` layer with one node, as this will be the binary output that determines if an X-ray shows presence of pneumonia. ```python def build_model(): inputs = keras.Input(shape=(IMAGE_SIZE[0], IMAGE_SIZE[1], 3)) x = layers.Rescaling(1.0 / 255)(inputs) x = layers.Conv2D(16, 3, activation="relu", padding="same")(x) x = layers.Conv2D(16, 3, activation="relu", padding="same")(x) x = layers.MaxPool2D()(x) x = conv_block(32, x) x = conv_block(64, x) x = conv_block(128, x) x = layers.Dropout(0.2)(x) x = conv_block(256, x) x = layers.Dropout(0.2)(x) x = layers.Flatten()(x) x = dense_block(512, 0.7, x) x = dense_block(128, 0.5, x) x = dense_block(64, 0.3, x) outputs = layers.Dense(1, activation="sigmoid")(x) model = keras.Model(inputs=inputs, outputs=outputs) return model ``` --- ## Correct for data imbalance We saw earlier in this example that the data was imbalanced, with more images classified as pneumonia than normal. We will correct for that by using class weighting: ```python initial_bias = np.log([COUNT_PNEUMONIA / COUNT_NORMAL]) print("Initial bias: {:.5f}".format(initial_bias[0])) TRAIN_IMG_COUNT = COUNT_NORMAL + COUNT_PNEUMONIA weight_for_0 = (1 / COUNT_NORMAL) * (TRAIN_IMG_COUNT) / 2.0 weight_for_1 = (1 / COUNT_PNEUMONIA) * (TRAIN_IMG_COUNT) / 2.0 class_weight = {0: weight_for_0, 1: weight_for_1} print("Weight for class 0: {:.2f}".format(weight_for_0)) print("Weight for class 1: {:.2f}".format(weight_for_1)) ``` <div class="k-default-codeblock"> ``` Initial bias: 1.05724 Weight for class 0: 1.94 Weight for class 1: 0.67 ``` </div> The weight for class `0` (Normal) is a lot higher than the weight for class `1` (Pneumonia). Because there are less normal images, each normal image will be weighted more to balance the data as the CNN works best when the training data is balanced. --- ## Train the model ### Defining callbacks The checkpoint callback saves the best weights of the model, so next time we want to use the model, we do not have to spend time training it. The early stopping callback stops the training process when the model starts becoming stagnant, or even worse, when the model starts overfitting. ```python checkpoint_cb = keras.callbacks.ModelCheckpoint("xray_model.keras", save_best_only=True) early_stopping_cb = keras.callbacks.EarlyStopping( patience=10, restore_best_weights=True ) ``` We also want to tune our learning rate. Too high of a learning rate will cause the model to diverge. Too small of a learning rate will cause the model to be too slow. We implement the exponential learning rate scheduling method below. ```python initial_learning_rate = 0.015 lr_schedule = keras.optimizers.schedules.ExponentialDecay( initial_learning_rate, decay_steps=100000, decay_rate=0.96, staircase=True ) ``` ### Fit the model For our metrics, we want to include precision and recall as they will provide use with a more informed picture of how good our model is. Accuracy tells us what fraction of the labels is correct. Since our data is not balanced, accuracy might give a skewed sense of a good model (i.e. a model that always predicts PNEUMONIA will be 74% accurate but is not a good model). Precision is the number of true positives (TP) over the sum of TP and false positives (FP). It shows what fraction of labeled positives are actually correct. Recall is the number of TP over the sum of TP and false negatves (FN). It shows what fraction of actual positives are correct. Since there are only two possible labels for the image, we will be using the binary crossentropy loss. When we fit the model, remember to specify the class weights, which we defined earlier. Because we are using a TPU, training will be quick - less than 2 minutes. ```python with strategy.scope(): model = build_model() METRICS = [ keras.metrics.BinaryAccuracy(), keras.metrics.Precision(name="precision"), keras.metrics.Recall(name="recall"), ] model.compile( optimizer=keras.optimizers.Adam(learning_rate=lr_schedule), loss="binary_crossentropy", metrics=METRICS, ) history = model.fit( train_ds, epochs=100, validation_data=val_ds, class_weight=class_weight, callbacks=[checkpoint_cb, early_stopping_cb], ) ``` <div class="k-default-codeblock"> ``` Epoch 1/100 WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/data/ops/multi_device_iterator_ops.py:601: get_next_as_optional (from tensorflow.python.data.ops.iterator_ops) is deprecated and will be removed in a future version. Instructions for updating: Use `tf.data.Iterator.get_next_as_optional()` instead. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/data/ops/multi_device_iterator_ops.py:601: get_next_as_optional (from tensorflow.python.data.ops.iterator_ops) is deprecated and will be removed in a future version. Instructions for updating: Use `tf.data.Iterator.get_next_as_optional()` instead. 21/21 [==============================] - 12s 568ms/step - loss: 0.5857 - binary_accuracy: 0.6960 - precision: 0.8887 - recall: 0.6733 - val_loss: 34.0149 - val_binary_accuracy: 0.7180 - val_precision: 0.7180 - val_recall: 1.0000 Epoch 2/100 21/21 [==============================] - 3s 128ms/step - loss: 0.2916 - binary_accuracy: 0.8755 - precision: 0.9540 - recall: 0.8738 - val_loss: 97.5194 - val_binary_accuracy: 0.7180 - val_precision: 0.7180 - val_recall: 1.0000 Epoch 3/100 21/21 [==============================] - 4s 167ms/step - loss: 0.2384 - binary_accuracy: 0.9002 - precision: 0.9663 - recall: 0.8964 - val_loss: 27.7902 - val_binary_accuracy: 0.7180 - val_precision: 0.7180 - val_recall: 1.0000 Epoch 4/100 21/21 [==============================] - 4s 173ms/step - loss: 0.2046 - binary_accuracy: 0.9145 - precision: 0.9725 - recall: 0.9102 - val_loss: 10.8302 - val_binary_accuracy: 0.7180 - val_precision: 0.7180 - val_recall: 1.0000 Epoch 5/100 21/21 [==============================] - 4s 174ms/step - loss: 0.1841 - binary_accuracy: 0.9279 - precision: 0.9733 - recall: 0.9279 - val_loss: 3.5860 - val_binary_accuracy: 0.7103 - val_precision: 0.7162 - val_recall: 0.9879 Epoch 6/100 21/21 [==============================] - 4s 185ms/step - loss: 0.1600 - binary_accuracy: 0.9362 - precision: 0.9791 - recall: 0.9337 - val_loss: 0.3014 - val_binary_accuracy: 0.8895 - val_precision: 0.8973 - val_recall: 0.9555 Epoch 7/100 21/21 [==============================] - 3s 130ms/step - loss: 0.1567 - binary_accuracy: 0.9393 - precision: 0.9798 - recall: 0.9372 - val_loss: 0.6763 - val_binary_accuracy: 0.7810 - val_precision: 0.7760 - val_recall: 0.9771 Epoch 8/100 21/21 [==============================] - 3s 131ms/step - loss: 0.1532 - binary_accuracy: 0.9421 - precision: 0.9825 - recall: 0.9385 - val_loss: 0.3169 - val_binary_accuracy: 0.8895 - val_precision: 0.8684 - val_recall: 0.9973 Epoch 9/100 21/21 [==============================] - 4s 184ms/step - loss: 0.1457 - binary_accuracy: 0.9431 - precision: 0.9822 - recall: 0.9401 - val_loss: 0.2064 - val_binary_accuracy: 0.9273 - val_precision: 0.9840 - val_recall: 0.9136 Epoch 10/100 21/21 [==============================] - 3s 132ms/step - loss: 0.1201 - binary_accuracy: 0.9521 - precision: 0.9869 - recall: 0.9479 - val_loss: 0.4364 - val_binary_accuracy: 0.8605 - val_precision: 0.8443 - val_recall: 0.9879 Epoch 11/100 21/21 [==============================] - 3s 127ms/step - loss: 0.1200 - binary_accuracy: 0.9510 - precision: 0.9863 - recall: 0.9469 - val_loss: 0.5197 - val_binary_accuracy: 0.8508 - val_precision: 1.0000 - val_recall: 0.7922 Epoch 12/100 21/21 [==============================] - 4s 186ms/step - loss: 0.1077 - binary_accuracy: 0.9581 - precision: 0.9870 - recall: 0.9559 - val_loss: 0.1349 - val_binary_accuracy: 0.9486 - val_precision: 0.9587 - val_recall: 0.9703 Epoch 13/100 21/21 [==============================] - 4s 173ms/step - loss: 0.0918 - binary_accuracy: 0.9650 - precision: 0.9914 - recall: 0.9611 - val_loss: 0.0926 - val_binary_accuracy: 0.9700 - val_precision: 0.9837 - val_recall: 0.9744 Epoch 14/100 21/21 [==============================] - 3s 130ms/step - loss: 0.0996 - binary_accuracy: 0.9612 - precision: 0.9913 - recall: 0.9559 - val_loss: 0.1811 - val_binary_accuracy: 0.9419 - val_precision: 0.9956 - val_recall: 0.9231 Epoch 15/100 21/21 [==============================] - 3s 129ms/step - loss: 0.0898 - binary_accuracy: 0.9643 - precision: 0.9901 - recall: 0.9614 - val_loss: 0.1525 - val_binary_accuracy: 0.9486 - val_precision: 0.9986 - val_recall: 0.9298 Epoch 16/100 21/21 [==============================] - 3s 128ms/step - loss: 0.0941 - binary_accuracy: 0.9621 - precision: 0.9904 - recall: 0.9582 - val_loss: 0.5101 - val_binary_accuracy: 0.8527 - val_precision: 1.0000 - val_recall: 0.7949 Epoch 17/100 21/21 [==============================] - 3s 125ms/step - loss: 0.0798 - binary_accuracy: 0.9636 - precision: 0.9897 - recall: 0.9607 - val_loss: 0.1239 - val_binary_accuracy: 0.9622 - val_precision: 0.9875 - val_recall: 0.9595 Epoch 18/100 21/21 [==============================] - 3s 126ms/step - loss: 0.0821 - binary_accuracy: 0.9657 - precision: 0.9911 - recall: 0.9623 - val_loss: 0.1597 - val_binary_accuracy: 0.9322 - val_precision: 0.9956 - val_recall: 0.9096 Epoch 19/100 21/21 [==============================] - 3s 143ms/step - loss: 0.0800 - binary_accuracy: 0.9657 - precision: 0.9917 - recall: 0.9617 - val_loss: 0.2538 - val_binary_accuracy: 0.9109 - val_precision: 1.0000 - val_recall: 0.8758 Epoch 20/100 21/21 [==============================] - 3s 127ms/step - loss: 0.0605 - binary_accuracy: 0.9738 - precision: 0.9950 - recall: 0.9694 - val_loss: 0.6594 - val_binary_accuracy: 0.8566 - val_precision: 1.0000 - val_recall: 0.8003 Epoch 21/100 21/21 [==============================] - 4s 167ms/step - loss: 0.0726 - binary_accuracy: 0.9733 - precision: 0.9937 - recall: 0.9701 - val_loss: 0.0593 - val_binary_accuracy: 0.9816 - val_precision: 0.9945 - val_recall: 0.9798 Epoch 22/100 21/21 [==============================] - 3s 126ms/step - loss: 0.0577 - binary_accuracy: 0.9783 - precision: 0.9951 - recall: 0.9755 - val_loss: 0.1087 - val_binary_accuracy: 0.9729 - val_precision: 0.9931 - val_recall: 0.9690 Epoch 23/100 21/21 [==============================] - 3s 125ms/step - loss: 0.0652 - binary_accuracy: 0.9729 - precision: 0.9924 - recall: 0.9707 - val_loss: 1.8465 - val_binary_accuracy: 0.7180 - val_precision: 0.7180 - val_recall: 1.0000 Epoch 24/100 21/21 [==============================] - 3s 124ms/step - loss: 0.0538 - binary_accuracy: 0.9783 - precision: 0.9951 - recall: 0.9755 - val_loss: 1.5769 - val_binary_accuracy: 0.7180 - val_precision: 0.7180 - val_recall: 1.0000 Epoch 25/100 21/21 [==============================] - 4s 167ms/step - loss: 0.0549 - binary_accuracy: 0.9776 - precision: 0.9954 - recall: 0.9743 - val_loss: 0.0590 - val_binary_accuracy: 0.9777 - val_precision: 0.9904 - val_recall: 0.9784 Epoch 26/100 21/21 [==============================] - 3s 131ms/step - loss: 0.0677 - binary_accuracy: 0.9719 - precision: 0.9924 - recall: 0.9694 - val_loss: 2.6008 - val_binary_accuracy: 0.6928 - val_precision: 0.9977 - val_recall: 0.5735 Epoch 27/100 21/21 [==============================] - 3s 127ms/step - loss: 0.0469 - binary_accuracy: 0.9833 - precision: 0.9971 - recall: 0.9804 - val_loss: 1.0184 - val_binary_accuracy: 0.8605 - val_precision: 0.9983 - val_recall: 0.8070 Epoch 28/100 21/21 [==============================] - 3s 126ms/step - loss: 0.0501 - binary_accuracy: 0.9790 - precision: 0.9961 - recall: 0.9755 - val_loss: 0.3737 - val_binary_accuracy: 0.9089 - val_precision: 0.9954 - val_recall: 0.8772 Epoch 29/100 21/21 [==============================] - 3s 128ms/step - loss: 0.0548 - binary_accuracy: 0.9798 - precision: 0.9941 - recall: 0.9784 - val_loss: 1.2928 - val_binary_accuracy: 0.7907 - val_precision: 1.0000 - val_recall: 0.7085 Epoch 30/100 21/21 [==============================] - 3s 129ms/step - loss: 0.0370 - binary_accuracy: 0.9860 - precision: 0.9980 - recall: 0.9829 - val_loss: 0.1370 - val_binary_accuracy: 0.9612 - val_precision: 0.9972 - val_recall: 0.9487 Epoch 31/100 21/21 [==============================] - 3s 125ms/step - loss: 0.0585 - binary_accuracy: 0.9819 - precision: 0.9951 - recall: 0.9804 - val_loss: 1.1955 - val_binary_accuracy: 0.6870 - val_precision: 0.9976 - val_recall: 0.5655 Epoch 32/100 21/21 [==============================] - 3s 140ms/step - loss: 0.0813 - binary_accuracy: 0.9695 - precision: 0.9934 - recall: 0.9652 - val_loss: 1.0394 - val_binary_accuracy: 0.8576 - val_precision: 0.9853 - val_recall: 0.8138 Epoch 33/100 21/21 [==============================] - 3s 128ms/step - loss: 0.1111 - binary_accuracy: 0.9555 - precision: 0.9870 - recall: 0.9524 - val_loss: 4.9438 - val_binary_accuracy: 0.5911 - val_precision: 1.0000 - val_recall: 0.4305 Epoch 34/100 21/21 [==============================] - 3s 130ms/step - loss: 0.0680 - binary_accuracy: 0.9726 - precision: 0.9921 - recall: 0.9707 - val_loss: 2.8822 - val_binary_accuracy: 0.7267 - val_precision: 0.9978 - val_recall: 0.6208 Epoch 35/100 21/21 [==============================] - 4s 187ms/step - loss: 0.0784 - binary_accuracy: 0.9712 - precision: 0.9892 - recall: 0.9717 - val_loss: 0.3940 - val_binary_accuracy: 0.9390 - val_precision: 0.9942 - val_recall: 0.9204 ``` </div> --- ## Visualizing model performance Let's plot the model accuracy and loss for the training and the validating set. Note that no random seed is specified for this notebook. For your notebook, there might be slight variance. ```python fig, ax = plt.subplots(1, 4, figsize=(20, 3)) ax = ax.ravel() for i, met in enumerate(["precision", "recall", "binary_accuracy", "loss"]): ax[i].plot(history.history[met]) ax[i].plot(history.history["val_" + met]) ax[i].set_title("Model {}".format(met)) ax[i].set_xlabel("epochs") ax[i].set_ylabel(met) ax[i].legend(["train", "val"]) ``` ![png](/img/examples/vision/xray_classification_with_tpus/xray_classification_with_tpus_41_0.png) We see that the accuracy for our model is around 95%. --- ## Predict and evaluate results Let's evaluate the model on our test data! ```python model.evaluate(test_ds, return_dict=True) ``` <div class="k-default-codeblock"> ``` 4/4 [==============================] - 3s 708ms/step - loss: 0.9718 - binary_accuracy: 0.7901 - precision: 0.7524 - recall: 0.9897 {'binary_accuracy': 0.7900640964508057, 'loss': 0.9717951416969299, 'precision': 0.752436637878418, 'recall': 0.9897436499595642} ``` </div> We see that our accuracy on our test data is lower than the accuracy for our validating set. This may indicate overfitting. Our recall is greater than our precision, indicating that almost all pneumonia images are correctly identified but some normal images are falsely identified. We should aim to increase our precision. ```python for image, label in test_ds.take(1): plt.imshow(image[0] / 255.0) plt.title(CLASS_NAMES[label[0].numpy()]) prediction = model.predict(test_ds.take(1))[0] scores = [1 - prediction, prediction] for score, name in zip(scores, CLASS_NAMES): print("This image is %.2f percent %s" % ((100 * score), name)) ``` <div class="k-default-codeblock"> ``` /usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:3: DeprecationWarning: In future, it will be an error for 'np.bool_' scalars to be interpreted as an index This is separate from the ipykernel package so we can avoid doing imports until This image is 47.19 percent NORMAL This image is 52.81 percent PNEUMONIA ``` </div> ![png](/img/examples/vision/xray_classification_with_tpus/xray_classification_with_tpus_46_2.png)
keras-io/examples/vision/md/xray_classification_with_tpus.md/0
{ "file_path": "keras-io/examples/vision/md/xray_classification_with_tpus.md", "repo_id": "keras-io", "token_count": 10185 }
113
""" Title: Augmenting convnets with aggregated attention Author: [Aritra Roy Gosthipaty](https://twitter.com/ariG23498) Date created: 2022/01/22 Last modified: 2022/01/22 Description: Building a patch-convnet architecture and visualizing its attention maps. Accelerator: GPU """ """ ## Introduction Vision transformers ([Dosovitskiy et. al](https://arxiv.org/abs/2010.11929)) have emerged as a powerful alternative to Convolutional Neural Networks. ViTs process the images in a patch-based manner. The image information is then aggregated into a `CLASS` token. This token correlates to the most important patches of the image for a particular classification decision. The interaction between the `CLASS` token and the patches can be visualized to help explain a classification decision. In the academic paper [Augmenting convolutional networks with attention-based aggregation](https://arxiv.org/abs/2112.13692) by Touvron et. al, the authors propose to set up an equivalent visualization for convnets. They propose to substitute the global average pooling layer of a convnet with a Transformer layer. The self-attention layer of the Transformer would produce attention maps that correspond to the most attended patches of the image for the classification decision. In this example, we minimally implement the ideas of [Augmenting Convolutional networks with attention-based aggregation](https://arxiv.org/abs/2112.13692). The main goal of this example is to cover the following ideas, with minor modifications (to adjust the implementation with CIFAR10): - The simple design for the attention-based pooling layer, such that it explicitly provides the weights (importance) of the different patches. - The novel architecture of convnet is called the **PatchConvNet** which deviates from the age old pyramidal architecture. """ """ ## Setup and Imports This example requires TensorFlow Addons, which can be installed using the following command: ```shell pip install -U tensorflow-addons ``` """ import math import numpy as np import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt import keras from keras import layers from keras import ops from tensorflow import data as tf_data # Set seed for reproducibiltiy SEED = 42 keras.utils.set_random_seed(SEED) """ ## Hyperparameters """ # DATA BATCH_SIZE = 128 BUFFER_SIZE = BATCH_SIZE * 2 AUTO = tf_data.AUTOTUNE INPUT_SHAPE = (32, 32, 3) NUM_CLASSES = 10 # for CIFAR 10 # AUGMENTATION IMAGE_SIZE = 48 # We will resize input images to this size. # ARCHITECTURE DIMENSIONS = 256 SE_RATIO = 8 TRUNK_DEPTH = 2 # OPTIMIZER LEARNING_RATE = 1e-3 WEIGHT_DECAY = 1e-4 # PRETRAINING EPOCHS = 50 """ ## Load the CIFAR10 dataset """ (x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data() (x_train, y_train), (x_val, y_val) = ( (x_train[:40000], y_train[:40000]), (x_train[40000:], y_train[40000:]), ) print(f"Training samples: {len(x_train)}") print(f"Validation samples: {len(x_val)}") print(f"Testing samples: {len(x_test)}") train_ds = tf_data.Dataset.from_tensor_slices((x_train, y_train)) train_ds = train_ds.shuffle(BUFFER_SIZE).batch(BATCH_SIZE).prefetch(AUTO) val_ds = tf_data.Dataset.from_tensor_slices((x_val, y_val)) val_ds = val_ds.batch(BATCH_SIZE).prefetch(AUTO) test_ds = tf_data.Dataset.from_tensor_slices((x_test, y_test)) test_ds = test_ds.batch(BATCH_SIZE).prefetch(AUTO) """ ## Augmentation layers """ def get_preprocessing(): model = keras.Sequential( [ layers.Rescaling(1 / 255.0), layers.Resizing(IMAGE_SIZE, IMAGE_SIZE), ], name="preprocessing", ) return model def get_train_augmentation_model(): model = keras.Sequential( [ layers.Rescaling(1 / 255.0), layers.Resizing(INPUT_SHAPE[0] + 20, INPUT_SHAPE[0] + 20), layers.RandomCrop(IMAGE_SIZE, IMAGE_SIZE), layers.RandomFlip("horizontal"), ], name="train_data_augmentation", ) return model """ ## Convolutional stem The stem of the model is a lightweight preprocessing module that maps images pixels to a set of vectors (patches). """ def build_convolutional_stem(dimensions): """Build the convolutional stem. Args: dimensions: The embedding dimension of the patches (d in paper). Returs: The convolutional stem as a keras seqeuntial model. """ config = { "kernel_size": (3, 3), "strides": (2, 2), "activation": ops.gelu, "padding": "same", } convolutional_stem = keras.Sequential( [ layers.Conv2D(filters=dimensions // 2, **config), layers.Conv2D(filters=dimensions, **config), ], name="convolutional_stem", ) return convolutional_stem """ ## Convolutional trunk The trunk of the model is the most compute-intesive part. It consists of `N` stacked residual convolutional blocks. """ class SqueezeExcite(layers.Layer): """Applies squeeze and excitation to input feature maps as seen in https://arxiv.org/abs/1709.01507. Args: ratio: The ratio with which the feature map needs to be reduced in the reduction phase. Inputs: Convolutional features. Outputs: Attention modified feature maps. """ def __init__(self, ratio, **kwargs): super().__init__(**kwargs) self.ratio = ratio def get_config(self): config = super().get_config() config.update({"ratio": self.ratio}) return config def build(self, input_shape): filters = input_shape[-1] self.squeeze = layers.GlobalAveragePooling2D(keepdims=True) self.reduction = layers.Dense( units=filters // self.ratio, activation="relu", use_bias=False, ) self.excite = layers.Dense(units=filters, activation="sigmoid", use_bias=False) self.multiply = layers.Multiply() def call(self, x): shortcut = x x = self.squeeze(x) x = self.reduction(x) x = self.excite(x) x = self.multiply([shortcut, x]) return x class Trunk(layers.Layer): """Convolutional residual trunk as in the https://arxiv.org/abs/2112.13692 Args: depth: Number of trunk residual blocks dimensions: Dimnesion of the model (denoted by d in the paper) ratio: The Squeeze-Excitation ratio Inputs: Convolutional features extracted from the conv stem. Outputs: Flattened patches. """ def __init__(self, depth, dimensions, ratio, **kwargs): super().__init__(**kwargs) self.ratio = ratio self.dimensions = dimensions self.depth = depth def get_config(self): config = super().get_config() config.update( { "ratio": self.ratio, "dimensions": self.dimensions, "depth": self.depth, } ) return config def build(self, input_shape): config = { "filters": self.dimensions, "activation": ops.gelu, "padding": "same", } trunk_block = [ layers.LayerNormalization(epsilon=1e-6), layers.Conv2D(kernel_size=(1, 1), **config), layers.Conv2D(kernel_size=(3, 3), **config), SqueezeExcite(ratio=self.ratio), layers.Conv2D(kernel_size=(1, 1), filters=self.dimensions, padding="same"), ] self.trunk_blocks = [keras.Sequential(trunk_block) for _ in range(self.depth)] self.add = layers.Add() self.flatten_spatial = layers.Reshape((-1, self.dimensions)) def call(self, x): # Remember the input. shortcut = x for trunk_block in self.trunk_blocks: output = trunk_block(x) shortcut = self.add([output, shortcut]) x = shortcut # Flatten the patches. x = self.flatten_spatial(x) return x """ ## Attention Pooling The output of the convolutional trunk is attended with a trainable _query_ class token. The resulting attention map is the weight of every patch of the image for a classification decision. """ class AttentionPooling(layers.Layer): """Applies attention to the patches extracted form the trunk with the CLS token. Args: dimensions: The dimension of the whole architecture. num_classes: The number of classes in the dataset. Inputs: Flattened patches from the trunk. Outputs: The modifies CLS token. """ def __init__(self, dimensions, num_classes, **kwargs): super().__init__(**kwargs) self.dimensions = dimensions self.num_classes = num_classes self.cls = keras.Variable(ops.zeros((1, 1, dimensions))) def get_config(self): config = super().get_config() config.update( { "dimensions": self.dimensions, "num_classes": self.num_classes, "cls": self.cls.numpy(), } ) return config def build(self, input_shape): self.attention = layers.MultiHeadAttention( num_heads=1, key_dim=self.dimensions, dropout=0.2, ) self.layer_norm1 = layers.LayerNormalization(epsilon=1e-6) self.layer_norm2 = layers.LayerNormalization(epsilon=1e-6) self.layer_norm3 = layers.LayerNormalization(epsilon=1e-6) self.mlp = keras.Sequential( [ layers.Dense(units=self.dimensions, activation=ops.gelu), layers.Dropout(0.2), layers.Dense(units=self.dimensions, activation=ops.gelu), ] ) self.dense = layers.Dense(units=self.num_classes) self.flatten = layers.Flatten() def call(self, x): batch_size = ops.shape(x)[0] # Expand the class token batch number of times. class_token = ops.repeat(self.cls, repeats=batch_size, axis=0) # Concat the input with the trainable class token. x = ops.concatenate([class_token, x], axis=1) # Apply attention to x. x = self.layer_norm1(x) x, viz_weights = self.attention( query=x[:, 0:1], key=x, value=x, return_attention_scores=True ) class_token = class_token + x class_token = self.layer_norm2(class_token) class_token = self.flatten(class_token) class_token = self.layer_norm3(class_token) class_token = class_token + self.mlp(class_token) # Build the logits logits = self.dense(class_token) return logits, ops.squeeze(viz_weights)[..., 1:] """ ## Patch convnet The patch-convnet is shown in the figure below. | ![image model](https://i.imgur.com/NHiQeac.png) | | :--: | | [Source](https://arxiv.org/abs/2112.13692) | All the modules in the architecture are built in the earlier seciton. In this section, we stack all of the different modules together. """ class PatchConvNet(keras.Model): def __init__( self, stem, trunk, attention_pooling, preprocessing_model, train_augmentation_model, **kwargs, ): super().__init__(**kwargs) self.stem = stem self.trunk = trunk self.attention_pooling = attention_pooling self.train_augmentation_model = train_augmentation_model self.preprocessing_model = preprocessing_model def get_config(self): config = super().get_config() config.update( { "stem": self.stem, "trunk": self.trunk, "attention_pooling": self.attention_pooling, "train_augmentation_model": self.train_augmentation_model, "preprocessing_model": self.preprocessing_model, } ) return config def _calculate_loss(self, inputs, test=False): images, labels = inputs # Augment the input images. if test: augmented_images = self.preprocessing_model(images) else: augmented_images = self.train_augmentation_model(images) # Pass through the stem. x = self.stem(augmented_images) # Pass through the trunk. x = self.trunk(x) # Pass through the attention pooling block. logits, _ = self.attention_pooling(x) # Compute the total loss. total_loss = self.compiled_loss(labels, logits) return total_loss, logits def train_step(self, inputs): with tf.GradientTape() as tape: total_loss, logits = self._calculate_loss(inputs) # Apply gradients. train_vars = [ self.stem.trainable_variables, self.trunk.trainable_variables, self.attention_pooling.trainable_variables, ] grads = tape.gradient(total_loss, train_vars) trainable_variable_list = [] for grad, var in zip(grads, train_vars): for g, v in zip(grad, var): trainable_variable_list.append((g, v)) self.optimizer.apply_gradients(trainable_variable_list) # Report progress. _, labels = inputs self.compiled_metrics.update_state(labels, logits) return {m.name: m.result() for m in self.metrics} def test_step(self, inputs): total_loss, logits = self._calculate_loss(inputs, test=True) # Report progress. _, labels = inputs self.compiled_metrics.update_state(labels, logits) return {m.name: m.result() for m in self.metrics} def call(self, images): # Augment the input images. augmented_images = self.preprocessing_model(images) # Pass through the stem. x = self.stem(augmented_images) # Pass through the trunk. x = self.trunk(x) # Pass through the attention pooling block. logits, viz_weights = self.attention_pooling(x) return logits, viz_weights """ ## Callbacks This callback will plot the image and the attention map overlayed on the image. """ # Taking a batch of test inputs to measure model's progress. test_images, test_labels = next(iter(test_ds)) class TrainMonitor(keras.callbacks.Callback): def __init__(self, epoch_interval=None): self.epoch_interval = epoch_interval def on_epoch_end(self, epoch, logs=None): if self.epoch_interval and epoch % self.epoch_interval == 4: test_augmented_images = self.model.preprocessing_model(test_images) # Pass through the stem. test_x = self.model.stem(test_augmented_images) # Pass through the trunk. test_x = self.model.trunk(test_x) # Pass through the attention pooling block. _, test_viz_weights = self.model.attention_pooling(test_x) # Reshape the vizualization weights num_patches = ops.shape(test_viz_weights)[-1] height = width = int(math.sqrt(num_patches)) test_viz_weights = layers.Reshape((height, width))(test_viz_weights) # Take a random image and its attention weights. index = np.random.randint(low=0, high=ops.shape(test_augmented_images)[0]) selected_image = test_augmented_images[index] selected_weight = test_viz_weights[index] # Plot the images and the overlayed attention map. fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10, 5)) ax[0].imshow(selected_image) ax[0].set_title(f"Original: {epoch:03d}") ax[0].axis("off") img = ax[1].imshow(selected_image) ax[1].imshow( selected_weight, cmap="inferno", alpha=0.6, extent=img.get_extent() ) ax[1].set_title(f"Attended: {epoch:03d}") ax[1].axis("off") plt.axis("off") plt.show() plt.close() """ ## Learning rate schedule """ class WarmUpCosine(keras.optimizers.schedules.LearningRateSchedule): def __init__( self, learning_rate_base, total_steps, warmup_learning_rate, warmup_steps ): super().__init__() self.learning_rate_base = learning_rate_base self.total_steps = total_steps self.warmup_learning_rate = warmup_learning_rate self.warmup_steps = warmup_steps self.pi = np.pi def __call__(self, step): if self.total_steps < self.warmup_steps: raise ValueError("Total_steps must be larger or equal to warmup_steps.") cos_annealed_lr = ops.cos( self.pi * (ops.cast(step, "float32") - self.warmup_steps) / float(self.total_steps - self.warmup_steps) ) learning_rate = 0.5 * self.learning_rate_base * (1 + cos_annealed_lr) if self.warmup_steps > 0: if self.learning_rate_base < self.warmup_learning_rate: raise ValueError( "Learning_rate_base must be larger or equal to " "warmup_learning_rate." ) slope = ( self.learning_rate_base - self.warmup_learning_rate ) / self.warmup_steps warmup_rate = slope * ops.cast(step, "float32") + self.warmup_learning_rate learning_rate = ops.where( step < self.warmup_steps, warmup_rate, learning_rate ) return ops.where( step > self.total_steps, 0.0, learning_rate, ) total_steps = int((len(x_train) / BATCH_SIZE) * EPOCHS) warmup_epoch_percentage = 0.15 warmup_steps = int(total_steps * warmup_epoch_percentage) scheduled_lrs = WarmUpCosine( learning_rate_base=LEARNING_RATE, total_steps=total_steps, warmup_learning_rate=0.0, warmup_steps=warmup_steps, ) """ ## Training We build the model, compile it, and train it. """ train_augmentation_model = get_train_augmentation_model() preprocessing_model = get_preprocessing() conv_stem = build_convolutional_stem(dimensions=DIMENSIONS) conv_trunk = Trunk(depth=TRUNK_DEPTH, dimensions=DIMENSIONS, ratio=SE_RATIO) attention_pooling = AttentionPooling(dimensions=DIMENSIONS, num_classes=NUM_CLASSES) patch_conv_net = PatchConvNet( stem=conv_stem, trunk=conv_trunk, attention_pooling=attention_pooling, train_augmentation_model=train_augmentation_model, preprocessing_model=preprocessing_model, ) # Assemble the callbacks. train_callbacks = [TrainMonitor(epoch_interval=5)] # Get the optimizer. optimizer = keras.optimizers.AdamW( learning_rate=scheduled_lrs, weight_decay=WEIGHT_DECAY ) # Compile and pretrain the model. patch_conv_net.compile( optimizer=optimizer, loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=[ keras.metrics.SparseCategoricalAccuracy(name="accuracy"), keras.metrics.SparseTopKCategoricalAccuracy(5, name="top-5-accuracy"), ], ) history = patch_conv_net.fit( train_ds, epochs=EPOCHS, validation_data=val_ds, callbacks=train_callbacks, ) # Evaluate the model with the test dataset. loss, acc_top1, acc_top5 = patch_conv_net.evaluate(test_ds) print(f"Loss: {loss:0.2f}") print(f"Top 1 test accuracy: {acc_top1*100:0.2f}%") print(f"Top 5 test accuracy: {acc_top5*100:0.2f}%") """ ## Inference Here, we use the trained model to plot the attention map. """ def plot_attention(image): """Plots the attention map on top of the image. Args: image: A numpy image of arbitrary size. """ # Resize the image to a (32, 32) dim. image = ops.image.resize(image, (32, 32)) image = image[np.newaxis, ...] test_augmented_images = patch_conv_net.preprocessing_model(image) # Pass through the stem. test_x = patch_conv_net.stem(test_augmented_images) # Pass through the trunk. test_x = patch_conv_net.trunk(test_x) # Pass through the attention pooling block. _, test_viz_weights = patch_conv_net.attention_pooling(test_x) test_viz_weights = test_viz_weights[np.newaxis, ...] # Reshape the vizualization weights. num_patches = ops.shape(test_viz_weights)[-1] height = width = int(math.sqrt(num_patches)) test_viz_weights = layers.Reshape((height, width))(test_viz_weights) selected_image = test_augmented_images[0] selected_weight = test_viz_weights[0] # Plot the images. fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10, 5)) ax[0].imshow(selected_image) ax[0].set_title(f"Original") ax[0].axis("off") img = ax[1].imshow(selected_image) ax[1].imshow(selected_weight, cmap="inferno", alpha=0.6, extent=img.get_extent()) ax[1].set_title(f"Attended") ax[1].axis("off") plt.axis("off") plt.show() plt.close() url = "http://farm9.staticflickr.com/8017/7140384795_385b1f48df_z.jpg" image_name = keras.utils.get_file(fname="image.jpg", origin=url) image = keras.utils.load_img(image_name) image = keras.utils.img_to_array(image) plot_attention(image) """ ## Conclusions The attention map corresponding to the trainable `CLASS` token and the patches of the image helps explain the classificaiton decision. One should also note that the attention maps gradually get better. In the initial training regime, the attention is scattered all around while at a later stage, it focuses more on the objects of the image. The non-pyramidal convnet achieves an accuracy of ~84-85% top-1 test accuracy. I would like to thank [JarvisLabs.ai](https://jarvislabs.ai/) for providing GPU credits for this project. """
keras-io/examples/vision/patch_convnet.py/0
{ "file_path": "keras-io/examples/vision/patch_convnet.py", "repo_id": "keras-io", "token_count": 9250 }
114
""" Title: Image Super-Resolution using an Efficient Sub-Pixel CNN Author: [Xingyu Long](https://github.com/xingyu-long) Date created: 2020/07/28 Last modified: 2020/08/27 Description: Implementing Super-Resolution using Efficient sub-pixel model on BSDS500. Accelerator: GPU Converted to Keras 3 by: [Md Awsfalur Rahman](https://awsaf49.github.io) """ """ ## Introduction ESPCN (Efficient Sub-Pixel CNN), proposed by [Shi, 2016](https://arxiv.org/abs/1609.05158) is a model that reconstructs a high-resolution version of an image given a low-resolution version. It leverages efficient "sub-pixel convolution" layers, which learns an array of image upscaling filters. In this code example, we will implement the model from the paper and train it on a small dataset, [BSDS500](https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html). [BSDS500](https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html). """ """ ## Setup """ import keras from keras import layers from keras import ops from keras.utils import load_img from keras.utils import array_to_img from keras.utils import img_to_array from keras.preprocessing import image_dataset_from_directory import tensorflow as tf # only for data preprocessing import os import math import numpy as np from IPython.display import display """ ## Load data: BSDS500 dataset ### Download dataset We use the built-in `keras.utils.get_file` utility to retrieve the dataset. """ dataset_url = "http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/BSR/BSR_bsds500.tgz" data_dir = keras.utils.get_file(origin=dataset_url, fname="BSR", untar=True) root_dir = os.path.join(data_dir, "BSDS500/data") """ We create training and validation datasets via `image_dataset_from_directory`. """ crop_size = 300 upscale_factor = 3 input_size = crop_size // upscale_factor batch_size = 8 train_ds = image_dataset_from_directory( root_dir, batch_size=batch_size, image_size=(crop_size, crop_size), validation_split=0.2, subset="training", seed=1337, label_mode=None, ) valid_ds = image_dataset_from_directory( root_dir, batch_size=batch_size, image_size=(crop_size, crop_size), validation_split=0.2, subset="validation", seed=1337, label_mode=None, ) """ We rescale the images to take values in the range [0, 1]. """ def scaling(input_image): input_image = input_image / 255.0 return input_image # Scale from (0, 255) to (0, 1) train_ds = train_ds.map(scaling) valid_ds = valid_ds.map(scaling) """ Let's visualize a few sample images: """ for batch in train_ds.take(1): for img in batch: display(array_to_img(img)) """ We prepare a dataset of test image paths that we will use for visual evaluation at the end of this example. """ dataset = os.path.join(root_dir, "images") test_path = os.path.join(dataset, "test") test_img_paths = sorted( [ os.path.join(test_path, fname) for fname in os.listdir(test_path) if fname.endswith(".jpg") ] ) """ ## Crop and resize images Let's process image data. First, we convert our images from the RGB color space to the [YUV colour space](https://en.wikipedia.org/wiki/YUV). For the input data (low-resolution images), we crop the image, retrieve the `y` channel (luninance), and resize it with the `area` method (use `BICUBIC` if you use PIL). We only consider the luminance channel in the YUV color space because humans are more sensitive to luminance change. For the target data (high-resolution images), we just crop the image and retrieve the `y` channel. """ # Use TF Ops to process. def process_input(input, input_size, upscale_factor): input = tf.image.rgb_to_yuv(input) last_dimension_axis = len(input.shape) - 1 y, u, v = tf.split(input, 3, axis=last_dimension_axis) return tf.image.resize(y, [input_size, input_size], method="area") def process_target(input): input = tf.image.rgb_to_yuv(input) last_dimension_axis = len(input.shape) - 1 y, u, v = tf.split(input, 3, axis=last_dimension_axis) return y train_ds = train_ds.map( lambda x: (process_input(x, input_size, upscale_factor), process_target(x)) ) train_ds = train_ds.prefetch(buffer_size=32) valid_ds = valid_ds.map( lambda x: (process_input(x, input_size, upscale_factor), process_target(x)) ) valid_ds = valid_ds.prefetch(buffer_size=32) """ Let's take a look at the input and target data. """ for batch in train_ds.take(1): for img in batch[0]: display(array_to_img(img)) for img in batch[1]: display(array_to_img(img)) """ ## Build a model Compared to the paper, we add one more layer and we use the `relu` activation function instead of `tanh`. It achieves better performance even though we train the model for fewer epochs. """ class DepthToSpace(layers.Layer): def __init__(self, block_size): super().__init__() self.block_size = block_size def call(self, input): batch, height, width, depth = ops.shape(input) depth = depth // (self.block_size**2) x = ops.reshape( input, [batch, height, width, self.block_size, self.block_size, depth] ) x = ops.transpose(x, [0, 1, 3, 2, 4, 5]) x = ops.reshape( x, [batch, height * self.block_size, width * self.block_size, depth] ) return x def get_model(upscale_factor=3, channels=1): conv_args = { "activation": "relu", "kernel_initializer": "orthogonal", "padding": "same", } inputs = keras.Input(shape=(None, None, channels)) x = layers.Conv2D(64, 5, **conv_args)(inputs) x = layers.Conv2D(64, 3, **conv_args)(x) x = layers.Conv2D(32, 3, **conv_args)(x) x = layers.Conv2D(channels * (upscale_factor**2), 3, **conv_args)(x) outputs = DepthToSpace(upscale_factor)(x) return keras.Model(inputs, outputs) """ ## Define utility functions We need to define several utility functions to monitor our results: - `plot_results` to plot an save an image. - `get_lowres_image` to convert an image to its low-resolution version. - `upscale_image` to turn a low-resolution image to a high-resolution version reconstructed by the model. In this function, we use the `y` channel from the YUV color space as input to the model and then combine the output with the other channels to obtain an RGB image. """ import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes from mpl_toolkits.axes_grid1.inset_locator import mark_inset import PIL def plot_results(img, prefix, title): """Plot the result with zoom-in area.""" img_array = img_to_array(img) img_array = img_array.astype("float32") / 255.0 # Create a new figure with a default 111 subplot. fig, ax = plt.subplots() im = ax.imshow(img_array[::-1], origin="lower") plt.title(title) # zoom-factor: 2.0, location: upper-left axins = zoomed_inset_axes(ax, 2, loc=2) axins.imshow(img_array[::-1], origin="lower") # Specify the limits. x1, x2, y1, y2 = 200, 300, 100, 200 # Apply the x-limits. axins.set_xlim(x1, x2) # Apply the y-limits. axins.set_ylim(y1, y2) plt.yticks(visible=False) plt.xticks(visible=False) # Make the line. mark_inset(ax, axins, loc1=1, loc2=3, fc="none", ec="blue") plt.savefig(str(prefix) + "-" + title + ".png") plt.show() def get_lowres_image(img, upscale_factor): """Return low-resolution image to use as model input.""" return img.resize( (img.size[0] // upscale_factor, img.size[1] // upscale_factor), PIL.Image.BICUBIC, ) def upscale_image(model, img): """Predict the result based on input image and restore the image as RGB.""" ycbcr = img.convert("YCbCr") y, cb, cr = ycbcr.split() y = img_to_array(y) y = y.astype("float32") / 255.0 input = np.expand_dims(y, axis=0) out = model.predict(input) out_img_y = out[0] out_img_y *= 255.0 # Restore the image in RGB color space. out_img_y = out_img_y.clip(0, 255) out_img_y = out_img_y.reshape((np.shape(out_img_y)[0], np.shape(out_img_y)[1])) out_img_y = PIL.Image.fromarray(np.uint8(out_img_y), mode="L") out_img_cb = cb.resize(out_img_y.size, PIL.Image.BICUBIC) out_img_cr = cr.resize(out_img_y.size, PIL.Image.BICUBIC) out_img = PIL.Image.merge("YCbCr", (out_img_y, out_img_cb, out_img_cr)).convert( "RGB" ) return out_img """ ## Define callbacks to monitor training The `ESPCNCallback` object will compute and display the [PSNR](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio) metric. This is the main metric we use to evaluate super-resolution performance. """ class ESPCNCallback(keras.callbacks.Callback): def __init__(self): super().__init__() self.test_img = get_lowres_image(load_img(test_img_paths[0]), upscale_factor) # Store PSNR value in each epoch. def on_epoch_begin(self, epoch, logs=None): self.psnr = [] def on_epoch_end(self, epoch, logs=None): print("Mean PSNR for epoch: %.2f" % (np.mean(self.psnr))) if epoch % 20 == 0: prediction = upscale_image(self.model, self.test_img) plot_results(prediction, "epoch-" + str(epoch), "prediction") def on_test_batch_end(self, batch, logs=None): self.psnr.append(10 * math.log10(1 / logs["loss"])) """ Define `ModelCheckpoint` and `EarlyStopping` callbacks. """ early_stopping_callback = keras.callbacks.EarlyStopping(monitor="loss", patience=10) checkpoint_filepath = "/tmp/checkpoint.keras" model_checkpoint_callback = keras.callbacks.ModelCheckpoint( filepath=checkpoint_filepath, save_weights_only=False, monitor="loss", mode="min", save_best_only=True, ) model = get_model(upscale_factor=upscale_factor, channels=1) model.summary() callbacks = [ESPCNCallback(), early_stopping_callback, model_checkpoint_callback] loss_fn = keras.losses.MeanSquaredError() optimizer = keras.optimizers.Adam(learning_rate=0.001) """ ## Train the model """ epochs = 100 model.compile( optimizer=optimizer, loss=loss_fn, ) model.fit( train_ds, epochs=epochs, callbacks=callbacks, validation_data=valid_ds, verbose=2 ) # The model weights (that are considered the best) are loaded into the model. model.load_weights(checkpoint_filepath) """ ## Run model prediction and plot the results Let's compute the reconstructed version of a few images and save the results. """ total_bicubic_psnr = 0.0 total_test_psnr = 0.0 for index, test_img_path in enumerate(test_img_paths[50:60]): img = load_img(test_img_path) lowres_input = get_lowres_image(img, upscale_factor) w = lowres_input.size[0] * upscale_factor h = lowres_input.size[1] * upscale_factor highres_img = img.resize((w, h)) prediction = upscale_image(model, lowres_input) lowres_img = lowres_input.resize((w, h)) lowres_img_arr = img_to_array(lowres_img) highres_img_arr = img_to_array(highres_img) predict_img_arr = img_to_array(prediction) bicubic_psnr = tf.image.psnr(lowres_img_arr, highres_img_arr, max_val=255) test_psnr = tf.image.psnr(predict_img_arr, highres_img_arr, max_val=255) total_bicubic_psnr += bicubic_psnr total_test_psnr += test_psnr print( "PSNR of low resolution image and high resolution image is %.4f" % bicubic_psnr ) print("PSNR of predict and high resolution is %.4f" % test_psnr) plot_results(lowres_img, index, "lowres") plot_results(highres_img, index, "highres") plot_results(prediction, index, "prediction") print("Avg. PSNR of lowres images is %.4f" % (total_bicubic_psnr / 10)) print("Avg. PSNR of reconstructions is %.4f" % (total_test_psnr / 10))
keras-io/examples/vision/super_resolution_sub_pixel.py/0
{ "file_path": "keras-io/examples/vision/super_resolution_sub_pixel.py", "repo_id": "keras-io", "token_count": 4627 }
115
""" Title: Working with RNNs Authors: Scott Zhu, Francois Chollet Date created: 2019/07/08 Last modified: 2023/07/10 Description: Complete guide to using & customizing RNN layers. Accelerator: GPU """ """ ## Introduction Recurrent neural networks (RNN) are a class of neural networks that is powerful for modeling sequence data such as time series or natural language. Schematically, a RNN layer uses a `for` loop to iterate over the timesteps of a sequence, while maintaining an internal state that encodes information about the timesteps it has seen so far. The Keras RNN API is designed with a focus on: - **Ease of use**: the built-in `keras.layers.RNN`, `keras.layers.LSTM`, `keras.layers.GRU` layers enable you to quickly build recurrent models without having to make difficult configuration choices. - **Ease of customization**: You can also define your own RNN cell layer (the inner part of the `for` loop) with custom behavior, and use it with the generic `keras.layers.RNN` layer (the `for` loop itself). This allows you to quickly prototype different research ideas in a flexible way with minimal code. """ """ ## Setup """ import numpy as np import tensorflow as tf import keras from keras import layers """ ## Built-in RNN layers: a simple example """ """ There are three built-in RNN layers in Keras: 1. `keras.layers.SimpleRNN`, a fully-connected RNN where the output from previous timestep is to be fed to next timestep. 2. `keras.layers.GRU`, first proposed in [Cho et al., 2014](https://arxiv.org/abs/1406.1078). 3. `keras.layers.LSTM`, first proposed in [Hochreiter & Schmidhuber, 1997](https://www.bioinf.jku.at/publications/older/2604.pdf). In early 2015, Keras had the first reusable open-source Python implementations of LSTM and GRU. Here is a simple example of a `Sequential` model that processes sequences of integers, embeds each integer into a 64-dimensional vector, then processes the sequence of vectors using a `LSTM` layer. """ model = keras.Sequential() # Add an Embedding layer expecting input vocab of size 1000, and # output embedding dimension of size 64. model.add(layers.Embedding(input_dim=1000, output_dim=64)) # Add a LSTM layer with 128 internal units. model.add(layers.LSTM(128)) # Add a Dense layer with 10 units. model.add(layers.Dense(10)) model.summary() """ Built-in RNNs support a number of useful features: - Recurrent dropout, via the `dropout` and `recurrent_dropout` arguments - Ability to process an input sequence in reverse, via the `go_backwards` argument - Loop unrolling (which can lead to a large speedup when processing short sequences on CPU), via the `unroll` argument - ...and more. For more information, see the [RNN API documentation](https://keras.io/api/layers/recurrent_layers/). """ """ ## Outputs and states By default, the output of a RNN layer contains a single vector per sample. This vector is the RNN cell output corresponding to the last timestep, containing information about the entire input sequence. The shape of this output is `(batch_size, units)` where `units` corresponds to the `units` argument passed to the layer's constructor. A RNN layer can also return the entire sequence of outputs for each sample (one vector per timestep per sample), if you set `return_sequences=True`. The shape of this output is `(batch_size, timesteps, units)`. """ model = keras.Sequential() model.add(layers.Embedding(input_dim=1000, output_dim=64)) # The output of GRU will be a 3D tensor of shape (batch_size, timesteps, 256) model.add(layers.GRU(256, return_sequences=True)) # The output of SimpleRNN will be a 2D tensor of shape (batch_size, 128) model.add(layers.SimpleRNN(128)) model.add(layers.Dense(10)) model.summary() """ In addition, a RNN layer can return its final internal state(s). The returned states can be used to resume the RNN execution later, or [to initialize another RNN](https://arxiv.org/abs/1409.3215). This setting is commonly used in the encoder-decoder sequence-to-sequence model, where the encoder final state is used as the initial state of the decoder. To configure a RNN layer to return its internal state, set the `return_state` parameter to `True` when creating the layer. Note that `LSTM` has 2 state tensors, but `GRU` only has one. To configure the initial state of the layer, just call the layer with additional keyword argument `initial_state`. Note that the shape of the state needs to match the unit size of the layer, like in the example below. """ encoder_vocab = 1000 decoder_vocab = 2000 encoder_input = layers.Input(shape=(None,)) encoder_embedded = layers.Embedding(input_dim=encoder_vocab, output_dim=64)( encoder_input ) # Return states in addition to output output, state_h, state_c = layers.LSTM(64, return_state=True, name="encoder")( encoder_embedded ) encoder_state = [state_h, state_c] decoder_input = layers.Input(shape=(None,)) decoder_embedded = layers.Embedding(input_dim=decoder_vocab, output_dim=64)( decoder_input ) # Pass the 2 states to a new LSTM layer, as initial state decoder_output = layers.LSTM(64, name="decoder")( decoder_embedded, initial_state=encoder_state ) output = layers.Dense(10)(decoder_output) model = keras.Model([encoder_input, decoder_input], output) model.summary() """ ## RNN layers and RNN cells In addition to the built-in RNN layers, the RNN API also provides cell-level APIs. Unlike RNN layers, which processes whole batches of input sequences, the RNN cell only processes a single timestep. The cell is the inside of the `for` loop of a RNN layer. Wrapping a cell inside a `keras.layers.RNN` layer gives you a layer capable of processing batches of sequences, e.g. `RNN(LSTMCell(10))`. Mathematically, `RNN(LSTMCell(10))` produces the same result as `LSTM(10)`. In fact, the implementation of this layer in TF v1.x was just creating the corresponding RNN cell and wrapping it in a RNN layer. However using the built-in `GRU` and `LSTM` layers enable the use of CuDNN and you may see better performance. There are three built-in RNN cells, each of them corresponding to the matching RNN layer. - `keras.layers.SimpleRNNCell` corresponds to the `SimpleRNN` layer. - `keras.layers.GRUCell` corresponds to the `GRU` layer. - `keras.layers.LSTMCell` corresponds to the `LSTM` layer. The cell abstraction, together with the generic `keras.layers.RNN` class, make it very easy to implement custom RNN architectures for your research. """ """ ## Cross-batch statefulness When processing very long sequences (possibly infinite), you may want to use the pattern of **cross-batch statefulness**. Normally, the internal state of a RNN layer is reset every time it sees a new batch (i.e. every sample seen by the layer is assumed to be independent of the past). The layer will only maintain a state while processing a given sample. If you have very long sequences though, it is useful to break them into shorter sequences, and to feed these shorter sequences sequentially into a RNN layer without resetting the layer's state. That way, the layer can retain information about the entirety of the sequence, even though it's only seeing one sub-sequence at a time. You can do this by setting `stateful=True` in the constructor. If you have a sequence `s = [t0, t1, ... t1546, t1547]`, you would split it into e.g. ``` s1 = [t0, t1, ... t100] s2 = [t101, ... t201] ... s16 = [t1501, ... t1547] ``` Then you would process it via: ```python lstm_layer = layers.LSTM(64, stateful=True) for s in sub_sequences: output = lstm_layer(s) ``` When you want to clear the state, you can use `layer.reset_states()`. > Note: In this setup, sample `i` in a given batch is assumed to be the continuation of sample `i` in the previous batch. This means that all batches should contain the same number of samples (batch size). E.g. if a batch contains `[sequence_A_from_t0_to_t100, sequence_B_from_t0_to_t100]`, the next batch should contain `[sequence_A_from_t101_to_t200, sequence_B_from_t101_to_t200]`. Here is a complete example: """ paragraph1 = np.random.random((20, 10, 50)).astype(np.float32) paragraph2 = np.random.random((20, 10, 50)).astype(np.float32) paragraph3 = np.random.random((20, 10, 50)).astype(np.float32) lstm_layer = layers.LSTM(64, stateful=True) output = lstm_layer(paragraph1) output = lstm_layer(paragraph2) output = lstm_layer(paragraph3) # reset_states() will reset the cached state to the original initial_state. # If no initial_state was provided, zero-states will be used by default. lstm_layer.reset_states() """ ### RNN State Reuse <a id="rnn_state_reuse"></a> """ """ The recorded states of the RNN layer are not included in the `layer.weights()`. If you would like to reuse the state from a RNN layer, you can retrieve the states value by `layer.states` and use it as the initial state for a new layer via the Keras functional API like `new_layer(inputs, initial_state=layer.states)`, or model subclassing. Please also note that sequential model might not be used in this case since it only supports layers with single input and output, the extra input of initial state makes it impossible to use here. """ paragraph1 = np.random.random((20, 10, 50)).astype(np.float32) paragraph2 = np.random.random((20, 10, 50)).astype(np.float32) paragraph3 = np.random.random((20, 10, 50)).astype(np.float32) lstm_layer = layers.LSTM(64, stateful=True) output = lstm_layer(paragraph1) output = lstm_layer(paragraph2) existing_state = lstm_layer.states new_lstm_layer = layers.LSTM(64) new_output = new_lstm_layer(paragraph3, initial_state=existing_state) """ ## Bidirectional RNNs For sequences other than time series (e.g. text), it is often the case that a RNN model can perform better if it not only processes sequence from start to end, but also backwards. For example, to predict the next word in a sentence, it is often useful to have the context around the word, not only just the words that come before it. Keras provides an easy API for you to build such bidirectional RNNs: the `keras.layers.Bidirectional` wrapper. """ model = keras.Sequential() model.add( layers.Bidirectional(layers.LSTM(64, return_sequences=True), input_shape=(5, 10)) ) model.add(layers.Bidirectional(layers.LSTM(32))) model.add(layers.Dense(10)) model.summary() """ Under the hood, `Bidirectional` will copy the RNN layer passed in, and flip the `go_backwards` field of the newly copied layer, so that it will process the inputs in reverse order. The output of the `Bidirectional` RNN will be, by default, the concatenation of the forward layer output and the backward layer output. If you need a different merging behavior, e.g. concatenation, change the `merge_mode` parameter in the `Bidirectional` wrapper constructor. For more details about `Bidirectional`, please check [the API docs](https://keras.io/api/layers/recurrent_layers/bidirectional/). """ """ ## Performance optimization and CuDNN kernels In TensorFlow 2.0, the built-in LSTM and GRU layers have been updated to leverage CuDNN kernels by default when a GPU is available. With this change, the prior `keras.layers.CuDNNLSTM/CuDNNGRU` layers have been deprecated, and you can build your model without worrying about the hardware it will run on. Since the CuDNN kernel is built with certain assumptions, this means the layer **will not be able to use the CuDNN kernel if you change the defaults of the built-in LSTM or GRU layers**. E.g.: - Changing the `activation` function from `tanh` to something else. - Changing the `recurrent_activation` function from `sigmoid` to something else. - Using `recurrent_dropout` > 0. - Setting `unroll` to True, which forces LSTM/GRU to decompose the inner `tf.while_loop` into an unrolled `for` loop. - Setting `use_bias` to False. - Using masking when the input data is not strictly right padded (if the mask corresponds to strictly right padded data, CuDNN can still be used. This is the most common case). For the detailed list of constraints, please see the documentation for the [LSTM](https://keras.io/api/layers/recurrent_layers/lstm/) and [GRU](https://keras.io/api/layers/recurrent_layers/gru/) layers. """ """ ### Using CuDNN kernels when available Let's build a simple LSTM model to demonstrate the performance difference. We'll use as input sequences the sequence of rows of MNIST digits (treating each row of pixels as a timestep), and we'll predict the digit's label. """ batch_size = 64 # Each MNIST image batch is a tensor of shape (batch_size, 28, 28). # Each input sequence will be of size (28, 28) (height is treated like time). input_dim = 28 units = 64 output_size = 10 # labels are from 0 to 9 # Build the RNN model def build_model(allow_cudnn_kernel=True): # CuDNN is only available at the layer level, and not at the cell level. # This means `LSTM(units)` will use the CuDNN kernel, # while RNN(LSTMCell(units)) will run on non-CuDNN kernel. if allow_cudnn_kernel: # The LSTM layer with default options uses CuDNN. lstm_layer = keras.layers.LSTM(units, input_shape=(None, input_dim)) else: # Wrapping a LSTMCell in a RNN layer will not use CuDNN. lstm_layer = keras.layers.RNN( keras.layers.LSTMCell(units), input_shape=(None, input_dim) ) model = keras.models.Sequential( [ lstm_layer, keras.layers.BatchNormalization(), keras.layers.Dense(output_size), ] ) return model """ Let's load the MNIST dataset: """ mnist = keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 sample, sample_label = x_train[0], y_train[0] """ Let's create a model instance and train it. We choose `sparse_categorical_crossentropy` as the loss function for the model. The output of the model has shape of `[batch_size, 10]`. The target for the model is an integer vector, each of the integer is in the range of 0 to 9. """ model = build_model(allow_cudnn_kernel=True) model.compile( loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), optimizer="sgd", metrics=["accuracy"], ) model.fit( x_train, y_train, validation_data=(x_test, y_test), batch_size=batch_size, epochs=1 ) """ Now, let's compare to a model that does not use the CuDNN kernel: """ noncudnn_model = build_model(allow_cudnn_kernel=False) noncudnn_model.set_weights(model.get_weights()) noncudnn_model.compile( loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), optimizer="sgd", metrics=["accuracy"], ) noncudnn_model.fit( x_train, y_train, validation_data=(x_test, y_test), batch_size=batch_size, epochs=1 ) """ When running on a machine with a NVIDIA GPU and CuDNN installed, the model built with CuDNN is much faster to train compared to the model that uses the regular TensorFlow kernel. The same CuDNN-enabled model can also be used to run inference in a CPU-only environment. The `tf.device` annotation below is just forcing the device placement. The model will run on CPU by default if no GPU is available. You simply don't have to worry about the hardware you're running on anymore. Isn't that pretty cool? """ import matplotlib.pyplot as plt with tf.device("CPU:0"): cpu_model = build_model(allow_cudnn_kernel=True) cpu_model.set_weights(model.get_weights()) result = tf.argmax(cpu_model.predict_on_batch(tf.expand_dims(sample, 0)), axis=1) print( "Predicted result is: %s, target result is: %s" % (result.numpy(), sample_label) ) plt.imshow(sample, cmap=plt.get_cmap("gray")) """ ## RNNs with list/dict inputs, or nested inputs Nested structures allow implementers to include more information within a single timestep. For example, a video frame could have audio and video input at the same time. The data shape in this case could be: `[batch, timestep, {"video": [height, width, channel], "audio": [frequency]}]` In another example, handwriting data could have both coordinates x and y for the current position of the pen, as well as pressure information. So the data representation could be: `[batch, timestep, {"location": [x, y], "pressure": [force]}]` The following code provides an example of how to build a custom RNN cell that accepts such structured inputs. """ """ ### Define a custom cell that supports nested input/output """ """ See [Making new Layers & Models via subclassing](/guides/making_new_layers_and_models_via_subclassing/) for details on writing your own layers. """ @keras.saving.register_keras_serializable() class NestedCell(keras.layers.Layer): def __init__(self, unit_1, unit_2, unit_3, **kwargs): self.unit_1 = unit_1 self.unit_2 = unit_2 self.unit_3 = unit_3 self.state_size = [tf.TensorShape([unit_1]), tf.TensorShape([unit_2, unit_3])] self.output_size = [tf.TensorShape([unit_1]), tf.TensorShape([unit_2, unit_3])] super().__init__(**kwargs) def build(self, input_shapes): # expect input_shape to contain 2 items, [(batch, i1), (batch, i2, i3)] i1 = input_shapes[0][1] i2 = input_shapes[1][1] i3 = input_shapes[1][2] self.kernel_1 = self.add_weight( shape=(i1, self.unit_1), initializer="uniform", name="kernel_1" ) self.kernel_2_3 = self.add_weight( shape=(i2, i3, self.unit_2, self.unit_3), initializer="uniform", name="kernel_2_3", ) def call(self, inputs, states): # inputs should be in [(batch, input_1), (batch, input_2, input_3)] # state should be in shape [(batch, unit_1), (batch, unit_2, unit_3)] input_1, input_2 = tf.nest.flatten(inputs) s1, s2 = states output_1 = tf.matmul(input_1, self.kernel_1) output_2_3 = tf.einsum("bij,ijkl->bkl", input_2, self.kernel_2_3) state_1 = s1 + output_1 state_2_3 = s2 + output_2_3 output = (output_1, output_2_3) new_states = (state_1, state_2_3) return output, new_states def get_config(self): return {"unit_1": self.unit_1, "unit_2": self.unit_2, "unit_3": self.unit_3} """ ### Build a RNN model with nested input/output Let's build a Keras model that uses a `keras.layers.RNN` layer and the custom cell we just defined. """ unit_1 = 10 unit_2 = 20 unit_3 = 30 i1 = 32 i2 = 64 i3 = 32 batch_size = 64 num_batches = 10 timestep = 50 cell = NestedCell(unit_1, unit_2, unit_3) rnn = keras.layers.RNN(cell) input_1 = keras.Input((None, i1)) input_2 = keras.Input((None, i2, i3)) outputs = rnn((input_1, input_2)) model = keras.models.Model([input_1, input_2], outputs) model.compile(optimizer="adam", loss="mse", metrics=["accuracy"]) """ ### Train the model with randomly generated data Since there isn't a good candidate dataset for this model, we use random Numpy data for demonstration. """ input_1_data = np.random.random((batch_size * num_batches, timestep, i1)) input_2_data = np.random.random((batch_size * num_batches, timestep, i2, i3)) target_1_data = np.random.random((batch_size * num_batches, unit_1)) target_2_data = np.random.random((batch_size * num_batches, unit_2, unit_3)) input_data = [input_1_data, input_2_data] target_data = [target_1_data, target_2_data] model.fit(input_data, target_data, batch_size=batch_size) """ With the Keras `keras.layers.RNN` layer, You are only expected to define the math logic for individual step within the sequence, and the `keras.layers.RNN` layer will handle the sequence iteration for you. It's an incredibly powerful way to quickly prototype new kinds of RNNs (e.g. a LSTM variant). For more details, please visit the [API docs](https://keras.io/api/layers/recurrent_layers/rnn/). """
keras-io/guides/_working_with_rnns.py/0
{ "file_path": "keras-io/guides/_working_with_rnns.py", "repo_id": "keras-io", "token_count": 6720 }
116
<jupyter_start><jupyter_text>Getting started with Keras 3**Author:** [fchollet](https://twitter.com/fchollet)**Date created:** 2023/07/10**Last modified:** 2023/07/10**Description:** First contact with the new multi-backend Keras. IntroductionKeras 3 is a full implementation of the Keras API thatworks with TensorFlow, JAX, and PyTorch interchangeably.This notebook will walk you through key Keras 3 workflows.First, let's install Keras 3:<jupyter_code>!pip install -q keras-core<jupyter_output><empty_output><jupyter_text>SetupWe're going to be using the JAX backend here -- but you canedit the string below to `"tensorflow"` or `"torch"` and hit"Restart runtime", and the whole notebook will run just the same!This entire guide is backend-agnostic.<jupyter_code>import numpy as np import os os.environ["KERAS_BACKEND"] = "jax" # Note that keras should only be imported after the backend # has been configured. The backend cannot be changed once the # package is imported. import keras<jupyter_output><empty_output><jupyter_text>A first example: A MNIST convnetLet's start with the Hello World of ML: training a convnetto classify MNIST digits.Here's the data:<jupyter_code># Load the data and split it between train and test sets (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data() # Scale images to the [0, 1] range x_train = x_train.astype("float32") / 255 x_test = x_test.astype("float32") / 255 # Make sure images have shape (28, 28, 1) x_train = np.expand_dims(x_train, -1) x_test = np.expand_dims(x_test, -1) print("x_train shape:", x_train.shape) print("y_train shape:", y_train.shape) print(x_train.shape[0], "train samples") print(x_test.shape[0], "test samples")<jupyter_output><empty_output><jupyter_text>Here's our model.Different model-building options that Keras offers include:- [The Sequential API](https://keras.io/guides/sequential_model/) (what we use below)- [The Functional API](https://keras.io/guides/functional_api/) (most typical)- [Writing your own models yourself via subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) (for advanced use cases)<jupyter_code># Model parameters num_classes = 10 input_shape = (28, 28, 1) model = keras.Sequential( [ keras.layers.Input(shape=input_shape), keras.layers.Conv2D(64, kernel_size=(3, 3), activation="relu"), keras.layers.Conv2D(64, kernel_size=(3, 3), activation="relu"), keras.layers.MaxPooling2D(pool_size=(2, 2)), keras.layers.Conv2D(128, kernel_size=(3, 3), activation="relu"), keras.layers.Conv2D(128, kernel_size=(3, 3), activation="relu"), keras.layers.GlobalAveragePooling2D(), keras.layers.Dropout(0.5), keras.layers.Dense(num_classes, activation="softmax"), ] )<jupyter_output><empty_output><jupyter_text>Here's our model summary:<jupyter_code>model.summary()<jupyter_output><empty_output><jupyter_text>We use the `compile()` method to specify the optimizer, loss function,and the metrics to monitor. Note that with the JAX and TensorFlow backends,XLA compilation is turned on by default.<jupyter_code>model.compile( loss=keras.losses.SparseCategoricalCrossentropy(), optimizer=keras.optimizers.Adam(learning_rate=1e-3), metrics=[ keras.metrics.SparseCategoricalAccuracy(name="acc"), ], )<jupyter_output><empty_output><jupyter_text>Let's train and evaluate the model. We'll set aside a validation split of 15%of the data during training to monitor generalization on unseen data.<jupyter_code>batch_size = 128 epochs = 20 callbacks = [ keras.callbacks.ModelCheckpoint(filepath="model_at_epoch_{epoch}.keras"), keras.callbacks.EarlyStopping(monitor="val_loss", patience=2), ] model.fit( x_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.15, callbacks=callbacks, ) score = model.evaluate(x_test, y_test, verbose=0)<jupyter_output><empty_output><jupyter_text>During training, we were saving a model at the end of each epoch. Youcan also save the model in its latest state like this:<jupyter_code>model.save("final_model.keras")<jupyter_output><empty_output><jupyter_text>And reload it like this:<jupyter_code>model = keras.saving.load_model("final_model.keras")<jupyter_output><empty_output><jupyter_text>Next, you can query predictions of class probabilities with `predict()`:<jupyter_code>predictions = model.predict(x_test)<jupyter_output><empty_output><jupyter_text>That's it for the basics! Writing cross-framework custom componentsKeras 3 enables you to write custom Layers, Models, Metrics, Losses, and Optimizersthat work across TensorFlow, JAX, and PyTorch with the same codebase. Let's take a lookat custom layers first.If you're already familiar with writing custom layers in `tf.keras` -- well, nothinghas changed. Except one thing: instead of using functions from the `tf` namespace, you should use functionsfrom `keras.ops.*`.The `keras.ops` namespace contains:- An implementation of the NumPy API, e.g. `keras.ops.stack` or `keras.ops.matmul`.- A set of neural network specific ops that are absent from NumPy, such as `keras.ops.conv`or `keras.ops.binary_crossentropy`.Let's make a custom `Dense` layer that works with all backends:<jupyter_code>class MyDense(keras.layers.Layer): def __init__(self, units, activation=None, name=None): super().__init__(name=name) self.units = units self.activation = keras.activations.get(activation) def build(self, input_shape): input_dim = input_shape[-1] self.w = self.add_weight( shape=(input_dim, self.units), initializer=keras.initializers.GlorotNormal(), name="kernel", trainable=True, ) self.b = self.add_weight( shape=(self.units,), initializer=keras.initializers.Zeros(), name="bias", trainable=True, ) def call(self, inputs): # Use Keras ops to create backend-agnostic layers/metrics/etc. x = keras.ops.matmul(inputs, self.w) + self.b return self.activation(x)<jupyter_output><empty_output><jupyter_text>Next, let's make a custom `Dropout` layer that relies on the `keras.random`namespace:<jupyter_code>class MyDropout(keras.layers.Layer): def __init__(self, rate, name=None): super().__init__(name=name) self.rate = rate # Use seed_generator for managing RNG state. # It is a state element and its seed variable is # tracked as part of `layer.variables`. self.seed_generator = keras.random.SeedGenerator(1337) def call(self, inputs): # Use `keras.random` for random ops. return keras.random.dropout(inputs, self.rate, seed=self.seed_generator)<jupyter_output><empty_output><jupyter_text>Next, let's write a custom subclassed model that uses our two custom layers:<jupyter_code>class MyModel(keras.Model): def __init__(self, num_classes): super().__init__() self.conv_base = keras.Sequential( [ keras.layers.Conv2D(64, kernel_size=(3, 3), activation="relu"), keras.layers.Conv2D(64, kernel_size=(3, 3), activation="relu"), keras.layers.MaxPooling2D(pool_size=(2, 2)), keras.layers.Conv2D(128, kernel_size=(3, 3), activation="relu"), keras.layers.Conv2D(128, kernel_size=(3, 3), activation="relu"), keras.layers.GlobalAveragePooling2D(), ] ) self.dp = MyDropout(0.5) self.dense = MyDense(num_classes, activation="softmax") def call(self, x): x = self.conv_base(x) x = self.dp(x) return self.dense(x)<jupyter_output><empty_output><jupyter_text>Let's compile it and fit it:<jupyter_code>model = MyModel(num_classes=10) model.compile( loss=keras.losses.SparseCategoricalCrossentropy(), optimizer=keras.optimizers.Adam(learning_rate=1e-3), metrics=[ keras.metrics.SparseCategoricalAccuracy(name="acc"), ], ) model.fit( x_train, y_train, batch_size=batch_size, epochs=1, # For speed validation_split=0.15, )<jupyter_output><empty_output><jupyter_text>Training models on arbitrary data sourcesAll Keras models can be trained and evaluated on a wide variety of data sources,independently of the backend you're using. This includes:- NumPy arrays- Pandas dataframes- TensorFlow`tf.data.Dataset` objects- PyTorch `DataLoader` objects- Keras `PyDataset` objectsThey all work whether you're using TensorFlow, JAX, or PyTorch as your Keras backend.Let's try it out with PyTorch `DataLoaders`:<jupyter_code>import torch # Create a TensorDataset train_torch_dataset = torch.utils.data.TensorDataset( torch.from_numpy(x_train), torch.from_numpy(y_train) ) val_torch_dataset = torch.utils.data.TensorDataset( torch.from_numpy(x_test), torch.from_numpy(y_test) ) # Create a DataLoader train_dataloader = torch.utils.data.DataLoader( train_torch_dataset, batch_size=batch_size, shuffle=True ) val_dataloader = torch.utils.data.DataLoader( val_torch_dataset, batch_size=batch_size, shuffle=False ) model = MyModel(num_classes=10) model.compile( loss=keras.losses.SparseCategoricalCrossentropy(), optimizer=keras.optimizers.Adam(learning_rate=1e-3), metrics=[ keras.metrics.SparseCategoricalAccuracy(name="acc"), ], ) model.fit(train_dataloader, epochs=1, validation_data=val_dataloader)<jupyter_output><empty_output><jupyter_text>Now let's try this out with `tf.data`:<jupyter_code>import tensorflow as tf train_dataset = ( tf.data.Dataset.from_tensor_slices((x_train, y_train)) .batch(batch_size) .prefetch(tf.data.AUTOTUNE) ) test_dataset = ( tf.data.Dataset.from_tensor_slices((x_test, y_test)) .batch(batch_size) .prefetch(tf.data.AUTOTUNE) ) model = MyModel(num_classes=10) model.compile( loss=keras.losses.SparseCategoricalCrossentropy(), optimizer=keras.optimizers.Adam(learning_rate=1e-3), metrics=[ keras.metrics.SparseCategoricalAccuracy(name="acc"), ], ) model.fit(train_dataset, epochs=1, validation_data=test_dataset)<jupyter_output><empty_output>
keras-io/guides/ipynb/keras_core/getting_started_with_keras_core.ipynb/0
{ "file_path": "keras-io/guides/ipynb/keras_core/getting_started_with_keras_core.ipynb", "repo_id": "keras-io", "token_count": 3984 }
117
<jupyter_start><jupyter_text>Object Detection with KerasCV**Author:** [lukewood](https://twitter.com/luke_wood_ml), Ian Stenbit, Tirth Patel**Date created:** 2023/04/08**Last modified:** 2023/08/10**Description:** Train an object detection model with KerasCV. KerasCV offers a complete set of production grade APIs to solve object detectionproblems.These APIs include object-detection-specificdata augmentation techniques, Keras native COCO metrics, bounding box formatconversion utilities, visualization tools, pretrained object detection models,and everything you need to train your own state of the art object detectionmodels!Let's give KerasCV's object detection API a spin.<jupyter_code>!pip install -q --upgrade keras-cv !pip install -q --upgrade keras # Upgrade to Keras 3. import os os.environ["KERAS_BACKEND"] = "jax" # @param ["tensorflow", "jax", "torch"] from tensorflow import data as tf_data import tensorflow_datasets as tfds import keras import keras_cv import numpy as np from keras_cv import bounding_box import os from keras_cv import visualization import tqdm<jupyter_output><empty_output><jupyter_text>Object detection introductionObject detection is the process of identifying, classifying,and localizing objects within a given image. Typically, your inputs areimages, and your labels are bounding boxes with optional classlabels.Object detection can be thought of as an extension of classification, howeverinstead of one class label for the image, you must detect and localize anarbitrary number of classes.**For example:**The data for the above image may look something like this:```pythonimage = [height, width, 3]bounding_boxes = { "classes": [0], 0 is an arbitrary class ID representing "cat" "boxes": [[0.25, 0.4, .15, .1]] bounding box is in "rel_xywh" format so 0.25 represents the start of the bounding box 25% of the way across the image. The .15 represents that the width is 15% of the image width.}```Since the inception of [*You Only Look Once*](https://arxiv.org/abs/1506.02640)(aka YOLO),object detection has primarily been solved using deep learning.Most deep learning architectures do this by cleverly framing the object detectionproblem as a combination of many small classification problems andmany regression problems.More specifically, this is done by generating many anchor boxes of varyingshapes and sizes across the input images and assigning them each a class label,as well as `x`, `y`, `width` and `height` offsets.The model is trained to predict the class labels of each box, as well as the`x`, `y`, `width`, and `height` offsets of each box that is predicted to be anobject.**Visualization of some sample anchor boxes**:Objection detection is a technically complex problem but luckily we offer abulletproof approach to getting great results.Let's do this! Perform detections with a pretrained modelThe highest level API in the KerasCV Object Detection API is the `keras_cv.models` API.This API includes fully pretrained object detection models, such as`keras_cv.models.YOLOV8Detector`.Let's get started by constructing a YOLOV8Detector pretrained on the `pascalvoc`dataset.<jupyter_code>pretrained_model = keras_cv.models.YOLOV8Detector.from_preset( "yolo_v8_m_pascalvoc", bounding_box_format="xywh" )<jupyter_output><empty_output><jupyter_text>Notice the `bounding_box_format` argument?Recall in the section above, the format of bounding boxes:```bounding_boxes = { "classes": [num_boxes], "boxes": [num_boxes, 4]}```This argument describes *exactly* what format the values in the `"boxes"`field of the label dictionary take in your pipeline.For example, a box in `xywh` format with its top left corner at the coordinates(100, 100) with a width of 55 and a height of 70 would be represented by:```[100, 100, 55, 75]```or equivalently in `xyxy` format:```[100, 100, 155, 175]```While this may seem simple, it is a critical piece of the KerasCV objectdetection API!Every component that processes bounding boxes requires a`bounding_box_format` argument.You can read more aboutKerasCV bounding box formats [in the API docs](https://keras.io/api/keras_cv/bounding_box/formats/).This is done because there is no one correct format for bounding boxes!Components in different pipelines expect different formats, and so by requiringthem to be specified we ensure that our components remain readable, reusable,and clear.Box format conversion bugs are perhaps the most common bug surface in objectdetection pipelines - by requiring this parameter we mitigate against thesebugs (especially when combining code from many sources).Next let's load an image:<jupyter_code>filepath = keras.utils.get_file(origin="https://i.imgur.com/gCNcJJI.jpg") image = keras.utils.load_img(filepath) image = np.array(image) visualization.plot_image_gallery( np.array([image]), value_range=(0, 255), rows=1, cols=1, scale=5, )<jupyter_output><empty_output><jupyter_text>To use the `YOLOV8Detector` architecture with a ResNet50 backbone, you'll need toresize your image to a size that is divisible by 64. This is to ensurecompatibility with the number of downscaling operations done by the convolutionlayers in the ResNet.If the resize operation distortsthe input's aspect ratio, the model will perform signficantly poorer. For thepretrained `"yolo_v8_m_pascalvoc"` preset we are using, the final`MeanAveragePrecision` on the `pascalvoc/2012` evaluation set drops to `0.15`from `0.38` when using a naive resizing operation.Additionally, if you crop to preserve the aspect ratio as you do in classificationyour model may entirely miss some bounding boxes. As such, when running inferenceon an object detection model we recommend the use of padding to the desired size,while resizing the longest size to match the aspect ratio.KerasCV makes resizing properly easy; simply pass `pad_to_aspect_ratio=True` toa `keras_cv.layers.Resizing` layer.This can be implemented in one line of code:<jupyter_code>inference_resizing = keras_cv.layers.Resizing( 640, 640, pad_to_aspect_ratio=True, bounding_box_format="xywh" )<jupyter_output><empty_output><jupyter_text>This can be used as our inference preprocessing pipeline:<jupyter_code>image_batch = inference_resizing([image])<jupyter_output><empty_output><jupyter_text>`keras_cv.visualization.plot_bounding_box_gallery()` supports a `class_mapping`parameter to highlight what class each box was assigned to. Let's assemble aclass mapping now.<jupyter_code>class_ids = [ "Aeroplane", "Bicycle", "Bird", "Boat", "Bottle", "Bus", "Car", "Cat", "Chair", "Cow", "Dining Table", "Dog", "Horse", "Motorbike", "Person", "Potted Plant", "Sheep", "Sofa", "Train", "Tvmonitor", "Total", ] class_mapping = dict(zip(range(len(class_ids)), class_ids))<jupyter_output><empty_output><jupyter_text>Just like any other `keras.Model` you can predict bounding boxes using the`model.predict()` API.<jupyter_code>y_pred = pretrained_model.predict(image_batch) # y_pred is a bounding box Tensor: # {"classes": ..., boxes": ...} visualization.plot_bounding_box_gallery( image_batch, value_range=(0, 255), rows=1, cols=1, y_pred=y_pred, scale=5, font_scale=0.7, bounding_box_format="xywh", class_mapping=class_mapping, )<jupyter_output><empty_output><jupyter_text>In order to support this easy and intuitive inference workflow, KerasCVperforms non-max suppression inside of the `YOLOV8Detector` class.Non-max suppression is a traditional computing algorithm that solves the problemof a model detecting multiple boxes for the same object.Non-max suppression is a highly configurable algorithm, and in most cases youwill want to customize the settings of your model's non-maxsuppression operation.This can be done by overriding to the `prediction_decoder` argument.To show this concept off, let's temporarily disable non-max suppression on ourYOLOV8Detector. This can be done by writing to the `prediction_decoder` attribute.<jupyter_code># The following NonMaxSuppression layer is equivalent to disabling the operation prediction_decoder = keras_cv.layers.NonMaxSuppression( bounding_box_format="xywh", from_logits=True, iou_threshold=1.0, confidence_threshold=0.0, ) pretrained_model = keras_cv.models.YOLOV8Detector.from_preset( "yolo_v8_m_pascalvoc", bounding_box_format="xywh", prediction_decoder=prediction_decoder, ) y_pred = pretrained_model.predict(image_batch) visualization.plot_bounding_box_gallery( image_batch, value_range=(0, 255), rows=1, cols=1, y_pred=y_pred, scale=5, font_scale=0.7, bounding_box_format="xywh", class_mapping=class_mapping, )<jupyter_output><empty_output><jupyter_text>Next, let's re-configure `keras_cv.layers.NonMaxSuppression` for ouruse case!In this case, we will tune the `iou_threshold` to `0.2`, and the`confidence_threshold` to `0.7`.Raising the `confidence_threshold` will cause the model to only output boxesthat have a higher confidence score. `iou_threshold` controls the threshold ofintersection over union (IoU) that two boxes must have in order for one to bepruned out.[More information on these parameters may be found in the TensorFlow API docs](https://www.tensorflow.org/api_docs/python/tf/image/combined_non_max_suppression)<jupyter_code>prediction_decoder = keras_cv.layers.NonMaxSuppression( bounding_box_format="xywh", from_logits=True, # Decrease the required threshold to make predictions get pruned out iou_threshold=0.2, # Tune confidence threshold for predictions to pass NMS confidence_threshold=0.7, ) pretrained_model = keras_cv.models.YOLOV8Detector.from_preset( "yolo_v8_m_pascalvoc", bounding_box_format="xywh", prediction_decoder=prediction_decoder, ) y_pred = pretrained_model.predict(image_batch) visualization.plot_bounding_box_gallery( image_batch, value_range=(0, 255), rows=1, cols=1, y_pred=y_pred, scale=5, font_scale=0.7, bounding_box_format="xywh", class_mapping=class_mapping, )<jupyter_output><empty_output><jupyter_text>That looks a lot better! Train a custom object detection modelWhether you're an object detection amateur or a well seasoned veteran, assemblingan object detection pipeline from scratch is a massive undertaking.Luckily, all KerasCV object detection APIs are built as modular components.Whether you need a complete pipeline, just an object detection model, or evenjust a conversion utility to transform your boxes from `xywh` format to `xyxy`,KerasCV has you covered.In this guide, we'll assemble a full training pipeline for a KerasCV objectdetection model. This includes data loading, augmentation, metric evaluation,and inference!To get started, let's sort out all of our imports and define globalconfiguration parameters.<jupyter_code>BATCH_SIZE = 4<jupyter_output><empty_output><jupyter_text>Data loadingTo get started, let's discuss data loading and bounding box formatting.KerasCV has a predefined format for bounding boxes.To comply with this, youshould package your bounding boxes into a dictionary matching thespecification below:```bounding_boxes = { num_boxes may be a Ragged dimension 'boxes': Tensor(shape=[batch, num_boxes, 4]), 'classes': Tensor(shape=[batch, num_boxes])}````bounding_boxes['boxes']` contains the coordinates of your bounding box in a KerasCVsupported `bounding_box_format`.KerasCV requires a `bounding_box_format` argument in all components that processbounding boxes.This is done to maximize your ability to plug and play individual componentsinto their object detection pipelines, as well as to make code self-documentingacross object detection pipelines.To match the KerasCV API style, it is recommended that when writing acustom data loader, you also support a `bounding_box_format` argument.This makes it clear to those invoking your data loader what format the bounding boxesare in.In this example, we format our boxes to `xywh` format.For example:```pythontrain_ds, ds_info = your_data_loader.load( split='train', bounding_box_format='xywh', batch_size=8)```This clearly yields bounding boxes in the format `xywh`. You can read more aboutKerasCV bounding box formats [in the API docs](https://keras.io/api/keras_cv/bounding_box/formats/).Our data comes loaded into the format`{"images": images, "bounding_boxes": bounding_boxes}`. This format issupported in all KerasCV preprocessing components.Let's load some data and verify that the data looks as we expect it to.<jupyter_code>def visualize_dataset(inputs, value_range, rows, cols, bounding_box_format): inputs = next(iter(inputs.take(1))) images, bounding_boxes = inputs["images"], inputs["bounding_boxes"] visualization.plot_bounding_box_gallery( images, value_range=value_range, rows=rows, cols=cols, y_true=bounding_boxes, scale=5, font_scale=0.7, bounding_box_format=bounding_box_format, class_mapping=class_mapping, ) def unpackage_raw_tfds_inputs(inputs, bounding_box_format): image = inputs["image"] boxes = keras_cv.bounding_box.convert_format( inputs["objects"]["bbox"], images=image, source="rel_yxyx", target=bounding_box_format, ) bounding_boxes = { "classes": inputs["objects"]["label"], "boxes": boxes, } return {"images": image, "bounding_boxes": bounding_boxes} def load_pascal_voc(split, dataset, bounding_box_format): ds = tfds.load(dataset, split=split, with_info=False, shuffle_files=True) ds = ds.map( lambda x: unpackage_raw_tfds_inputs(x, bounding_box_format=bounding_box_format), num_parallel_calls=tf_data.AUTOTUNE, ) return ds train_ds = load_pascal_voc( split="train", dataset="voc/2007", bounding_box_format="xywh" ) eval_ds = load_pascal_voc(split="test", dataset="voc/2007", bounding_box_format="xywh") train_ds = train_ds.shuffle(BATCH_SIZE * 4)<jupyter_output><empty_output><jupyter_text>Next, let's batch our data.In KerasCV object detection tasks it is recommended thatusers use ragged batches of inputs.This is due to the fact that images may be of different sizes in PascalVOC,as well as the fact that there may be different numbers of bounding boxes perimage.To construct a ragged dataset in a `tf.data` pipeline, you can use the`ragged_batch()` method.<jupyter_code>train_ds = train_ds.ragged_batch(BATCH_SIZE, drop_remainder=True) eval_ds = eval_ds.ragged_batch(BATCH_SIZE, drop_remainder=True)<jupyter_output><empty_output><jupyter_text>Let's make sure our dataset is following the format KerasCV expects.By using the `visualize_dataset()` function, you can visually verifythat your data is in the format that KerasCV expects. If the bounding boxesare not visible or are visible in the wrong locations that is a sign that yourdata is mis-formatted.<jupyter_code>visualize_dataset( train_ds, bounding_box_format="xywh", value_range=(0, 255), rows=2, cols=2 )<jupyter_output><empty_output><jupyter_text>And for the eval set:<jupyter_code>visualize_dataset( eval_ds, bounding_box_format="xywh", value_range=(0, 255), rows=2, cols=2, # If you are not running your experiment on a local machine, you can also # make `visualize_dataset()` dump the plot to a file using `path`: # path="eval.png" )<jupyter_output><empty_output><jupyter_text>Looks like everything is structured as expected.Now we can move on to constructing ourdata augmentation pipeline. Data augmentationOne of the most challenging tasks when constructing object detectionpipelines is data augmentation. Image augmentation techniques must be aware of the underlyingbounding boxes, and must update them accordingly.Luckily, KerasCV natively supports bounding box augmentation with its extensivelibraryof [data augmentation layers](https://keras.io/api/keras_cv/layers/preprocessing/).The code below loads the Pascal VOC dataset, and performs on-the-fly,bounding-box-friendly data augmentation inside a `tf.data` pipeline.<jupyter_code>augmenters = [ keras_cv.layers.RandomFlip(mode="horizontal", bounding_box_format="xywh"), keras_cv.layers.JitteredResize( target_size=(640, 640), scale_factor=(0.75, 1.3), bounding_box_format="xywh" ), ] def create_augmenter_fn(augmenters): def augmenter_fn(inputs): for augmenter in augmenters: inputs = augmenter(inputs) return inputs return augmenter_fn augmenter_fn = create_augmenter_fn(augmenters) train_ds = train_ds.map(augmenter_fn, num_parallel_calls=tf_data.AUTOTUNE) visualize_dataset( train_ds, bounding_box_format="xywh", value_range=(0, 255), rows=2, cols=2 )<jupyter_output><empty_output><jupyter_text>Great! We now have a bounding-box-friendly data augmentation pipeline.Let's format our evaluation dataset to match. Instead of using`JitteredResize`, let's use the deterministic `keras_cv.layers.Resizing()`layer.<jupyter_code>inference_resizing = keras_cv.layers.Resizing( 640, 640, bounding_box_format="xywh", pad_to_aspect_ratio=True ) eval_ds = eval_ds.map(inference_resizing, num_parallel_calls=tf_data.AUTOTUNE)<jupyter_output><empty_output><jupyter_text>Due to the fact that the resize operation differs between the train dataset,which uses `JitteredResize()` to resize images, and the inference dataset, whichuses `layers.Resizing(pad_to_aspect_ratio=True)`, it is good practice tovisualize both datasets:<jupyter_code>visualize_dataset( eval_ds, bounding_box_format="xywh", value_range=(0, 255), rows=2, cols=2 )<jupyter_output><empty_output><jupyter_text>Finally, let's unpackage our inputs from the preprocessing dictionary, andprepare to feed the inputs into our model. In order to be TPU compatible,bounding box Tensors need to be `Dense` instead of `Ragged`.<jupyter_code>def dict_to_tuple(inputs): return inputs["images"], bounding_box.to_dense( inputs["bounding_boxes"], max_boxes=32 ) train_ds = train_ds.map(dict_to_tuple, num_parallel_calls=tf_data.AUTOTUNE) eval_ds = eval_ds.map(dict_to_tuple, num_parallel_calls=tf_data.AUTOTUNE) train_ds = train_ds.prefetch(tf_data.AUTOTUNE) eval_ds = eval_ds.prefetch(tf_data.AUTOTUNE)<jupyter_output><empty_output><jupyter_text>OptimizerIn this guide, we use a standard SGD optimizer and rely on the[`keras.callbacks.ReduceLROnPlateau`](https://keras.io/api/callbacks/reduce_lr_on_plateau/)callback to reduce the learning rate.You will always want to include a `global_clipnorm` when training objectdetection models. This is to remedy exploding gradient problems that frequentlyoccur when training object detection models.<jupyter_code>base_lr = 0.005 # including a global_clipnorm is extremely important in object detection tasks optimizer = keras.optimizers.SGD( learning_rate=base_lr, momentum=0.9, global_clipnorm=10.0 )<jupyter_output><empty_output><jupyter_text>To achieve the best results on your dataset, you'll likely want to hand craft a`PiecewiseConstantDecay` learning rate schedule.While `PiecewiseConstantDecay` schedules tend to perform better, they don'ttranslate between problems. Loss functionsYou may not be familiar with the `"ciou"` loss. While not common in othermodels, this loss is sometimes used in the object detection world.In short, ["Complete IoU"](https://arxiv.org/abs/1911.08287) is a flavour of the Intersection over Union loss and is used due to its convergence properties.In KerasCV, you can use this loss simply by passing the string `"ciou"` to `compile()`.We also use standard binary crossentropy loss for the class head.<jupyter_code>pretrained_model.compile( classification_loss="binary_crossentropy", box_loss="ciou", )<jupyter_output><empty_output><jupyter_text>Metric evaluationThe most popular object detection metrics are COCO metrics,which were published alongside the MSCOCO dataset. KerasCV provides aneasy-to-use suite of COCO metrics under the `keras_cv.callbacks.PyCOCOCallback`symbol. Note that we use a Keras callback instead of a Keras metric to computeCOCO metrics. This is because computing COCO metrics requires storing all of amodel's predictions for the entire evaluation dataset in memory at once, whichis impractical to do during training time.<jupyter_code>coco_metrics_callback = keras_cv.callbacks.PyCOCOCallback( eval_ds.take(20), bounding_box_format="xywh" )<jupyter_output><empty_output><jupyter_text>Our data pipeline is now complete!We can now move on to model creation and training. Model creationNext, let's use the KerasCV API to construct an untrained YOLOV8Detector model.In this tutorial we use a pretrained ResNet50 backbone from the imagenetdataset.KerasCV makes it easy to construct a `YOLOV8Detector` with any of the KerasCVbackbones. Simply use one of the presets for the architecture you'd like!For example:<jupyter_code>model = keras_cv.models.YOLOV8Detector.from_preset( "resnet50_imagenet", # For more info on supported bounding box formats, visit # https://keras.io/api/keras_cv/bounding_box/ bounding_box_format="xywh", num_classes=20, )<jupyter_output><empty_output><jupyter_text>That is all it takes to construct a KerasCV YOLOv8. The YOLOv8 acceptstuples of dense image Tensors and bounding box dictionaries to `fit()` and`train_on_batch()`This matches what we have constructed in our input pipeline above. Training our modelAll that is left to do is train our model. KerasCV object detection modelsfollow the standard Keras workflow, leveraging `compile()` and `fit()`.Let's compile our model:<jupyter_code>model.compile( classification_loss="binary_crossentropy", box_loss="ciou", optimizer=optimizer, )<jupyter_output><empty_output><jupyter_text>If you want to fully train the model, remove `.take(20)` from all datasetreferences (below and in the initialization of the metrics callback).<jupyter_code>model.fit( train_ds.take(20), # Run for 10-35~ epochs to achieve good scores. epochs=1, callbacks=[coco_metrics_callback], )<jupyter_output><empty_output><jupyter_text>Inference and plotting resultsKerasCV makes object detection inference simple. `model.predict(images)`returns a tensor of bounding boxes. By default, `YOLOV8Detector.predict()`will perform a non max suppression operation for you.In this section, we will use a `keras_cv` provided preset:<jupyter_code>model = keras_cv.models.YOLOV8Detector.from_preset( "yolo_v8_m_pascalvoc", bounding_box_format="xywh" )<jupyter_output><empty_output><jupyter_text>Next, for convenience we construct a dataset with larger batches:<jupyter_code>visualization_ds = eval_ds.unbatch() visualization_ds = visualization_ds.ragged_batch(16) visualization_ds = visualization_ds.shuffle(8)<jupyter_output><empty_output><jupyter_text>Let's create a simple function to plot our inferences:<jupyter_code>def visualize_detections(model, dataset, bounding_box_format): images, y_true = next(iter(dataset.take(1))) y_pred = model.predict(images) visualization.plot_bounding_box_gallery( images, value_range=(0, 255), bounding_box_format=bounding_box_format, y_true=y_true, y_pred=y_pred, scale=4, rows=2, cols=2, show=True, font_scale=0.7, class_mapping=class_mapping, )<jupyter_output><empty_output><jupyter_text>You may need to configure your NonMaxSuppression operation to achievevisually appealing results.<jupyter_code>model.prediction_decoder = keras_cv.layers.NonMaxSuppression( bounding_box_format="xywh", from_logits=True, iou_threshold=0.5, confidence_threshold=0.75, ) visualize_detections(model, dataset=visualization_ds, bounding_box_format="xywh")<jupyter_output><empty_output><jupyter_text>Awesome!One final helpful pattern to be aware of is to visualizedetections in a `keras.callbacks.Callback` to monitor training :<jupyter_code>class VisualizeDetections(keras.callbacks.Callback): def on_epoch_end(self, epoch, logs): visualize_detections( self.model, bounding_box_format="xywh", dataset=visualization_ds )<jupyter_output><empty_output><jupyter_text>Takeaways and next stepsKerasCV makes it easy to construct state-of-the-art object detection pipelines.In this guide, we started off by writing a data loader using the KerasCVbounding box specification.Following this, we assembled a production grade data augmentation pipeline usingKerasCV preprocessing layers in <50 lines of code.KerasCV object detection components can be used independently, but also have deepintegration with each other.KerasCV makes authoring production grade bounding box augmentation,model training, visualization, andmetric evaluation easy.Some follow up exercises for the reader:- add additional augmentation techniques to improve model performance- tune the hyperparameters and data augmentation used to produce high quality results- train an object detection model on your own datasetOne last fun code snippet to showcase the power of KerasCV's API!<jupyter_code>stable_diffusion = keras_cv.models.StableDiffusionV2(512, 512) images = stable_diffusion.text_to_image( prompt="A zoomed out photograph of a cool looking cat. The cat stands in a beautiful forest", negative_prompt="unrealistic, bad looking, malformed", batch_size=4, seed=1231, ) encoded_predictions = model(images) y_pred = model.decode_predictions(encoded_predictions, images) visualization.plot_bounding_box_gallery( images, value_range=(0, 255), y_pred=y_pred, rows=2, cols=2, scale=5, font_scale=0.7, bounding_box_format="xywh", class_mapping=class_mapping, )<jupyter_output><empty_output>
keras-io/guides/ipynb/keras_cv/object_detection_keras_cv.ipynb/0
{ "file_path": "keras-io/guides/ipynb/keras_cv/object_detection_keras_cv.ipynb", "repo_id": "keras-io", "token_count": 8355 }
118
<jupyter_start><jupyter_text>The Sequential model**Author:** [fchollet](https://twitter.com/fchollet)**Date created:** 2020/04/12**Last modified:** 2023/06/25**Description:** Complete guide to the Sequential model. Setup<jupyter_code>import keras from keras import layers from keras import ops<jupyter_output><empty_output><jupyter_text>When to use a Sequential modelA `Sequential` model is appropriate for **a plain stack of layers**where each layer has **exactly one input tensor and one output tensor**.Schematically, the following `Sequential` model:<jupyter_code># Define Sequential model with 3 layers model = keras.Sequential( [ layers.Dense(2, activation="relu", name="layer1"), layers.Dense(3, activation="relu", name="layer2"), layers.Dense(4, name="layer3"), ] ) # Call model on a test input x = ops.ones((3, 3)) y = model(x)<jupyter_output><empty_output><jupyter_text>is equivalent to this function:<jupyter_code># Create 3 layers layer1 = layers.Dense(2, activation="relu", name="layer1") layer2 = layers.Dense(3, activation="relu", name="layer2") layer3 = layers.Dense(4, name="layer3") # Call layers on a test input x = ops.ones((3, 3)) y = layer3(layer2(layer1(x)))<jupyter_output><empty_output><jupyter_text>A Sequential model is **not appropriate** when:- Your model has multiple inputs or multiple outputs- Any of your layers has multiple inputs or multiple outputs- You need to do layer sharing- You want non-linear topology (e.g. a residual connection, a multi-branchmodel) Creating a Sequential modelYou can create a Sequential model by passing a list of layers to the Sequentialconstructor:<jupyter_code>model = keras.Sequential( [ layers.Dense(2, activation="relu"), layers.Dense(3, activation="relu"), layers.Dense(4), ] )<jupyter_output><empty_output><jupyter_text>Its layers are accessible via the `layers` attribute:<jupyter_code>model.layers<jupyter_output><empty_output><jupyter_text>You can also create a Sequential model incrementally via the `add()` method:<jupyter_code>model = keras.Sequential() model.add(layers.Dense(2, activation="relu")) model.add(layers.Dense(3, activation="relu")) model.add(layers.Dense(4))<jupyter_output><empty_output><jupyter_text>Note that there's also a corresponding `pop()` method to remove layers:a Sequential model behaves very much like a list of layers.<jupyter_code>model.pop() print(len(model.layers)) # 2<jupyter_output><empty_output><jupyter_text>Also note that the Sequential constructor accepts a `name` argument, just likeany layer or model in Keras. This is useful to annotate TensorBoard graphswith semantically meaningful names.<jupyter_code>model = keras.Sequential(name="my_sequential") model.add(layers.Dense(2, activation="relu", name="layer1")) model.add(layers.Dense(3, activation="relu", name="layer2")) model.add(layers.Dense(4, name="layer3"))<jupyter_output><empty_output><jupyter_text>Specifying the input shape in advanceGenerally, all layers in Keras need to know the shape of their inputsin order to be able to create their weights. So when you create a layer likethis, initially, it has no weights:<jupyter_code>layer = layers.Dense(3) layer.weights # Empty<jupyter_output><empty_output><jupyter_text>It creates its weights the first time it is called on an input, since the shapeof the weights depends on the shape of the inputs:<jupyter_code># Call layer on a test input x = ops.ones((1, 4)) y = layer(x) layer.weights # Now it has weights, of shape (4, 3) and (3,)<jupyter_output><empty_output><jupyter_text>Naturally, this also applies to Sequential models. When you instantiate aSequential model without an input shape, it isn't "built": it has no weights(and calling`model.weights` results in an error stating just this). The weights are createdwhen the model first sees some input data:<jupyter_code>model = keras.Sequential( [ layers.Dense(2, activation="relu"), layers.Dense(3, activation="relu"), layers.Dense(4), ] ) # No weights at this stage! # At this point, you can't do this: # model.weights # You also can't do this: # model.summary() # Call the model on a test input x = ops.ones((1, 4)) y = model(x) print("Number of weights after calling the model:", len(model.weights)) # 6<jupyter_output><empty_output><jupyter_text>Once a model is "built", you can call its `summary()` method to display itscontents:<jupyter_code>model.summary()<jupyter_output><empty_output><jupyter_text>However, it can be very useful when building a Sequential model incrementallyto be able to display the summary of the model so far, including the currentoutput shape. In this case, you should start your model by passing an `Input`object to your model, so that it knows its input shape from the start:<jupyter_code>model = keras.Sequential() model.add(keras.Input(shape=(4,))) model.add(layers.Dense(2, activation="relu")) model.summary()<jupyter_output><empty_output><jupyter_text>Note that the `Input` object is not displayed as part of `model.layers`, sinceit isn't a layer:<jupyter_code>model.layers<jupyter_output><empty_output><jupyter_text>Models built with a predefined input shape like this always have weights (evenbefore seeing any data) and always have a defined output shape.In general, it's a recommended best practice to always specify the input shapeof a Sequential model in advance if you know what it is. A common debugging workflow: `add()` + `summary()`When building a new Sequential architecture, it's useful to incrementally stacklayers with `add()` and frequently print model summaries. For instance, thisenables you to monitor how a stack of `Conv2D` and `MaxPooling2D` layers isdownsampling image feature maps:<jupyter_code>model = keras.Sequential() model.add(keras.Input(shape=(250, 250, 3))) # 250x250 RGB images model.add(layers.Conv2D(32, 5, strides=2, activation="relu")) model.add(layers.Conv2D(32, 3, activation="relu")) model.add(layers.MaxPooling2D(3)) # Can you guess what the current output shape is at this point? Probably not. # Let's just print it: model.summary() # The answer was: (40, 40, 32), so we can keep downsampling... model.add(layers.Conv2D(32, 3, activation="relu")) model.add(layers.Conv2D(32, 3, activation="relu")) model.add(layers.MaxPooling2D(3)) model.add(layers.Conv2D(32, 3, activation="relu")) model.add(layers.Conv2D(32, 3, activation="relu")) model.add(layers.MaxPooling2D(2)) # And now? model.summary() # Now that we have 4x4 feature maps, time to apply global max pooling. model.add(layers.GlobalMaxPooling2D()) # Finally, we add a classification layer. model.add(layers.Dense(10))<jupyter_output><empty_output><jupyter_text>Very practical, right? What to do once you have a modelOnce your model architecture is ready, you will want to:- Train your model, evaluate it, and run inference. See our[guide to training & evaluation with the built-in loops]( /guides/training_with_built_in_methods/)- Save your model to disk and restore it. See our[guide to serialization & saving](/guides/serialization_and_saving/). Feature extraction with a Sequential modelOnce a Sequential model has been built, it behaves like a[Functional API model](/guides/functional_api/).This means that every layer has an `input`and `output` attribute. These attributes can be used to do neat things, likequickly creating a model that extracts the outputs of all intermediate layers in aSequential model:<jupyter_code>initial_model = keras.Sequential( [ keras.Input(shape=(250, 250, 3)), layers.Conv2D(32, 5, strides=2, activation="relu"), layers.Conv2D(32, 3, activation="relu"), layers.Conv2D(32, 3, activation="relu"), ] ) feature_extractor = keras.Model( inputs=initial_model.inputs, outputs=[layer.output for layer in initial_model.layers], ) # Call feature extractor on test input. x = ops.ones((1, 250, 250, 3)) features = feature_extractor(x)<jupyter_output><empty_output><jupyter_text>Here's a similar example that only extract features from one layer:<jupyter_code>initial_model = keras.Sequential( [ keras.Input(shape=(250, 250, 3)), layers.Conv2D(32, 5, strides=2, activation="relu"), layers.Conv2D(32, 3, activation="relu", name="my_intermediate_layer"), layers.Conv2D(32, 3, activation="relu"), ] ) feature_extractor = keras.Model( inputs=initial_model.inputs, outputs=initial_model.get_layer(name="my_intermediate_layer").output, ) # Call feature extractor on test input. x = ops.ones((1, 250, 250, 3)) features = feature_extractor(x)<jupyter_output><empty_output>
keras-io/guides/ipynb/sequential_model.ipynb/0
{ "file_path": "keras-io/guides/ipynb/sequential_model.ipynb", "repo_id": "keras-io", "token_count": 2868 }
119
# Customizing Saving and Serialization **Author:** Neel Kovelamudi<br> **Date created:** 2023/03/15<br> **Last modified:** 2023/03/15<br> **Description:** A more advanced guide on customizing saving for your layers and models. <img class="k-inline-icon" src="https://colab.research.google.com/img/colab_favicon.ico"/> [**View in Colab**](https://colab.research.google.com/github/keras-team/keras-io/blob/master/guides/ipynb/customizing_saving_and_serialization.ipynb) <span class="k-dot">•</span><img class="k-inline-icon" src="https://github.com/favicon.ico"/> [**GitHub source**](https://github.com/keras-team/keras-io/blob/master/guides/customizing_saving_and_serialization.py) --- ## Introduction This guide covers advanced methods that can be customized in Keras saving. For most users, the methods outlined in the primary [Serialize, save, and export guide](https://keras.io/guides/serialization_and_saving) are sufficient. ### APIs We will cover the following APIs: - `save_assets()` and `load_assets()` - `save_own_variables()` and `load_own_variables()` - `get_build_config()` and `build_from_config()` - `get_compile_config()` and `compile_from_config()` When restoring a model, these get executed in the following order: - `build_from_config()` - `compile_from_config()` - `load_own_variables()` - `load_assets()` --- ## Setup ```python import os import numpy as np import keras ``` --- ## State saving customization These methods determine how the state of your model's layers is saved when calling `model.save()`. You can override them to take full control of the state saving process. ### `save_own_variables()` and `load_own_variables()` These methods save and load the state variables of the layer when `model.save()` and `keras.models.load_model()` are called, respectively. By default, the state variables saved and loaded are the weights of the layer (both trainable and non-trainable). Here is the default implementation of `save_own_variables()`: ```python def save_own_variables(self, store): all_vars = self._trainable_weights + self._non_trainable_weights for i, v in enumerate(all_vars): store[f"{i}"] = v.numpy() ``` The store used by these methods is a dictionary that can be populated with the layer variables. Let's take a look at an example customizing this. **Example:** ```python @keras.utils.register_keras_serializable(package="my_custom_package") class LayerWithCustomVariable(keras.layers.Dense): def __init__(self, units, **kwargs): super().__init__(units, **kwargs) self.my_variable = keras.Variable( np.random.random((units,)), name="my_variable", dtype="float32" ) def save_own_variables(self, store): super().save_own_variables(store) # Stores the value of the variable upon saving store["variables"] = self.my_variable.numpy() def load_own_variables(self, store): # Assigns the value of the variable upon loading self.my_variable.assign(store["variables"]) # Load the remaining weights for i, v in enumerate(self.weights): v.assign(store[f"{i}"]) # Note: You must specify how all variables (including layer weights) # are loaded in `load_own_variables.` def call(self, inputs): dense_out = super().call(inputs) return dense_out + self.my_variable model = keras.Sequential([LayerWithCustomVariable(1)]) ref_input = np.random.random((8, 10)) ref_output = np.random.random((8, 10)) model.compile(optimizer="adam", loss="mean_squared_error") model.fit(ref_input, ref_output) model.save("custom_vars_model.keras") restored_model = keras.models.load_model("custom_vars_model.keras") np.testing.assert_allclose( model.layers[0].my_variable.numpy(), restored_model.layers[0].my_variable.numpy(), ) ``` <div class="k-default-codeblock"> ``` 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 101ms/step - loss: 0.2908 ``` </div> ### `save_assets()` and `load_assets()` These methods can be added to your model class definition to store and load any additional information that your model needs. For example, NLP domain layers such as TextVectorization layers and IndexLookup layers may need to store their associated vocabulary (or lookup table) in a text file upon saving. Let's take at the basics of this workflow with a simple file `assets.txt`. **Example:** ```python @keras.saving.register_keras_serializable(package="my_custom_package") class LayerWithCustomAssets(keras.layers.Dense): def __init__(self, vocab=None, *args, **kwargs): super().__init__(*args, **kwargs) self.vocab = vocab def save_assets(self, inner_path): # Writes the vocab (sentence) to text file at save time. with open(os.path.join(inner_path, "vocabulary.txt"), "w") as f: f.write(self.vocab) def load_assets(self, inner_path): # Reads the vocab (sentence) from text file at load time. with open(os.path.join(inner_path, "vocabulary.txt"), "r") as f: text = f.read() self.vocab = text.replace("<unk>", "little") model = keras.Sequential( [LayerWithCustomAssets(vocab="Mary had a <unk> lamb.", units=5)] ) x = np.random.random((10, 10)) y = model(x) model.save("custom_assets_model.keras") restored_model = keras.models.load_model("custom_assets_model.keras") np.testing.assert_string_equal( restored_model.layers[0].vocab, "Mary had a little lamb." ) ``` --- ## `build` and `compile` saving customization ### `get_build_config()` and `build_from_config()` These methods work together to save the layer's built states and restore them upon loading. By default, this only includes a build config dictionary with the layer's input shape, but overriding these methods can be used to include further Variables and Lookup Tables that can be useful to restore for your built model. **Example:** ```python @keras.saving.register_keras_serializable(package="my_custom_package") class LayerWithCustomBuild(keras.layers.Layer): def __init__(self, units=32, **kwargs): super().__init__(**kwargs) self.units = units def call(self, inputs): return keras.ops.matmul(inputs, self.w) + self.b def get_config(self): return dict(units=self.units, **super().get_config()) def build(self, input_shape, layer_init): # Note the overriding of `build()` to add an extra argument. # Therefore, we will need to manually call build with `layer_init` argument # before the first execution of `call()`. super().build(input_shape) self._input_shape = input_shape self.w = self.add_weight( shape=(input_shape[-1], self.units), initializer=layer_init, trainable=True, ) self.b = self.add_weight( shape=(self.units,), initializer=layer_init, trainable=True, ) self.layer_init = layer_init def get_build_config(self): build_config = { "layer_init": self.layer_init, "input_shape": self._input_shape, } # Stores our initializer for `build()` return build_config def build_from_config(self, config): # Calls `build()` with the parameters at loading time self.build(config["input_shape"], config["layer_init"]) custom_layer = LayerWithCustomBuild(units=16) custom_layer.build(input_shape=(8,), layer_init="random_normal") model = keras.Sequential( [ custom_layer, keras.layers.Dense(1, activation="sigmoid"), ] ) x = np.random.random((16, 8)) y = model(x) model.save("custom_build_model.keras") restored_model = keras.models.load_model("custom_build_model.keras") np.testing.assert_equal(restored_model.layers[0].layer_init, "random_normal") np.testing.assert_equal(restored_model.built, True) ``` ### `get_compile_config()` and `compile_from_config()` These methods work together to save the information with which the model was compiled (optimizers, losses, etc.) and restore and re-compile the model with this information. Overriding these methods can be useful for compiling the restored model with custom optimizers, custom losses, etc., as these will need to be deserialized prior to calling `model.compile` in `compile_from_config()`. Let's take a look at an example of this. **Example:** ```python @keras.saving.register_keras_serializable(package="my_custom_package") def small_square_sum_loss(y_true, y_pred): loss = keras.ops.square(y_pred - y_true) loss = loss / 10.0 loss = keras.ops.sum(loss, axis=1) return loss @keras.saving.register_keras_serializable(package="my_custom_package") def mean_pred(y_true, y_pred): return keras.ops.mean(y_pred) @keras.saving.register_keras_serializable(package="my_custom_package") class ModelWithCustomCompile(keras.Model): def __init__(self, **kwargs): super().__init__(**kwargs) self.dense1 = keras.layers.Dense(8, activation="relu") self.dense2 = keras.layers.Dense(4, activation="softmax") def call(self, inputs): x = self.dense1(inputs) return self.dense2(x) def compile(self, optimizer, loss_fn, metrics): super().compile(optimizer=optimizer, loss=loss_fn, metrics=metrics) self.model_optimizer = optimizer self.loss_fn = loss_fn self.loss_metrics = metrics def get_compile_config(self): # These parameters will be serialized at saving time. return { "model_optimizer": self.model_optimizer, "loss_fn": self.loss_fn, "metric": self.loss_metrics, } def compile_from_config(self, config): # Deserializes the compile parameters (important, since many are custom) optimizer = keras.utils.deserialize_keras_object(config["model_optimizer"]) loss_fn = keras.utils.deserialize_keras_object(config["loss_fn"]) metrics = keras.utils.deserialize_keras_object(config["metric"]) # Calls compile with the deserialized parameters self.compile(optimizer=optimizer, loss_fn=loss_fn, metrics=metrics) model = ModelWithCustomCompile() model.compile( optimizer="SGD", loss_fn=small_square_sum_loss, metrics=["accuracy", mean_pred] ) x = np.random.random((4, 8)) y = np.random.random((4,)) model.fit(x, y) model.save("custom_compile_model.keras") restored_model = keras.models.load_model("custom_compile_model.keras") np.testing.assert_equal(model.model_optimizer, restored_model.model_optimizer) np.testing.assert_equal(model.loss_fn, restored_model.loss_fn) np.testing.assert_equal(model.loss_metrics, restored_model.loss_metrics) ``` <div class="k-default-codeblock"> ``` 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 79ms/step - accuracy: 0.0000e+00 - loss: 0.0627 - mean_metric_wrapper: 0.2500 ``` </div> --- ## Conclusion Using the methods learned in this tutorial allows for a wide variety of use cases, allowing the saving and loading of complex models with exotic assets and state elements. To recap: - `save_own_variables` and `load_own_variables` determine how your states are saved and loaded. - `save_assets` and `load_assets` can be added to store and load any additional information your model needs. - `get_build_config` and `build_from_config` save and restore the model's built states. - `get_compile_config` and `compile_from_config` save and restore the model's compiled states.
keras-io/guides/md/customizing_saving_and_serialization.md/0
{ "file_path": "keras-io/guides/md/customizing_saving_and_serialization.md", "repo_id": "keras-io", "token_count": 4252 }
120
# Segment Anything in KerasCV! **Author:** Tirth Patel, Ian Stenbit<br> **Date created:** 2023/12/04<br> **Last modified:** 2023/12/19<br> **Description:** Segment anything using text, box, and points prompts in KerasCV. <img class="k-inline-icon" src="https://colab.research.google.com/img/colab_favicon.ico"/> [**View in Colab**](https://colab.research.google.com/github/keras-team/keras-io/blob/master/guides/ipynb/keras_cv/segment_anything_in_keras_cv.ipynb) <span class="k-dot">•</span><img class="k-inline-icon" src="https://github.com/favicon.ico"/> [**GitHub source**](https://github.com/keras-team/keras-io/blob/master/guides/keras_cv/segment_anything_in_keras_cv.py) --- ## Overview The Segment Anything Model (SAM) produces high quality object masks from input prompts such as points or boxes, and it can be used to generate masks for all objects in an image. It has been trained on a [dataset](https://segment-anything.com/dataset/index.html) of 11 million images and 1.1 billion masks, and has strong zero-shot performance on a variety of segmentation tasks. In this guide, we will show how to use KerasCV's implementation of the [Segment Anything Model](https://github.com/facebookresearch/segment-anything) and show how powerful TensorFlow's and JAX's performance boost is. First, let's get all our dependencies and images for our demo. ```python !pip install -Uq keras-cv !pip install -Uq keras ``` ```python !wget -q https://raw.githubusercontent.com/facebookresearch/segment-anything/main/notebooks/images/truck.jpg ``` --- ## Choose your backend With Keras 3, you can choose to use your favorite backend! ```python import os os.environ["KERAS_BACKEND"] = "jax" import timeit import numpy as np import matplotlib.pyplot as plt import keras from keras import ops import keras_cv ``` --- ## Helper functions Let's define some helper functions for visulazing the images, prompts, and the segmentation results. ```python def show_mask(mask, ax, random_color=False): if random_color: color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) else: color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6]) h, w = mask.shape[-2:] mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) ax.imshow(mask_image) def show_points(coords, labels, ax, marker_size=375): pos_points = coords[labels == 1] neg_points = coords[labels == 0] ax.scatter( pos_points[:, 0], pos_points[:, 1], color="green", marker="*", s=marker_size, edgecolor="white", linewidth=1.25, ) ax.scatter( neg_points[:, 0], neg_points[:, 1], color="red", marker="*", s=marker_size, edgecolor="white", linewidth=1.25, ) def show_box(box, ax): box = box.reshape(-1) x0, y0 = box[0], box[1] w, h = box[2] - box[0], box[3] - box[1] ax.add_patch( plt.Rectangle((x0, y0), w, h, edgecolor="green", facecolor=(0, 0, 0, 0), lw=2) ) def inference_resizing(image, pad=True): # Compute Preprocess Shape image = ops.cast(image, dtype="float32") old_h, old_w = image.shape[0], image.shape[1] scale = 1024 * 1.0 / max(old_h, old_w) new_h = old_h * scale new_w = old_w * scale preprocess_shape = int(new_h + 0.5), int(new_w + 0.5) # Resize the image image = ops.image.resize(image[None, ...], preprocess_shape)[0] # Pad the shorter side if pad: pixel_mean = ops.array([123.675, 116.28, 103.53]) pixel_std = ops.array([58.395, 57.12, 57.375]) image = (image - pixel_mean) / pixel_std h, w = image.shape[0], image.shape[1] pad_h = 1024 - h pad_w = 1024 - w image = ops.pad(image, [(0, pad_h), (0, pad_w), (0, 0)]) # KerasCV now rescales the images and normalizes them. # Just unnormalize such that when KerasCV normalizes them # again, the padded values map to 0. image = image * pixel_std + pixel_mean return image ``` --- ## Get the pretrained SAM model We can initialize a trained SAM model using KerasCV's `from_preset` factory method. Here, we use the huge ViT backbone trained on the SA-1B dataset (`sam_huge_sa1b`) for high-quality segmentation masks. You can also use one of the `sam_large_sa1b` or `sam_base_sa1b` for better performance (at the cost of decreasing quality of segmentation masks). ```python model = keras_cv.models.SegmentAnythingModel.from_preset("sam_huge_sa1b") ``` --- ## Understanding Prompts Segment Anything allows prompting an image using points, boxes, and masks: 1. Point prompts are the most basic of all: the model tries to guess the object given a point on an image. The point can either be a foreground point (i.e. the desired segmentation mask contains the point in it) or a backround point (i.e. the point lies outside the desired mask). 2. Another way to prompt the model is using boxes. Given a bounding box, the model tries to segment the object contained in it. 3. Finally, the model can also be prompted using a mask itself. This is useful, for instance, to refine the borders of a previously predicted or known segmentation mask. What makes the model incredibly powerful is the ability to combine the prompts above. Point, box, and mask prompts can be combined in several different ways to achieve the best result. Let's see the semantics of passing these prompts to the Segment Anything model in KerasCV. Input to the SAM model is a dictionary with keys: 1. `"images"`: A batch of images to segment. Must be of shape `(B, 1024, 1024, 3)`. 2. `"points"`: A batch of point prompts. Each point is an `(x, y)` coordinate originating from the top-left corner of the image. In other works, each point is of the form `(r, c)` where `r` and `c` are the row and column of the pixel in the image. Must be of shape `(B, N, 2)`. 3. `"labels"`: A batch of labels for the given points. `1` represents foreground points and `0` represents background points. Must be of shape `(B, N)`. 4. `"boxes"`: A batch of boxes. Note that the model only accepts one box per batch. Hence, the expected shape is `(B, 1, 2, 2)`. Each box is a collection of 2 points: the top left corner and the bottom right corner of the box. The points here follow the same semantics as the point prompts. Here the `1` in the second dimension represents the presence of box prompts. If the box prompts are missing, a placeholder input of shape `(B, 0, 2, 2)` must be passed. 5. `"masks"`: A batch of masks. Just like box prompts, only one mask prompt per image is allowed. The shape of the input mask must be `(B, 1, 256, 256, 1)` if they are present and `(B, 0, 256, 256, 1)` for missing mask prompt. Placeholder prompts are only required when calling the model directly (i.e. `model(...)`). When calling the `predict` method, missing prompts can be omitted from the input dictionary. --- ## Point prompts First, let's segment an image using point prompts. We load the image and resize it to shape `(1024, 1024)`, the image size the pretrained SAM model expects. ```python # Load our image image = np.array(keras.utils.load_img("truck.jpg")) image = inference_resizing(image) plt.figure(figsize=(10, 10)) plt.imshow(ops.convert_to_numpy(image) / 255.0) plt.axis("on") plt.show() ``` ![png](/img/guides/segment_anything_in_keras_cv/segment_anything_in_keras_cv_11_0.png) Next, we will define the point on the object we want to segment. Let's try to segment the truck's window pane at coordinates `(284, 213)`. ```python # Define the input point prompt input_point = np.array([[284, 213.5]]) input_label = np.array([1]) plt.figure(figsize=(10, 10)) plt.imshow(ops.convert_to_numpy(image) / 255.0) show_points(input_point, input_label, plt.gca()) plt.axis("on") plt.show() ``` ![png](/img/guides/segment_anything_in_keras_cv/segment_anything_in_keras_cv_13_0.png) Now let's call the `predict` method of our model to get the segmentation masks. **Note**: We don't call the model directly (`model(...)`) since placeholder prompts are required to do so. Missing prompts are handled automatically by the predict method so we call it instead. Also, when no box prompts are present, the points and labels need to be padded with a zero point prompt and `-1` label prompt respectively. The cell below demonstrates how this works. ```python outputs = model.predict( { "images": image[np.newaxis, ...], "points": np.concatenate( [input_point[np.newaxis, ...], np.zeros((1, 1, 2))], axis=1 ), "labels": np.concatenate( [input_label[np.newaxis, ...], np.full((1, 1), fill_value=-1)], axis=1 ), } ) ``` <div class="k-default-codeblock"> ``` 1/1 ━━━━━━━━━━━━━━━━━━━━ 48s 48s/step ``` </div> `SegmentAnythingModel.predict` returns two outputs. First are logits (segmentation masks) of shape `(1, 4, 256, 256)` and the other are the IoU confidence scores (of shape `(1, 4)`) for each mask predicted. The pretrained SAM model predicts four masks: the first is the best mask the model could come up with for the given prompts, and the other 3 are the alternative masks which can be used in case the best prediction doesn't contain the desired object. The user can choose whichever mask they prefer. Let's visualize the masks returned by the model! ```python # Resize the mask to our image shape i.e. (1024, 1024) mask = inference_resizing(outputs["masks"][0][0][..., None], pad=False)[..., 0] # Convert the logits to a numpy array # and convert the logits to a boolean mask mask = ops.convert_to_numpy(mask) > 0.0 iou_score = ops.convert_to_numpy(outputs["iou_pred"][0][0]) plt.figure(figsize=(10, 10)) plt.imshow(ops.convert_to_numpy(image) / 255.0) show_mask(mask, plt.gca()) show_points(input_point, input_label, plt.gca()) plt.title(f"IoU Score: {iou_score:.3f}", fontsize=18) plt.axis("off") plt.show() ``` ![png](/img/guides/segment_anything_in_keras_cv/segment_anything_in_keras_cv_17_0.png) As expected, the model returns a segmentation mask for the truck's window pane. But, our point prompt can also mean a range of other things. For example, another possible mask that contains our point is just the right side of the window pane or the whole truck. Let's also visualize the other masks the model has predicted. ```python fig, ax = plt.subplots(1, 3, figsize=(20, 60)) masks, scores = outputs["masks"][0][1:], outputs["iou_pred"][0][1:] for i, (mask, score) in enumerate(zip(masks, scores)): mask = inference_resizing(mask[..., None], pad=False)[..., 0] mask, score = map(ops.convert_to_numpy, (mask, score)) mask = 1 * (mask > 0.0) ax[i].imshow(ops.convert_to_numpy(image) / 255.0) show_mask(mask, ax[i]) show_points(input_point, input_label, ax[i]) ax[i].set_title(f"Mask {i+1}, Score: {score:.3f}", fontsize=12) ax[i].axis("off") plt.show() ``` ![png](/img/guides/segment_anything_in_keras_cv/segment_anything_in_keras_cv_20_0.png) Nice! SAM was able to capture the ambiguity of our point prompt and also returned other possible segmentation masks. --- ## Box Prompts Now, let's see how we can prompt the model using boxes. The box is specified using two points, the top-left corner and the bottom-right corner of the bounding box in xyxy format. Let's prompt the model using a bounding box around the left front tyre of the truck. ```python # Let's specify the box input_box = np.array([[240, 340], [400, 500]]) outputs = model.predict( {"images": image[np.newaxis, ...], "boxes": input_box[np.newaxis, np.newaxis, ...]} ) mask = inference_resizing(outputs["masks"][0][0][..., None], pad=False)[..., 0] mask = ops.convert_to_numpy(mask) > 0.0 plt.figure(figsize=(10, 10)) plt.imshow(ops.convert_to_numpy(image) / 255.0) show_mask(mask, plt.gca()) show_box(input_box, plt.gca()) plt.axis("off") plt.show() ``` <div class="k-default-codeblock"> ``` 1/1 ━━━━━━━━━━━━━━━━━━━━ 13s 13s/step ``` </div> ![png](/img/guides/segment_anything_in_keras_cv/segment_anything_in_keras_cv_23_1.png) Boom! The model perfectly segments out the left front tyre in our bounding box. --- ## Combining prompts To get the true potential of the model out, let's combine box and point prompts and see what the model does. ```python # Let's specify the box input_box = np.array([[240, 340], [400, 500]]) # Let's specify the point and mark it background input_point = np.array([[325, 425]]) input_label = np.array([0]) outputs = model.predict( { "images": image[np.newaxis, ...], "points": input_point[np.newaxis, ...], "labels": input_label[np.newaxis, ...], "boxes": input_box[np.newaxis, np.newaxis, ...], } ) mask = inference_resizing(outputs["masks"][0][0][..., None], pad=False)[..., 0] mask = ops.convert_to_numpy(mask) > 0.0 plt.figure(figsize=(10, 10)) plt.imshow(ops.convert_to_numpy(image) / 255.0) show_mask(mask, plt.gca()) show_box(input_box, plt.gca()) show_points(input_point, input_label, plt.gca()) plt.axis("off") plt.show() ``` <div class="k-default-codeblock"> ``` 1/1 ━━━━━━━━━━━━━━━━━━━━ 16s 16s/step ``` </div> ![png](/img/guides/segment_anything_in_keras_cv/segment_anything_in_keras_cv_25_1.png) Voila! The model understood that the object we wanted to exclude from our mask was the rim of the tyre. --- ## Text prompts Finally, let's see how text prompts can be used along with KerasCV's `SegmentAnythingModel`. For this demo, we will use the [offical Grounding DINO model](https://github.com/IDEA-Research/GroundingDINO). Grounding DINO is a model that takes as input a `(image, text)` pair and generates a bounding box around the object in the `image` described by the `text`. You can refer to the [paper](https://arxiv.org/abs/2303.05499) for more details on the implementation of the model. For this part of the demo, we will need to install the `groundingdino` package from source: ``` pip install -U git+https://github.com/IDEA-Research/GroundingDINO.git ``` Then, we can install the pretrained model's weights and config: ```python !wget -q https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth !wget -q https://raw.githubusercontent.com/IDEA-Research/GroundingDINO/v0.1.0-alpha2/groundingdino/config/GroundingDINO_SwinT_OGC.py ``` ```python from groundingdino.util.inference import Model as GroundingDINO CONFIG_PATH = "GroundingDINO_SwinT_OGC.py" WEIGHTS_PATH = "groundingdino_swint_ogc.pth" grounding_dino = GroundingDINO(CONFIG_PATH, WEIGHTS_PATH) ``` <div class="k-default-codeblock"> ``` /home/tirthp/oss/virtualenvs/keras-io-dev/lib/python3.10/site-packages/torch/functional.py:504: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:3526.) return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] final text_encoder_type: bert-base-uncased ``` </div> Let's load an image of a dog for this part! ```python filepath = keras.utils.get_file( origin="https://storage.googleapis.com/keras-cv/test-images/mountain-dog.jpeg" ) image = np.array(keras.utils.load_img(filepath)) image = ops.convert_to_numpy(inference_resizing(image)) plt.figure(figsize=(10, 10)) plt.imshow(image / 255.0) plt.axis("on") plt.show() ``` <div class="k-default-codeblock"> ``` Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers). ``` </div> ![png](/img/guides/segment_anything_in_keras_cv/segment_anything_in_keras_cv_30_1.png) We first predict the bounding box of the object we want to segment using the Grounding DINO model. Then, we prompt the SAM model using the bounding box to get the segmentation mask. Let's try to segment out the harness of the dog. Change the image and text below to segment whatever you want using text from your image! ```python # Let's predict the bounding box for the harness of the dog boxes = grounding_dino.predict_with_caption(image.astype(np.uint8), "harness") boxes = np.array(boxes[0].xyxy) outputs = model.predict( { "images": np.repeat(image[np.newaxis, ...], boxes.shape[0], axis=0), "boxes": boxes.reshape(-1, 1, 2, 2), }, batch_size=1, ) ``` <div class="k-default-codeblock"> ``` /home/tirthp/oss/virtualenvs/keras-io-dev/lib/python3.10/site-packages/transformers/modeling_utils.py:942: FutureWarning: The `device` argument is deprecated and will be removed in v5 of Transformers. warnings.warn( /home/tirthp/oss/virtualenvs/keras-io-dev/lib/python3.10/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants. warnings.warn( /home/tirthp/oss/virtualenvs/keras-io-dev/lib/python3.10/site-packages/torch/utils/checkpoint.py:61: UserWarning: None of the inputs have requires_grad=True. Gradients will be None warnings.warn( 1/1 ━━━━━━━━━━━━━━━━━━━━ 13s 13s/step ``` </div> And that's it! We got a segmentation mask for our text prompt using the combination of Gounding DINO + SAM! This is a very powerful technique to combine different models to expand the applications! Let's visualize the results. ```python plt.figure(figsize=(10, 10)) plt.imshow(image / 255.0) for mask in outputs["masks"]: mask = inference_resizing(mask[0][..., None], pad=False)[..., 0] mask = ops.convert_to_numpy(mask) > 0.0 show_mask(mask, plt.gca()) show_box(boxes, plt.gca()) plt.axis("off") plt.show() ``` <div class="k-default-codeblock"> ``` Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers). ``` </div> ![png](/img/guides/segment_anything_in_keras_cv/segment_anything_in_keras_cv_34_1.png) --- ## Optimizing SAM You can use `mixed_float16` or `bfloat16` dtype policies to gain huge speedups and memory optimizations at releatively low precision loss. ```python # Load our image image = np.array(keras.utils.load_img("truck.jpg")) image = inference_resizing(image) # Specify the prompt input_box = np.array([[240, 340], [400, 500]]) # Let's first see how fast the model is with float32 dtype time_taken = timeit.repeat( 'model.predict({"images": image[np.newaxis, ...], "boxes": input_box[np.newaxis, np.newaxis, ...]}, verbose=False)', repeat=3, number=3, globals=globals(), ) print(f"Time taken with float32 dtype: {min(time_taken) / 3:.10f}s") # Set the dtype policy in Keras keras.mixed_precision.set_global_policy("mixed_float16") model = keras_cv.models.SegmentAnythingModel.from_preset("sam_huge_sa1b") time_taken = timeit.repeat( 'model.predict({"images": image[np.newaxis, ...], "boxes": input_box[np.newaxis, np.newaxis, ...]}, verbose=False)', repeat=3, number=3, globals=globals(), ) print(f"Time taken with float16 dtype: {min(time_taken) / 3:.10f}s") ``` <div class="k-default-codeblock"> ``` Time taken with float32 dtype: 0.5304666963s Time taken with float16 dtype: 0.1586400040s ``` </div> Here's a comparison of KerasCV's implementation with the original PyTorch implementation! ![benchmark](https://github.com/tirthasheshpatel/segment_anything_keras/blob/main/benchmark.png?raw=true) The script used to generate the benchmarks is present [here](https://github.com/tirthasheshpatel/segment_anything_keras/blob/main/Segment_Anything_Benchmarks.ipynb). --- ## Conclusion KerasCV's `SegmentAnythingModel` supports a variety of applications and, with the help of Keras 3, enables running the model on TensorFlow, JAX, and PyTorch! With the help of XLA in JAX and TensorFlow, the model runs several times faster than the original implementation. Moreover, using Keras's mixed precision support helps optimize memory use and computation time with just one line of code! For more advanced uses, check out the [Automatic Mask Generator demo](https://github.com/tirthasheshpatel/segment_anything_keras/blob/main/Segment_Anything_Automatic_Mask_Generator_Demo.ipynb).
keras-io/guides/md/keras_cv/segment_anything_in_keras_cv.md/0
{ "file_path": "keras-io/guides/md/keras_cv/segment_anything_in_keras_cv.md", "repo_id": "keras-io", "token_count": 7469 }
121
# Training & evaluation with the built-in methods **Author:** [fchollet](https://twitter.com/fchollet)<br> **Date created:** 2019/03/01<br> **Last modified:** 2023/06/25<br> **Description:** Complete guide to training & evaluation with `fit()` and `evaluate()`. <img class="k-inline-icon" src="https://colab.research.google.com/img/colab_favicon.ico"/> [**View in Colab**](https://colab.research.google.com/github/keras-team/keras-io/blob/master/guides/ipynb/training_with_built_in_methods.ipynb) <span class="k-dot">•</span><img class="k-inline-icon" src="https://github.com/favicon.ico"/> [**GitHub source**](https://github.com/keras-team/keras-io/blob/master/guides/training_with_built_in_methods.py) --- ## Setup ```python # We import torch & TF so as to use torch Dataloaders & tf.data.Datasets. import torch import tensorflow as tf import os import numpy as np import keras from keras import layers from keras import ops ``` --- ## Introduction This guide covers training, evaluation, and prediction (inference) models when using built-in APIs for training & validation (such as `Model.fit()`, `Model.evaluate()` and `Model.predict()`). If you are interested in leveraging `fit()` while specifying your own training step function, see the guides on customizing what happens in `fit()`: - [Writing a custom train step with TensorFlow](/guides/custom_train_step_in_tensorflow/) - [Writing a custom train step with JAX](/guides/custom_train_step_in_jax/) - [Writing a custom train step with PyTorch](/guides/custom_train_step_in_torch/) If you are interested in writing your own training & evaluation loops from scratch, see the guides on writing training loops: - [Writing a training loop with TensorFlow](/guides/writing_a_custom_training_loop_in_tensorflow/) - [Writing a training loop with JAX](/guides/writing_a_custom_training_loop_in_jax/) - [Writing a training loop with PyTorch](/guides/writing_a_custom_training_loop_in_torch/) In general, whether you are using built-in loops or writing your own, model training & evaluation works strictly in the same way across every kind of Keras model -- Sequential models, models built with the Functional API, and models written from scratch via model subclassing. --- ## API overview: a first end-to-end example When passing data to the built-in training loops of a model, you should either use: - NumPy arrays (if your data is small and fits in memory) - Subclasses of `keras.utils.PyDataset` - `tf.data.Dataset` objects - PyTorch `DataLoader` instances In the next few paragraphs, we'll use the MNIST dataset as NumPy arrays, in order to demonstrate how to use optimizers, losses, and metrics. Afterwards, we'll take a close look at each of the other options. Let's consider the following model (here, we build in with the Functional API, but it could be a Sequential model or a subclassed model as well): ```python inputs = keras.Input(shape=(784,), name="digits") x = layers.Dense(64, activation="relu", name="dense_1")(inputs) x = layers.Dense(64, activation="relu", name="dense_2")(x) outputs = layers.Dense(10, activation="softmax", name="predictions")(x) model = keras.Model(inputs=inputs, outputs=outputs) ``` Here's what the typical end-to-end workflow looks like, consisting of: - Training - Validation on a holdout set generated from the original training data - Evaluation on the test data We'll use MNIST data for this example. ```python (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data() # Preprocess the data (these are NumPy arrays) x_train = x_train.reshape(60000, 784).astype("float32") / 255 x_test = x_test.reshape(10000, 784).astype("float32") / 255 y_train = y_train.astype("float32") y_test = y_test.astype("float32") # Reserve 10,000 samples for validation x_val = x_train[-10000:] y_val = y_train[-10000:] x_train = x_train[:-10000] y_train = y_train[:-10000] ``` We specify the training configuration (optimizer, loss, metrics): ```python model.compile( optimizer=keras.optimizers.RMSprop(), # Optimizer # Loss function to minimize loss=keras.losses.SparseCategoricalCrossentropy(), # List of metrics to monitor metrics=[keras.metrics.SparseCategoricalAccuracy()], ) ``` We call `fit()`, which will train the model by slicing the data into "batches" of size `batch_size`, and repeatedly iterating over the entire dataset for a given number of `epochs`. ```python print("Fit model on training data") history = model.fit( x_train, y_train, batch_size=64, epochs=2, # We pass some validation for # monitoring validation loss and metrics # at the end of each epoch validation_data=(x_val, y_val), ) ``` <div class="k-default-codeblock"> ``` Fit model on training data Epoch 1/2 782/782 ━━━━━━━━━━━━━━━━━━━━ 1s 955us/step - loss: 0.5740 - sparse_categorical_accuracy: 0.8368 - val_loss: 0.2040 - val_sparse_categorical_accuracy: 0.9420 Epoch 2/2 782/782 ━━━━━━━━━━━━━━━━━━━━ 0s 390us/step - loss: 0.1745 - sparse_categorical_accuracy: 0.9492 - val_loss: 0.1415 - val_sparse_categorical_accuracy: 0.9581 ``` </div> The returned `history` object holds a record of the loss values and metric values during training: ```python print(history.history) ``` <div class="k-default-codeblock"> ``` {'loss': [0.34448376297950745, 0.16419583559036255], 'sparse_categorical_accuracy': [0.9008600115776062, 0.9509199857711792], 'val_loss': [0.20404714345932007, 0.14145156741142273], 'val_sparse_categorical_accuracy': [0.9419999718666077, 0.9581000208854675]} ``` </div> We evaluate the model on the test data via `evaluate()`: ```python # Evaluate the model on the test data using `evaluate` print("Evaluate on test data") results = model.evaluate(x_test, y_test, batch_size=128) print("test loss, test acc:", results) # Generate predictions (probabilities -- the output of the last layer) # on new data using `predict` print("Generate predictions for 3 samples") predictions = model.predict(x_test[:3]) print("predictions shape:", predictions.shape) ``` <div class="k-default-codeblock"> ``` Evaluate on test data 79/79 ━━━━━━━━━━━━━━━━━━━━ 0s 271us/step - loss: 0.1670 - sparse_categorical_accuracy: 0.9489 test loss, test acc: [0.1484374850988388, 0.9550999999046326] Generate predictions for 3 samples 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 33ms/step predictions shape: (3, 10) ``` </div> Now, let's review each piece of this workflow in detail. --- ## The `compile()` method: specifying a loss, metrics, and an optimizer To train a model with `fit()`, you need to specify a loss function, an optimizer, and optionally, some metrics to monitor. You pass these to the model as arguments to the `compile()` method: ```python model.compile( optimizer=keras.optimizers.RMSprop(learning_rate=1e-3), loss=keras.losses.SparseCategoricalCrossentropy(), metrics=[keras.metrics.SparseCategoricalAccuracy()], ) ``` The `metrics` argument should be a list -- your model can have any number of metrics. If your model has multiple outputs, you can specify different losses and metrics for each output, and you can modulate the contribution of each output to the total loss of the model. You will find more details about this in the **Passing data to multi-input, multi-output models** section. Note that if you're satisfied with the default settings, in many cases the optimizer, loss, and metrics can be specified via string identifiers as a shortcut: ```python model.compile( optimizer="rmsprop", loss="sparse_categorical_crossentropy", metrics=["sparse_categorical_accuracy"], ) ``` For later reuse, let's put our model definition and compile step in functions; we will call them several times across different examples in this guide. ```python def get_uncompiled_model(): inputs = keras.Input(shape=(784,), name="digits") x = layers.Dense(64, activation="relu", name="dense_1")(inputs) x = layers.Dense(64, activation="relu", name="dense_2")(x) outputs = layers.Dense(10, activation="softmax", name="predictions")(x) model = keras.Model(inputs=inputs, outputs=outputs) return model def get_compiled_model(): model = get_uncompiled_model() model.compile( optimizer="rmsprop", loss="sparse_categorical_crossentropy", metrics=["sparse_categorical_accuracy"], ) return model ``` ### Many built-in optimizers, losses, and metrics are available In general, you won't have to create your own losses, metrics, or optimizers from scratch, because what you need is likely to be already part of the Keras API: Optimizers: - `SGD()` (with or without momentum) - `RMSprop()` - `Adam()` - etc. Losses: - `MeanSquaredError()` - `KLDivergence()` - `CosineSimilarity()` - etc. Metrics: - `AUC()` - `Precision()` - `Recall()` - etc. ### Custom losses If you need to create a custom loss, Keras provides three ways to do so. The first method involves creating a function that accepts inputs `y_true` and `y_pred`. The following example shows a loss function that computes the mean squared error between the real data and the predictions: ```python def custom_mean_squared_error(y_true, y_pred): return ops.mean(ops.square(y_true - y_pred), axis=-1) model = get_uncompiled_model() model.compile(optimizer=keras.optimizers.Adam(), loss=custom_mean_squared_error) # We need to one-hot encode the labels to use MSE y_train_one_hot = ops.one_hot(y_train, num_classes=10) model.fit(x_train, y_train_one_hot, batch_size=64, epochs=1) ``` <div class="k-default-codeblock"> ``` 782/782 ━━━━━━━━━━━━━━━━━━━━ 1s 525us/step - loss: 0.0277 <keras.src.callbacks.history.History at 0x2e5dde350> ``` </div> If you need a loss function that takes in parameters beside `y_true` and `y_pred`, you can subclass the `keras.losses.Loss` class and implement the following two methods: - `__init__(self)`: accept parameters to pass during the call of your loss function - `call(self, y_true, y_pred)`: use the targets (y_true) and the model predictions (y_pred) to compute the model's loss Let's say you want to use mean squared error, but with an added term that will de-incentivize prediction values far from 0.5 (we assume that the categorical targets are one-hot encoded and take values between 0 and 1). This creates an incentive for the model not to be too confident, which may help reduce overfitting (we won't know if it works until we try!). Here's how you would do it: ```python class CustomMSE(keras.losses.Loss): def __init__(self, regularization_factor=0.1, name="custom_mse"): super().__init__(name=name) self.regularization_factor = regularization_factor def call(self, y_true, y_pred): mse = ops.mean(ops.square(y_true - y_pred), axis=-1) reg = ops.mean(ops.square(0.5 - y_pred), axis=-1) return mse + reg * self.regularization_factor model = get_uncompiled_model() model.compile(optimizer=keras.optimizers.Adam(), loss=CustomMSE()) y_train_one_hot = ops.one_hot(y_train, num_classes=10) model.fit(x_train, y_train_one_hot, batch_size=64, epochs=1) ``` <div class="k-default-codeblock"> ``` 782/782 ━━━━━━━━━━━━━━━━━━━━ 1s 532us/step - loss: 0.0492 <keras.src.callbacks.history.History at 0x2e5d0d360> ``` </div> ### Custom metrics If you need a metric that isn't part of the API, you can easily create custom metrics by subclassing the `keras.metrics.Metric` class. You will need to implement 4 methods: - `__init__(self)`, in which you will create state variables for your metric. - `update_state(self, y_true, y_pred, sample_weight=None)`, which uses the targets y_true and the model predictions y_pred to update the state variables. - `result(self)`, which uses the state variables to compute the final results. - `reset_state(self)`, which reinitializes the state of the metric. State update and results computation are kept separate (in `update_state()` and `result()`, respectively) because in some cases, the results computation might be very expensive and would only be done periodically. Here's a simple example showing how to implement a `CategoricalTruePositives` metric that counts how many samples were correctly classified as belonging to a given class: ```python class CategoricalTruePositives(keras.metrics.Metric): def __init__(self, name="categorical_true_positives", **kwargs): super().__init__(name=name, **kwargs) self.true_positives = self.add_variable( shape=(), name="ctp", initializer="zeros" ) def update_state(self, y_true, y_pred, sample_weight=None): y_pred = ops.reshape(ops.argmax(y_pred, axis=1), (-1, 1)) values = ops.cast(y_true, "int32") == ops.cast(y_pred, "int32") values = ops.cast(values, "float32") if sample_weight is not None: sample_weight = ops.cast(sample_weight, "float32") values = ops.multiply(values, sample_weight) self.true_positives.assign_add(ops.sum(values)) def result(self): return self.true_positives.value def reset_state(self): # The state of the metric will be reset at the start of each epoch. self.true_positives.assign(0.0) model = get_uncompiled_model() model.compile( optimizer=keras.optimizers.RMSprop(learning_rate=1e-3), loss=keras.losses.SparseCategoricalCrossentropy(), metrics=[CategoricalTruePositives()], ) model.fit(x_train, y_train, batch_size=64, epochs=3) ``` <div class="k-default-codeblock"> ``` Epoch 1/3 782/782 ━━━━━━━━━━━━━━━━━━━━ 1s 568us/step - categorical_true_positives: 180967.9219 - loss: 0.5876 Epoch 2/3 782/782 ━━━━━━━━━━━━━━━━━━━━ 0s 377us/step - categorical_true_positives: 182141.9375 - loss: 0.1733 Epoch 3/3 782/782 ━━━━━━━━━━━━━━━━━━━━ 0s 377us/step - categorical_true_positives: 182303.5312 - loss: 0.1180 <keras.src.callbacks.history.History at 0x2e5f02d10> ``` </div> ### Handling losses and metrics that don't fit the standard signature The overwhelming majority of losses and metrics can be computed from `y_true` and `y_pred`, where `y_pred` is an output of your model -- but not all of them. For instance, a regularization loss may only require the activation of a layer (there are no targets in this case), and this activation may not be a model output. In such cases, you can call `self.add_loss(loss_value)` from inside the call method of a custom layer. Losses added in this way get added to the "main" loss during training (the one passed to `compile()`). Here's a simple example that adds activity regularization (note that activity regularization is built-in in all Keras layers -- this layer is just for the sake of providing a concrete example): ```python class ActivityRegularizationLayer(layers.Layer): def call(self, inputs): self.add_loss(ops.sum(inputs) * 0.1) return inputs # Pass-through layer. inputs = keras.Input(shape=(784,), name="digits") x = layers.Dense(64, activation="relu", name="dense_1")(inputs) # Insert activity regularization as a layer x = ActivityRegularizationLayer()(x) x = layers.Dense(64, activation="relu", name="dense_2")(x) outputs = layers.Dense(10, name="predictions")(x) model = keras.Model(inputs=inputs, outputs=outputs) model.compile( optimizer=keras.optimizers.RMSprop(learning_rate=1e-3), loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), ) # The displayed loss will be much higher than before # due to the regularization component. model.fit(x_train, y_train, batch_size=64, epochs=1) ``` <div class="k-default-codeblock"> ``` 782/782 ━━━━━━━━━━━━━━━━━━━━ 1s 505us/step - loss: 3.4083 <keras.src.callbacks.history.History at 0x2e60226b0> ``` </div> Note that when you pass losses via `add_loss()`, it becomes possible to call `compile()` without a loss function, since the model already has a loss to minimize. Consider the following `LogisticEndpoint` layer: it takes as inputs targets & logits, and it tracks a crossentropy loss via `add_loss()`. ```python class LogisticEndpoint(keras.layers.Layer): def __init__(self, name=None): super().__init__(name=name) self.loss_fn = keras.losses.BinaryCrossentropy(from_logits=True) def call(self, targets, logits, sample_weights=None): # Compute the training-time loss value and add it # to the layer using `self.add_loss()`. loss = self.loss_fn(targets, logits, sample_weights) self.add_loss(loss) # Return the inference-time prediction tensor (for `.predict()`). return ops.softmax(logits) ``` You can use it in a model with two inputs (input data & targets), compiled without a `loss` argument, like this: ```python inputs = keras.Input(shape=(3,), name="inputs") targets = keras.Input(shape=(10,), name="targets") logits = keras.layers.Dense(10)(inputs) predictions = LogisticEndpoint(name="predictions")(targets, logits) model = keras.Model(inputs=[inputs, targets], outputs=predictions) model.compile(optimizer="adam") # No loss argument! data = { "inputs": np.random.random((3, 3)), "targets": np.random.random((3, 10)), } model.fit(data) ``` <div class="k-default-codeblock"> ``` 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 89ms/step - loss: 0.6982 <keras.src.callbacks.history.History at 0x2e5cc91e0> ``` </div> For more information about training multi-input models, see the section **Passing data to multi-input, multi-output models**. ### Automatically setting apart a validation holdout set In the first end-to-end example you saw, we used the `validation_data` argument to pass a tuple of NumPy arrays `(x_val, y_val)` to the model for evaluating a validation loss and validation metrics at the end of each epoch. Here's another option: the argument `validation_split` allows you to automatically reserve part of your training data for validation. The argument value represents the fraction of the data to be reserved for validation, so it should be set to a number higher than 0 and lower than 1. For instance, `validation_split=0.2` means "use 20% of the data for validation", and `validation_split=0.6` means "use 60% of the data for validation". The way the validation is computed is by taking the last x% samples of the arrays received by the `fit()` call, before any shuffling. Note that you can only use `validation_split` when training with NumPy data. ```python model = get_compiled_model() model.fit(x_train, y_train, batch_size=64, validation_split=0.2, epochs=1) ``` <div class="k-default-codeblock"> ``` 625/625 ━━━━━━━━━━━━━━━━━━━━ 1s 563us/step - loss: 0.6161 - sparse_categorical_accuracy: 0.8259 - val_loss: 0.2379 - val_sparse_categorical_accuracy: 0.9302 <keras.src.callbacks.history.History at 0x2e6007610> ``` </div> --- ## Training & evaluation using `tf.data` Datasets In the past few paragraphs, you've seen how to handle losses, metrics, and optimizers, and you've seen how to use the `validation_data` and `validation_split` arguments in `fit()`, when your data is passed as NumPy arrays. Another option is to use an iterator-like, such as a `tf.data.Dataset`, a PyTorch `DataLoader`, or a Keras `PyDataset`. Let's take look at the former. The `tf.data` API is a set of utilities in TensorFlow 2.0 for loading and preprocessing data in a way that's fast and scalable. For a complete guide about creating `Datasets`, see the [tf.data documentation](https://www.tensorflow.org/guide/data). **You can use `tf.data` to train your Keras models regardless of the backend you're using -- whether it's JAX, PyTorch, or TensorFlow.** You can pass a `Dataset` instance directly to the methods `fit()`, `evaluate()`, and `predict()`: ```python model = get_compiled_model() # First, let's create a training Dataset instance. # For the sake of our example, we'll use the same MNIST data as before. train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)) # Shuffle and slice the dataset. train_dataset = train_dataset.shuffle(buffer_size=1024).batch(64) # Now we get a test dataset. test_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)) test_dataset = test_dataset.batch(64) # Since the dataset already takes care of batching, # we don't pass a `batch_size` argument. model.fit(train_dataset, epochs=3) # You can also evaluate or predict on a dataset. print("Evaluate") result = model.evaluate(test_dataset) dict(zip(model.metrics_names, result)) ``` <div class="k-default-codeblock"> ``` Epoch 1/3 782/782 ━━━━━━━━━━━━━━━━━━━━ 1s 688us/step - loss: 0.5631 - sparse_categorical_accuracy: 0.8458 Epoch 2/3 782/782 ━━━━━━━━━━━━━━━━━━━━ 0s 512us/step - loss: 0.1703 - sparse_categorical_accuracy: 0.9484 Epoch 3/3 782/782 ━━━━━━━━━━━━━━━━━━━━ 0s 506us/step - loss: 0.1187 - sparse_categorical_accuracy: 0.9640 Evaluate 157/157 ━━━━━━━━━━━━━━━━━━━━ 0s 622us/step - loss: 0.1380 - sparse_categorical_accuracy: 0.9582 {'loss': 0.11913617700338364, 'compile_metrics': 0.965399980545044} ``` </div> Note that the Dataset is reset at the end of each epoch, so it can be reused of the next epoch. If you want to run training only on a specific number of batches from this Dataset, you can pass the `steps_per_epoch` argument, which specifies how many training steps the model should run using this Dataset before moving on to the next epoch. ```python model = get_compiled_model() # Prepare the training dataset train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)) train_dataset = train_dataset.shuffle(buffer_size=1024).batch(64) # Only use the 100 batches per epoch (that's 64 * 100 samples) model.fit(train_dataset, epochs=3, steps_per_epoch=100) ``` <div class="k-default-codeblock"> ``` Epoch 1/3 100/100 ━━━━━━━━━━━━━━━━━━━━ 0s 508us/step - loss: 1.2000 - sparse_categorical_accuracy: 0.6822 Epoch 2/3 100/100 ━━━━━━━━━━━━━━━━━━━━ 0s 481us/step - loss: 0.4004 - sparse_categorical_accuracy: 0.8827 Epoch 3/3 100/100 ━━━━━━━━━━━━━━━━━━━━ 0s 471us/step - loss: 0.3546 - sparse_categorical_accuracy: 0.8968 <keras.src.callbacks.history.History at 0x2e64df400> ``` </div> You can also pass a `Dataset` instance as the `validation_data` argument in `fit()`: ```python model = get_compiled_model() # Prepare the training dataset train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)) train_dataset = train_dataset.shuffle(buffer_size=1024).batch(64) # Prepare the validation dataset val_dataset = tf.data.Dataset.from_tensor_slices((x_val, y_val)) val_dataset = val_dataset.batch(64) model.fit(train_dataset, epochs=1, validation_data=val_dataset) ``` <div class="k-default-codeblock"> ``` 782/782 ━━━━━━━━━━━━━━━━━━━━ 1s 837us/step - loss: 0.5569 - sparse_categorical_accuracy: 0.8508 - val_loss: 0.1711 - val_sparse_categorical_accuracy: 0.9527 <keras.src.callbacks.history.History at 0x2e641e920> ``` </div> At the end of each epoch, the model will iterate over the validation dataset and compute the validation loss and validation metrics. If you want to run validation only on a specific number of batches from this dataset, you can pass the `validation_steps` argument, which specifies how many validation steps the model should run with the validation dataset before interrupting validation and moving on to the next epoch: ```python model = get_compiled_model() # Prepare the training dataset train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)) train_dataset = train_dataset.shuffle(buffer_size=1024).batch(64) # Prepare the validation dataset val_dataset = tf.data.Dataset.from_tensor_slices((x_val, y_val)) val_dataset = val_dataset.batch(64) model.fit( train_dataset, epochs=1, # Only run validation using the first 10 batches of the dataset # using the `validation_steps` argument validation_data=val_dataset, validation_steps=10, ) ``` <div class="k-default-codeblock"> ``` 782/782 ━━━━━━━━━━━━━━━━━━━━ 1s 771us/step - loss: 0.5562 - sparse_categorical_accuracy: 0.8436 - val_loss: 0.3345 - val_sparse_categorical_accuracy: 0.9062 <keras.src.callbacks.history.History at 0x2f9542e00> ``` </div> Note that the validation dataset will be reset after each use (so that you will always be evaluating on the same samples from epoch to epoch). The argument `validation_split` (generating a holdout set from the training data) is not supported when training from `Dataset` objects, since this feature requires the ability to index the samples of the datasets, which is not possible in general with the `Dataset` API. --- ## Training & evaluation using `PyDataset` instances `keras.utils.PyDataset` is a utility that you can subclass to obtain a Python generator with two important properties: - It works well with multiprocessing. - It can be shuffled (e.g. when passing `shuffle=True` in `fit()`). A `PyDataset` must implement two methods: - `__getitem__` - `__len__` The method `__getitem__` should return a complete batch. If you want to modify your dataset between epochs, you may implement `on_epoch_end`. Here's a quick example: ```python class ExamplePyDataset(keras.utils.PyDataset): def __init__(self, x, y, batch_size, **kwargs): super().__init__(**kwargs) self.x = x self.y = y self.batch_size = batch_size def __len__(self): return int(np.ceil(len(self.x) / float(self.batch_size))) def __getitem__(self, idx): batch_x = self.x[idx * self.batch_size : (idx + 1) * self.batch_size] batch_y = self.y[idx * self.batch_size : (idx + 1) * self.batch_size] return batch_x, batch_y train_py_dataset = ExamplePyDataset(x_train, y_train, batch_size=32) val_py_dataset = ExamplePyDataset(x_val, y_val, batch_size=32) ``` To fit the model, pass the dataset instead as the `x` argument (no need for a `y` argument since the dataset includes the targets), and pass the validation dataset as the `validation_data` argument. And no need for the `batch_size` argument, since the dataset is already batched! ```python model = get_compiled_model() model.fit(train_py_dataset, batch_size=64, validation_data=val_py_dataset, epochs=1) ``` <div class="k-default-codeblock"> ``` 1563/1563 ━━━━━━━━━━━━━━━━━━━━ 1s 443us/step - loss: 0.5217 - sparse_categorical_accuracy: 0.8473 - val_loss: 0.1576 - val_sparse_categorical_accuracy: 0.9525 <keras.src.callbacks.history.History at 0x2f9c8d120> ``` </div> Evaluating the model is just as easy: ```python model.evaluate(val_py_dataset) ``` <div class="k-default-codeblock"> ``` 313/313 ━━━━━━━━━━━━━━━━━━━━ 0s 157us/step - loss: 0.1821 - sparse_categorical_accuracy: 0.9450 [0.15764616429805756, 0.9524999856948853] ``` </div> Importantly, `PyDataset` objects support three common constructor arguments that handle the parallel processing configuration: - `workers`: Number of workers to use in multithreading or multiprocessing. Typically, you'd set it to the number of cores on your CPU. - `use_multiprocessing`: Whether to use Python multiprocessing for parallelism. Setting this to `True` means that your dataset will be replicated in multiple forked processes. This is necessary to gain compute-level (rather than I/O level) benefits from parallelism. However it can only be set to `True` if your dataset can be safely pickled. - `max_queue_size`: Maximum number of batches to keep in the queue when iterating over the dataset in a multithreaded or multipricessed setting. You can reduce this value to reduce the CPU memory consumption of your dataset. It defaults to 10. By default, multiprocessing is disabled (`use_multiprocessing=False`) and only one thread is used. You should make sure to only turn on `use_multiprocessing` if your code is running inside a Python `if __name__ == "__main__":` block in order to avoid issues. Here's a 4-thread, non-multiprocessed example: ```python train_py_dataset = ExamplePyDataset(x_train, y_train, batch_size=32, workers=4) val_py_dataset = ExamplePyDataset(x_val, y_val, batch_size=32, workers=4) model = get_compiled_model() model.fit(train_py_dataset, batch_size=64, validation_data=val_py_dataset, epochs=1) ``` <div class="k-default-codeblock"> ``` 1563/1563 ━━━━━━━━━━━━━━━━━━━━ 1s 561us/step - loss: 0.5146 - sparse_categorical_accuracy: 0.8516 - val_loss: 0.1623 - val_sparse_categorical_accuracy: 0.9514 <keras.src.callbacks.history.History at 0x2e7fd5ea0> ``` </div> --- ## Training & evaluation using PyTorch `DataLoader` objects All built-in training and evaluation APIs are also compatible with `torch.utils.data.Dataset` and `torch.utils.data.DataLoader` objects -- regardless of whether you're using the PyTorch backend, or the JAX or TensorFlow backends. Let's take a look at a simple example. Unlike `PyDataset` which are batch-centric, PyTorch `Dataset` objects are sample-centric: the `__len__` method returns the number of samples, and the `__getitem__` method returns a specific sample. ```python class ExampleTorchDataset(torch.utils.data.Dataset): def __init__(self, x, y): self.x = x self.y = y def __len__(self): return len(self.x) def __getitem__(self, idx): return self.x[idx], self.y[idx] train_torch_dataset = ExampleTorchDataset(x_train, y_train) val_torch_dataset = ExampleTorchDataset(x_val, y_val) ``` To use a PyTorch Dataset, you need to wrap it into a `Dataloader` which takes care of batching and shuffling: ```python train_dataloader = torch.utils.data.DataLoader( train_torch_dataset, batch_size=32, shuffle=True ) val_dataloader = torch.utils.data.DataLoader( val_torch_dataset, batch_size=32, shuffle=True ) ``` Now you can use them in the Keras API just like any other iterator: ```python model = get_compiled_model() model.fit(train_dataloader, batch_size=64, validation_data=val_dataloader, epochs=1) model.evaluate(val_dataloader) ``` <div class="k-default-codeblock"> ``` 1563/1563 ━━━━━━━━━━━━━━━━━━━━ 1s 575us/step - loss: 0.5051 - sparse_categorical_accuracy: 0.8568 - val_loss: 0.1613 - val_sparse_categorical_accuracy: 0.9528 313/313 ━━━━━━━━━━━━━━━━━━━━ 0s 278us/step - loss: 0.1551 - sparse_categorical_accuracy: 0.9541 [0.16209803521633148, 0.9527999758720398] ``` </div> --- ## Using sample weighting and class weighting With the default settings the weight of a sample is decided by its frequency in the dataset. There are two methods to weight the data, independent of sample frequency: * Class weights * Sample weights ### Class weights This is set by passing a dictionary to the `class_weight` argument to `Model.fit()`. This dictionary maps class indices to the weight that should be used for samples belonging to this class. This can be used to balance classes without resampling, or to train a model that gives more importance to a particular class. For instance, if class "0" is half as represented as class "1" in your data, you could use `Model.fit(..., class_weight={0: 1., 1: 0.5})`. Here's a NumPy example where we use class weights or sample weights to give more importance to the correct classification of class #5 (which is the digit "5" in the MNIST dataset). ```python class_weight = { 0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0, 4: 1.0, # Set weight "2" for class "5", # making this class 2x more important 5: 2.0, 6: 1.0, 7: 1.0, 8: 1.0, 9: 1.0, } print("Fit with class weight") model = get_compiled_model() model.fit(x_train, y_train, class_weight=class_weight, batch_size=64, epochs=1) ``` <div class="k-default-codeblock"> ``` Fit with class weight 782/782 ━━━━━━━━━━━━━━━━━━━━ 1s 534us/step - loss: 0.6205 - sparse_categorical_accuracy: 0.8375 <keras.src.callbacks.history.History at 0x298d44eb0> ``` </div> ### Sample weights For fine grained control, or if you are not building a classifier, you can use "sample weights". - When training from NumPy data: Pass the `sample_weight` argument to `Model.fit()`. - When training from `tf.data` or any other sort of iterator: Yield `(input_batch, label_batch, sample_weight_batch)` tuples. A "sample weights" array is an array of numbers that specify how much weight each sample in a batch should have in computing the total loss. It is commonly used in imbalanced classification problems (the idea being to give more weight to rarely-seen classes). When the weights used are ones and zeros, the array can be used as a *mask* for the loss function (entirely discarding the contribution of certain samples to the total loss). ```python sample_weight = np.ones(shape=(len(y_train),)) sample_weight[y_train == 5] = 2.0 print("Fit with sample weight") model = get_compiled_model() model.fit(x_train, y_train, sample_weight=sample_weight, batch_size=64, epochs=1) ``` <div class="k-default-codeblock"> ``` Fit with sample weight 782/782 ━━━━━━━━━━━━━━━━━━━━ 1s 546us/step - loss: 0.6397 - sparse_categorical_accuracy: 0.8388 <keras.src.callbacks.history.History at 0x298e066e0> ``` </div> Here's a matching `Dataset` example: ```python sample_weight = np.ones(shape=(len(y_train),)) sample_weight[y_train == 5] = 2.0 # Create a Dataset that includes sample weights # (3rd element in the return tuple). train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train, sample_weight)) # Shuffle and slice the dataset. train_dataset = train_dataset.shuffle(buffer_size=1024).batch(64) model = get_compiled_model() model.fit(train_dataset, epochs=1) ``` <div class="k-default-codeblock"> ``` 782/782 ━━━━━━━━━━━━━━━━━━━━ 1s 651us/step - loss: 0.5971 - sparse_categorical_accuracy: 0.8445 <keras.src.callbacks.history.History at 0x312854100> ``` </div> --- ## Passing data to multi-input, multi-output models In the previous examples, we were considering a model with a single input (a tensor of shape `(764,)`) and a single output (a prediction tensor of shape `(10,)`). But what about models that have multiple inputs or outputs? Consider the following model, which has an image input of shape `(32, 32, 3)` (that's `(height, width, channels)`) and a time series input of shape `(None, 10)` (that's `(timesteps, features)`). Our model will have two outputs computed from the combination of these inputs: a "score" (of shape `(1,)`) and a probability distribution over five classes (of shape `(5,)`). ```python image_input = keras.Input(shape=(32, 32, 3), name="img_input") timeseries_input = keras.Input(shape=(None, 10), name="ts_input") x1 = layers.Conv2D(3, 3)(image_input) x1 = layers.GlobalMaxPooling2D()(x1) x2 = layers.Conv1D(3, 3)(timeseries_input) x2 = layers.GlobalMaxPooling1D()(x2) x = layers.concatenate([x1, x2]) score_output = layers.Dense(1, name="score_output")(x) class_output = layers.Dense(5, name="class_output")(x) model = keras.Model( inputs=[image_input, timeseries_input], outputs=[score_output, class_output] ) ``` Let's plot this model, so you can clearly see what we're doing here (note that the shapes shown in the plot are batch shapes, rather than per-sample shapes). ```python keras.utils.plot_model(model, "multi_input_and_output_model.png", show_shapes=True) ``` ![png](/img/guides/training_with_built_in_methods/training_with_built_in_methods_73_0.png) At compilation time, we can specify different losses to different outputs, by passing the loss functions as a list: ```python model.compile( optimizer=keras.optimizers.RMSprop(1e-3), loss=[ keras.losses.MeanSquaredError(), keras.losses.CategoricalCrossentropy(), ], ) ``` If we only passed a single loss function to the model, the same loss function would be applied to every output (which is not appropriate here). Likewise for metrics: ```python model.compile( optimizer=keras.optimizers.RMSprop(1e-3), loss=[ keras.losses.MeanSquaredError(), keras.losses.CategoricalCrossentropy(), ], metrics=[ [ keras.metrics.MeanAbsolutePercentageError(), keras.metrics.MeanAbsoluteError(), ], [keras.metrics.CategoricalAccuracy()], ], ) ``` Since we gave names to our output layers, we could also specify per-output losses and metrics via a dict: ```python model.compile( optimizer=keras.optimizers.RMSprop(1e-3), loss={ "score_output": keras.losses.MeanSquaredError(), "class_output": keras.losses.CategoricalCrossentropy(), }, metrics={ "score_output": [ keras.metrics.MeanAbsolutePercentageError(), keras.metrics.MeanAbsoluteError(), ], "class_output": [keras.metrics.CategoricalAccuracy()], }, ) ``` We recommend the use of explicit names and dicts if you have more than 2 outputs. It's possible to give different weights to different output-specific losses (for instance, one might wish to privilege the "score" loss in our example, by giving to 2x the importance of the class loss), using the `loss_weights` argument: ```python model.compile( optimizer=keras.optimizers.RMSprop(1e-3), loss={ "score_output": keras.losses.MeanSquaredError(), "class_output": keras.losses.CategoricalCrossentropy(), }, metrics={ "score_output": [ keras.metrics.MeanAbsolutePercentageError(), keras.metrics.MeanAbsoluteError(), ], "class_output": [keras.metrics.CategoricalAccuracy()], }, loss_weights={"score_output": 2.0, "class_output": 1.0}, ) ``` You could also choose not to compute a loss for certain outputs, if these outputs are meant for prediction but not for training: ```python # List loss version model.compile( optimizer=keras.optimizers.RMSprop(1e-3), loss=[None, keras.losses.CategoricalCrossentropy()], ) # Or dict loss version model.compile( optimizer=keras.optimizers.RMSprop(1e-3), loss={"class_output": keras.losses.CategoricalCrossentropy()}, ) ``` Passing data to a multi-input or multi-output model in `fit()` works in a similar way as specifying a loss function in compile: you can pass **lists of NumPy arrays** (with 1:1 mapping to the outputs that received a loss function) or **dicts mapping output names to NumPy arrays**. ```python model.compile( optimizer=keras.optimizers.RMSprop(1e-3), loss=[ keras.losses.MeanSquaredError(), keras.losses.CategoricalCrossentropy(), ], ) # Generate dummy NumPy data img_data = np.random.random_sample(size=(100, 32, 32, 3)) ts_data = np.random.random_sample(size=(100, 20, 10)) score_targets = np.random.random_sample(size=(100, 1)) class_targets = np.random.random_sample(size=(100, 5)) # Fit on lists model.fit([img_data, ts_data], [score_targets, class_targets], batch_size=32, epochs=1) # Alternatively, fit on dicts model.fit( {"img_input": img_data, "ts_input": ts_data}, {"score_output": score_targets, "class_output": class_targets}, batch_size=32, epochs=1, ) ``` <div class="k-default-codeblock"> ``` 4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 62ms/step - loss: 18.0146 4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 56ms/step - loss: 17.6494 <keras.src.callbacks.history.History at 0x31a6c5810> ``` </div> Here's the `Dataset` use case: similarly as what we did for NumPy arrays, the `Dataset` should return a tuple of dicts. ```python train_dataset = tf.data.Dataset.from_tensor_slices( ( {"img_input": img_data, "ts_input": ts_data}, {"score_output": score_targets, "class_output": class_targets}, ) ) train_dataset = train_dataset.shuffle(buffer_size=1024).batch(64) model.fit(train_dataset, epochs=1) ``` <div class="k-default-codeblock"> ``` 2/2 ━━━━━━━━━━━━━━━━━━━━ 0s 197ms/step - loss: 17.8578 <keras.src.callbacks.history.History at 0x17c7e5690> ``` </div> --- ## Using callbacks Callbacks in Keras are objects that are called at different points during training (at the start of an epoch, at the end of a batch, at the end of an epoch, etc.). They can be used to implement certain behaviors, such as: - Doing validation at different points during training (beyond the built-in per-epoch validation) - Checkpointing the model at regular intervals or when it exceeds a certain accuracy threshold - Changing the learning rate of the model when training seems to be plateauing - Doing fine-tuning of the top layers when training seems to be plateauing - Sending email or instant message notifications when training ends or where a certain performance threshold is exceeded - Etc. Callbacks can be passed as a list to your call to `fit()`: ```python model = get_compiled_model() callbacks = [ keras.callbacks.EarlyStopping( # Stop training when `val_loss` is no longer improving monitor="val_loss", # "no longer improving" being defined as "no better than 1e-2 less" min_delta=1e-2, # "no longer improving" being further defined as "for at least 2 epochs" patience=2, verbose=1, ) ] model.fit( x_train, y_train, epochs=20, batch_size=64, callbacks=callbacks, validation_split=0.2, ) ``` <div class="k-default-codeblock"> ``` Epoch 1/20 625/625 ━━━━━━━━━━━━━━━━━━━━ 1s 622us/step - loss: 0.6245 - sparse_categorical_accuracy: 0.8275 - val_loss: 0.2231 - val_sparse_categorical_accuracy: 0.9330 Epoch 2/20 625/625 ━━━━━━━━━━━━━━━━━━━━ 0s 404us/step - loss: 0.1809 - sparse_categorical_accuracy: 0.9460 - val_loss: 0.1727 - val_sparse_categorical_accuracy: 0.9476 Epoch 3/20 625/625 ━━━━━━━━━━━━━━━━━━━━ 0s 398us/step - loss: 0.1336 - sparse_categorical_accuracy: 0.9598 - val_loss: 0.1564 - val_sparse_categorical_accuracy: 0.9545 Epoch 4/20 625/625 ━━━━━━━━━━━━━━━━━━━━ 0s 400us/step - loss: 0.1012 - sparse_categorical_accuracy: 0.9699 - val_loss: 0.1502 - val_sparse_categorical_accuracy: 0.9570 Epoch 5/20 625/625 ━━━━━━━━━━━━━━━━━━━━ 0s 403us/step - loss: 0.0835 - sparse_categorical_accuracy: 0.9748 - val_loss: 0.1436 - val_sparse_categorical_accuracy: 0.9589 Epoch 6/20 625/625 ━━━━━━━━━━━━━━━━━━━━ 0s 396us/step - loss: 0.0699 - sparse_categorical_accuracy: 0.9783 - val_loss: 0.1484 - val_sparse_categorical_accuracy: 0.9577 Epoch 7/20 625/625 ━━━━━━━━━━━━━━━━━━━━ 0s 402us/step - loss: 0.0603 - sparse_categorical_accuracy: 0.9814 - val_loss: 0.1406 - val_sparse_categorical_accuracy: 0.9629 Epoch 7: early stopping <keras.src.callbacks.history.History at 0x31ae37c10> ``` </div> ### Many built-in callbacks are available There are many built-in callbacks already available in Keras, such as: - `ModelCheckpoint`: Periodically save the model. - `EarlyStopping`: Stop training when training is no longer improving the validation metrics. - `TensorBoard`: periodically write model logs that can be visualized in [TensorBoard](https://www.tensorflow.org/tensorboard) (more details in the section "Visualization"). - `CSVLogger`: streams loss and metrics data to a CSV file. - etc. See the [callbacks documentation](/api/callbacks/) for the complete list. ### Writing your own callback You can create a custom callback by extending the base class `keras.callbacks.Callback`. A callback has access to its associated model through the class property `self.model`. Make sure to read the [complete guide to writing custom callbacks](/guides/writing_your_own_callbacks/). Here's a simple example saving a list of per-batch loss values during training: ```python class LossHistory(keras.callbacks.Callback): def on_train_begin(self, logs): self.per_batch_losses = [] def on_batch_end(self, batch, logs): self.per_batch_losses.append(logs.get("loss")) ``` --- ## Checkpointing models When you're training model on relatively large datasets, it's crucial to save checkpoints of your model at frequent intervals. The easiest way to achieve this is with the `ModelCheckpoint` callback: ```python model = get_compiled_model() callbacks = [ keras.callbacks.ModelCheckpoint( # Path where to save the model # The two parameters below mean that we will overwrite # the current checkpoint if and only if # the `val_loss` score has improved. # The saved model name will include the current epoch. filepath="mymodel_{epoch}.keras", save_best_only=True, # Only save a model if `val_loss` has improved. monitor="val_loss", verbose=1, ) ] model.fit( x_train, y_train, epochs=2, batch_size=64, callbacks=callbacks, validation_split=0.2, ) ``` <div class="k-default-codeblock"> ``` Epoch 1/2 559/625 ━━━━━━━━━━━━━━━━━━━━ 0s 360us/step - loss: 0.6490 - sparse_categorical_accuracy: 0.8209 Epoch 1: val_loss improved from inf to 0.22393, saving model to mymodel_1.keras 625/625 ━━━━━━━━━━━━━━━━━━━━ 1s 577us/step - loss: 0.6194 - sparse_categorical_accuracy: 0.8289 - val_loss: 0.2239 - val_sparse_categorical_accuracy: 0.9340 Epoch 2/2 565/625 ━━━━━━━━━━━━━━━━━━━━ 0s 355us/step - loss: 0.1816 - sparse_categorical_accuracy: 0.9476 Epoch 2: val_loss improved from 0.22393 to 0.16868, saving model to mymodel_2.keras 625/625 ━━━━━━━━━━━━━━━━━━━━ 0s 411us/step - loss: 0.1806 - sparse_categorical_accuracy: 0.9479 - val_loss: 0.1687 - val_sparse_categorical_accuracy: 0.9494 <keras.src.callbacks.history.History at 0x2e5cb7250> ``` </div> The `ModelCheckpoint` callback can be used to implement fault-tolerance: the ability to restart training from the last saved state of the model in case training gets randomly interrupted. Here's a basic example: ```python # Prepare a directory to store all the checkpoints. checkpoint_dir = "./ckpt" if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) def make_or_restore_model(): # Either restore the latest model, or create a fresh one # if there is no checkpoint available. checkpoints = [checkpoint_dir + "/" + name for name in os.listdir(checkpoint_dir)] if checkpoints: latest_checkpoint = max(checkpoints, key=os.path.getctime) print("Restoring from", latest_checkpoint) return keras.models.load_model(latest_checkpoint) print("Creating a new model") return get_compiled_model() model = make_or_restore_model() callbacks = [ # This callback saves the model every 100 batches. # We include the training loss in the saved model name. keras.callbacks.ModelCheckpoint( filepath=checkpoint_dir + "/model-loss={loss:.2f}.keras", save_freq=100 ) ] model.fit(x_train, y_train, epochs=1, callbacks=callbacks) ``` <div class="k-default-codeblock"> ``` Creating a new model 1563/1563 ━━━━━━━━━━━━━━━━━━━━ 1s 390us/step - loss: 0.4910 - sparse_categorical_accuracy: 0.8623 <keras.src.callbacks.history.History at 0x2e5c454e0> ``` </div> You call also write your own callback for saving and restoring models. For a complete guide on serialization and saving, see the [guide to saving and serializing Models](/guides/serialization_and_saving/). --- ## Using learning rate schedules A common pattern when training deep learning models is to gradually reduce the learning as training progresses. This is generally known as "learning rate decay". The learning decay schedule could be static (fixed in advance, as a function of the current epoch or the current batch index), or dynamic (responding to the current behavior of the model, in particular the validation loss). ### Passing a schedule to an optimizer You can easily use a static learning rate decay schedule by passing a schedule object as the `learning_rate` argument in your optimizer: ```python initial_learning_rate = 0.1 lr_schedule = keras.optimizers.schedules.ExponentialDecay( initial_learning_rate, decay_steps=100000, decay_rate=0.96, staircase=True ) optimizer = keras.optimizers.RMSprop(learning_rate=lr_schedule) ``` Several built-in schedules are available: `ExponentialDecay`, `PiecewiseConstantDecay`, `PolynomialDecay`, and `InverseTimeDecay`. ### Using callbacks to implement a dynamic learning rate schedule A dynamic learning rate schedule (for instance, decreasing the learning rate when the validation loss is no longer improving) cannot be achieved with these schedule objects, since the optimizer does not have access to validation metrics. However, callbacks do have access to all metrics, including validation metrics! You can thus achieve this pattern by using a callback that modifies the current learning rate on the optimizer. In fact, this is even built-in as the `ReduceLROnPlateau` callback. --- ## Visualizing loss and metrics during training with TensorBoard The best way to keep an eye on your model during training is to use [TensorBoard](https://www.tensorflow.org/tensorboard) -- a browser-based application that you can run locally that provides you with: - Live plots of the loss and metrics for training and evaluation - (optionally) Visualizations of the histograms of your layer activations - (optionally) 3D visualizations of the embedding spaces learned by your `Embedding` layers If you have installed TensorFlow with pip, you should be able to launch TensorBoard from the command line: ``` tensorboard --logdir=/full_path_to_your_logs ``` ### Using the TensorBoard callback The easiest way to use TensorBoard with a Keras model and the `fit()` method is the `TensorBoard` callback. In the simplest case, just specify where you want the callback to write logs, and you're good to go: ```python keras.callbacks.TensorBoard( log_dir="/full_path_to_your_logs", histogram_freq=0, # How often to log histogram visualizations embeddings_freq=0, # How often to log embedding visualizations update_freq="epoch", ) # How often to write logs (default: once per epoch) ``` <div class="k-default-codeblock"> ``` <keras.src.callbacks.tensorboard.TensorBoard at 0x31b0188b0> ``` </div> For more information, see the [documentation for the `TensorBoard` callback](https://keras.io/api/callbacks/tensorboard/).
keras-io/guides/md/training_with_built_in_methods.md/0
{ "file_path": "keras-io/guides/md/training_with_built_in_methods.md", "repo_id": "keras-io", "token_count": 17989 }
122
""" Title: Writing a training loop from scratch in PyTorch Author: [fchollet](https://twitter.com/fchollet) Date created: 2023/06/25 Last modified: 2023/06/25 Description: Writing low-level training & evaluation loops in PyTorch. Accelerator: None """ """ ## Setup """ import os # This guide can only be run with the torch backend. os.environ["KERAS_BACKEND"] = "torch" import torch import keras import numpy as np """ ## Introduction Keras provides default training and evaluation loops, `fit()` and `evaluate()`. Their usage is covered in the guide [Training & evaluation with the built-in methods](/guides/training_with_built_in_methods/). If you want to customize the learning algorithm of your model while still leveraging the convenience of `fit()` (for instance, to train a GAN using `fit()`), you can subclass the `Model` class and implement your own `train_step()` method, which is called repeatedly during `fit()`. Now, if you want very low-level control over training & evaluation, you should write your own training & evaluation loops from scratch. This is what this guide is about. """ """ ## A first end-to-end example To write a custom training loop, we need the following ingredients: - A model to train, of course. - An optimizer. You could either use a `keras.optimizers` optimizer, or a native PyTorch optimizer from `torch.optim`. - A loss function. You could either use a `keras.losses` loss, or a native PyTorch loss from `torch.nn`. - A dataset. You could use any format: a `tf.data.Dataset`, a PyTorch `DataLoader`, a Python generator, etc. Let's line them up. We'll use torch-native objects in each case -- except, of course, for the Keras model. First, let's get the model and the MNIST dataset: """ # Let's consider a simple MNIST model def get_model(): inputs = keras.Input(shape=(784,), name="digits") x1 = keras.layers.Dense(64, activation="relu")(inputs) x2 = keras.layers.Dense(64, activation="relu")(x1) outputs = keras.layers.Dense(10, name="predictions")(x2) model = keras.Model(inputs=inputs, outputs=outputs) return model # Create load up the MNIST dataset and put it in a torch DataLoader # Prepare the training dataset. batch_size = 32 (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data() x_train = np.reshape(x_train, (-1, 784)).astype("float32") x_test = np.reshape(x_test, (-1, 784)).astype("float32") y_train = keras.utils.to_categorical(y_train) y_test = keras.utils.to_categorical(y_test) # Reserve 10,000 samples for validation. x_val = x_train[-10000:] y_val = y_train[-10000:] x_train = x_train[:-10000] y_train = y_train[:-10000] # Create torch Datasets train_dataset = torch.utils.data.TensorDataset( torch.from_numpy(x_train), torch.from_numpy(y_train) ) val_dataset = torch.utils.data.TensorDataset( torch.from_numpy(x_val), torch.from_numpy(y_val) ) # Create DataLoaders for the Datasets train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=batch_size, shuffle=True ) val_dataloader = torch.utils.data.DataLoader( val_dataset, batch_size=batch_size, shuffle=False ) """ Next, here's our PyTorch optimizer and our PyTorch loss function: """ # Instantiate a torch optimizer model = get_model() optimizer = torch.optim.Adam(model.parameters(), lr=1e-3) # Instantiate a torch loss function loss_fn = torch.nn.CrossEntropyLoss() """ Let's train our model using mini-batch gradient with a custom training loop. Calling `loss.backward()` on a loss tensor triggers backpropagation. Once that's done, your optimizer is magically aware of the gradients for each variable and can update its variables, which is done via `optimizer.step()`. Tensors, variables, optimizers are all interconnected to one another via hidden global state. Also, don't forget to call `model.zero_grad()` before `loss.backward()`, or you won't get the right gradients for your variables. Here's our training loop, step by step: - We open a `for` loop that iterates over epochs - For each epoch, we open a `for` loop that iterates over the dataset, in batches - For each batch, we call the model on the input data to retrieve the predictions, then we use them to compute a loss value - We call `loss.backward()` to - Outside the scope, we retrieve the gradients of the weights of the model with regard to the loss - Finally, we use the optimizer to update the weights of the model based on the gradients """ epochs = 3 for epoch in range(epochs): for step, (inputs, targets) in enumerate(train_dataloader): # Forward pass logits = model(inputs) loss = loss_fn(logits, targets) # Backward pass model.zero_grad() loss.backward() # Optimizer variable updates optimizer.step() # Log every 100 batches. if step % 100 == 0: print( f"Training loss (for 1 batch) at step {step}: {loss.detach().numpy():.4f}" ) print(f"Seen so far: {(step + 1) * batch_size} samples") """ As an alternative, let's look at what the loop looks like when using a Keras optimizer and a Keras loss function. Important differences: - You retrieve the gradients for the variables via `v.value.grad`, called on each trainable variable. - You update your variables via `optimizer.apply()`, which must be called in a `torch.no_grad()` scope. **Also, a big gotcha:** while all NumPy/TensorFlow/JAX/Keras APIs as well as Python `unittest` APIs use the argument order convention `fn(y_true, y_pred)` (reference values first, predicted values second), PyTorch actually uses `fn(y_pred, y_true)` for its losses. So make sure to invert the order of `logits` and `targets`. """ model = get_model() optimizer = keras.optimizers.Adam(learning_rate=1e-3) loss_fn = keras.losses.CategoricalCrossentropy(from_logits=True) for epoch in range(epochs): print(f"\nStart of epoch {epoch}") for step, (inputs, targets) in enumerate(train_dataloader): # Forward pass logits = model(inputs) loss = loss_fn(targets, logits) # Backward pass model.zero_grad() trainable_weights = [v for v in model.trainable_weights] # Call torch.Tensor.backward() on the loss to compute gradients # for the weights. loss.backward() gradients = [v.value.grad for v in trainable_weights] # Update weights with torch.no_grad(): optimizer.apply(gradients, trainable_weights) # Log every 100 batches. if step % 100 == 0: print( f"Training loss (for 1 batch) at step {step}: {loss.detach().numpy():.4f}" ) print(f"Seen so far: {(step + 1) * batch_size} samples") """ ## Low-level handling of metrics Let's add metrics monitoring to this basic training loop. You can readily reuse built-in Keras metrics (or custom ones you wrote) in such training loops written from scratch. Here's the flow: - Instantiate the metric at the start of the loop - Call `metric.update_state()` after each batch - Call `metric.result()` when you need to display the current value of the metric - Call `metric.reset_state()` when you need to clear the state of the metric (typically at the end of an epoch) Let's use this knowledge to compute `CategoricalAccuracy` on training and validation data at the end of each epoch: """ # Get a fresh model model = get_model() # Instantiate an optimizer to train the model. optimizer = keras.optimizers.Adam(learning_rate=1e-3) # Instantiate a loss function. loss_fn = keras.losses.CategoricalCrossentropy(from_logits=True) # Prepare the metrics. train_acc_metric = keras.metrics.CategoricalAccuracy() val_acc_metric = keras.metrics.CategoricalAccuracy() """ Here's our training & evaluation loop: """ for epoch in range(epochs): print(f"\nStart of epoch {epoch}") for step, (inputs, targets) in enumerate(train_dataloader): # Forward pass logits = model(inputs) loss = loss_fn(targets, logits) # Backward pass model.zero_grad() trainable_weights = [v for v in model.trainable_weights] # Call torch.Tensor.backward() on the loss to compute gradients # for the weights. loss.backward() gradients = [v.value.grad for v in trainable_weights] # Update weights with torch.no_grad(): optimizer.apply(gradients, trainable_weights) # Update training metric. train_acc_metric.update_state(targets, logits) # Log every 100 batches. if step % 100 == 0: print( f"Training loss (for 1 batch) at step {step}: {loss.detach().numpy():.4f}" ) print(f"Seen so far: {(step + 1) * batch_size} samples") # Display metrics at the end of each epoch. train_acc = train_acc_metric.result() print(f"Training acc over epoch: {float(train_acc):.4f}") # Reset training metrics at the end of each epoch train_acc_metric.reset_state() # Run a validation loop at the end of each epoch. for x_batch_val, y_batch_val in val_dataloader: val_logits = model(x_batch_val, training=False) # Update val metrics val_acc_metric.update_state(y_batch_val, val_logits) val_acc = val_acc_metric.result() val_acc_metric.reset_state() print(f"Validation acc: {float(val_acc):.4f}") """ ## Low-level handling of losses tracked by the model Layers & models recursively track any losses created during the forward pass by layers that call `self.add_loss(value)`. The resulting list of scalar loss values are available via the property `model.losses` at the end of the forward pass. If you want to be using these loss components, you should sum them and add them to the main loss in your training step. Consider this layer, that creates an activity regularization loss: """ class ActivityRegularizationLayer(keras.layers.Layer): def call(self, inputs): self.add_loss(1e-2 * torch.sum(inputs)) return inputs """ Let's build a really simple model that uses it: """ inputs = keras.Input(shape=(784,), name="digits") x = keras.layers.Dense(64, activation="relu")(inputs) # Insert activity regularization as a layer x = ActivityRegularizationLayer()(x) x = keras.layers.Dense(64, activation="relu")(x) outputs = keras.layers.Dense(10, name="predictions")(x) model = keras.Model(inputs=inputs, outputs=outputs) """ Here's what our training loop should look like now: """ # Get a fresh model model = get_model() # Instantiate an optimizer to train the model. optimizer = keras.optimizers.Adam(learning_rate=1e-3) # Instantiate a loss function. loss_fn = keras.losses.CategoricalCrossentropy(from_logits=True) # Prepare the metrics. train_acc_metric = keras.metrics.CategoricalAccuracy() val_acc_metric = keras.metrics.CategoricalAccuracy() for epoch in range(epochs): print(f"\nStart of epoch {epoch}") for step, (inputs, targets) in enumerate(train_dataloader): # Forward pass logits = model(inputs) loss = loss_fn(targets, logits) if model.losses: loss = loss + torch.sum(*model.losses) # Backward pass model.zero_grad() trainable_weights = [v for v in model.trainable_weights] # Call torch.Tensor.backward() on the loss to compute gradients # for the weights. loss.backward() gradients = [v.value.grad for v in trainable_weights] # Update weights with torch.no_grad(): optimizer.apply(gradients, trainable_weights) # Update training metric. train_acc_metric.update_state(targets, logits) # Log every 100 batches. if step % 100 == 0: print( f"Training loss (for 1 batch) at step {step}: {loss.detach().numpy():.4f}" ) print(f"Seen so far: {(step + 1) * batch_size} samples") # Display metrics at the end of each epoch. train_acc = train_acc_metric.result() print(f"Training acc over epoch: {float(train_acc):.4f}") # Reset training metrics at the end of each epoch train_acc_metric.reset_state() # Run a validation loop at the end of each epoch. for x_batch_val, y_batch_val in val_dataloader: val_logits = model(x_batch_val, training=False) # Update val metrics val_acc_metric.update_state(y_batch_val, val_logits) val_acc = val_acc_metric.result() val_acc_metric.reset_state() print(f"Validation acc: {float(val_acc):.4f}") """ That's it! """
keras-io/guides/writing_a_custom_training_loop_in_torch.py/0
{ "file_path": "keras-io/guides/writing_a_custom_training_loop_in_torch.py", "repo_id": "keras-io", "token_count": 4612 }
123
<meta http-equiv="refresh" content="0; URL='https://keras.io/api/data_loading/text/'" />
keras-io/redirects/api/preprocessing/text/index.html/0
{ "file_path": "keras-io/redirects/api/preprocessing/text/index.html", "repo_id": "keras-io", "token_count": 35 }
124
<meta http-equiv="refresh" content="0; URL='https://keras.io/guides/keras_cv/object_detection_keras_cv/'" />
keras-io/redirects/guides/keras_cv/retina_net_overview/index.html/0
{ "file_path": "keras-io/redirects/guides/keras_cv/retina_net_overview/index.html", "repo_id": "keras-io", "token_count": 45 }
125
<meta http-equiv="refresh" content="0; URL='https://keras.io/api/metrics/'" />
keras-io/redirects/metrics/index.html/0
{ "file_path": "keras-io/redirects/metrics/index.html", "repo_id": "keras-io", "token_count": 32 }
126
"""Documentation generator for Keras.io USAGE: python autogen.py make python autogen.py serve """ import shutil import copy import json import re import os import sys from pathlib import Path import http.server import socketserver import signal import docstrings import jinja2 import multiprocessing import autogen_utils from master import MASTER from examples_master import EXAMPLES_MASTER import tutobooks import generate_tf_guides import render_tags try: import keras_nlp except Exception as e: print(f"Could not import Keras NLP. Exception: {e}") keras_nlp = None try: import keras_cv except Exception as e: print(f"Could not import Keras CV. Exception: {e}") keras_cv = None EXAMPLES_GH_LOCATION = Path("keras-team") / "keras-io" / "blob" / "master" / "examples" GUIDES_GH_LOCATION = Path("keras-team") / "keras-io" / "blob" / "master" / "guides" KERAS_TEAM_GH = "https://github.com/keras-team" PROJECT_URL = { "keras": f"{KERAS_TEAM_GH}/keras/tree/v3.0.5/", "keras_tuner": f"{KERAS_TEAM_GH}/keras-tuner/tree/v1.4.6/", "keras_cv": f"{KERAS_TEAM_GH}/keras-cv/tree/v0.8.2/", "keras_nlp": f"{KERAS_TEAM_GH}/keras-nlp/tree/v0.8.0/", "tf_keras": f"{KERAS_TEAM_GH}/tf-keras/tree/v2.15.0/", } USE_MULTIPROCESSING = False class KerasIO: def __init__( self, master, url, templates_dir, md_sources_dir, site_dir, theme_dir, guides_dir, examples_dir, redirects_dir, refresh_guides=False, refresh_examples=False, ): self.master = master self.url = url self.templates_dir = templates_dir self.md_sources_dir = md_sources_dir self.site_dir = site_dir self.theme_dir = theme_dir self.guides_dir = guides_dir self.examples_dir = examples_dir self.redirects_dir = redirects_dir self.refresh_guides = refresh_guides self.refresh_examples = refresh_examples self.make_examples_master() self.nav = self.make_nav_index() self.docstring_printer = docstrings.KerasDocumentationGenerator(PROJECT_URL) def make_examples_master(self): for entry in self.master["children"]: if entry["path"] == "examples/": examples_entry = entry break for entry in examples_entry["children"]: # e.g. {"path": "nlp", ...} children = entry.get("children", []) preexisting = [e["path"] for e in children] subdir = entry["path"] # e.g. nlp path = Path(self.examples_dir) / subdir # e.g. examples/nlp for fname in sorted(os.listdir(path)): if fname.endswith(".py"): # e.g. examples/nlp/test.py name = fname[:-3] example_path = name.split("/")[-1] if example_path not in preexisting: f = open(path / fname, encoding="utf-8") f.readline() title_line = f.readline() f.close() assert title_line.startswith("Title: ") title = title_line[len("Title: ") :] children.append({"path": example_path, "title": title.strip()}) entry["children"] = children def make_md_sources(self): print("Generating md sources") if os.path.exists(self.md_sources_dir): print("Clearing", self.md_sources_dir) shutil.rmtree(self.md_sources_dir) os.makedirs(self.md_sources_dir) self.make_tutobook_sources( guides=self.refresh_guides, examples=self.refresh_examples ) self.sync_tutobook_templates() # Recursively generate all md sources based on the MASTER tree self.make_md_source_for_entry(self.master, path_stack=[], title_stack=[]) def preprocess_tutobook_md_source( self, md_content, fname, github_repo_dir, img_dir, site_img_dir ): # Insert colab button and github button. name = fname[:-3] md_content_lines = md_content.split("\n") button_lines = [ "\n", '<img class="k-inline-icon" src="https://colab.research.google.com/img/colab_favicon.ico"/> ' "[**View in Colab**](https://colab.research.google.com/github/" + github_repo_dir + "/ipynb/" + name + ".ipynb" + ") " '<span class="k-dot">•</span>' '<img class="k-inline-icon" src="https://github.com/favicon.ico"/> ' "[**GitHub source**](https://github.com/" + github_repo_dir + "/" + fname + ")", "\n", ] md_content_lines = md_content_lines[:6] + button_lines + md_content_lines[6:] md_content = "\n".join(md_content_lines) # Normalize img urls md_content = md_content.replace( str(img_dir) + "/" + name, self.url + site_img_dir ) # Insert --- before H2 titles md_content = md_content.replace("\n## ", "\n---\n## ") # Clean up progress bar output if "" in md_content: md_content = md_content.replace("", " ") md_content = md_content.replace(" ", " ") md_content = md_content.replace(" ", " ") md_content = md_content.replace("", "") md_content = md_content.replace(" ", "") return md_content def make_tutobook_sources_for_directory( self, src_dir, target_dir, img_dir, site_img_dir, github_repo_dir ): # e.g. # make_tutobook_sources_for_directory( # "examples/nlp", "examples/nlp/md", "examples/nlp/img", "img/examples/nlp") print("Making tutobook sources for", src_dir) working_ipynb_dir = Path(src_dir) / "ipynb" if not os.path.exists(working_ipynb_dir): os.makedirs(working_ipynb_dir) for fname in os.listdir(src_dir): if fname.endswith(".py"): print("...Processing", fname) name = fname[:-3] py_path = Path(src_dir) / fname nb_path = working_ipynb_dir / (name + ".ipynb") md_path = Path(target_dir) / (name + ".md") tutobooks.py_to_md(py_path, nb_path, md_path, img_dir) md_content = open(md_path).read() md_content = self.preprocess_tutobook_md_source( md_content, fname, github_repo_dir, img_dir, site_img_dir ) open(md_path, "w").write(md_content) shutil.rmtree(working_ipynb_dir) def make_tutobook_ipynbs(self): def process_one_dir(src_dir, target_dir): if os.path.exists(target_dir): print("Clearing", target_dir) shutil.rmtree(target_dir) os.makedirs(target_dir) for fname in os.listdir(src_dir): if fname.endswith(".py"): print("...Processing", fname) name = fname[:-3] py_path = Path(src_dir) / fname nb_path = target_dir / (name + ".ipynb") tutobooks.py_to_nb(py_path, nb_path, fill_outputs=False) # Guides guides_dir = Path(self.guides_dir) ipynb_dir = guides_dir / "ipynb" process_one_dir(guides_dir, ipynb_dir) # Examples for name in os.listdir(self.examples_dir): path = Path(self.examples_dir) / name if os.path.isdir(path): ipynb_dir = path / "ipynb" process_one_dir(path, ipynb_dir) def add_example(self, path, working_dir=None): """e.g. add_example('vision/cats_and_dogs')""" # Prune out the ../ path if path.startswith("../examples/"): path = path.replace("../examples/", "") folder, name = path.split(os.path.sep) assert path.count(os.path.sep) == 1 if name.endswith(".py"): name = name[:-3] ipynb_dir = Path(self.examples_dir) / folder / "ipynb" if not os.path.exists(ipynb_dir): os.makedirs(ipynb_dir) md_dir = Path(self.examples_dir) / folder / "md" if not os.path.exists(md_dir): os.makedirs(md_dir) img_dir = Path(self.examples_dir) / folder / "img" if not os.path.exists(img_dir): os.makedirs(img_dir) py_path = Path(self.examples_dir) / folder / (name + ".py") md_path = md_dir / (name + ".md") nb_path = ipynb_dir / (name + ".ipynb") self.disable_warnings() tutobooks.py_to_nb(py_path, nb_path, fill_outputs=False) tutobooks.py_to_md(py_path, nb_path, md_path, img_dir, working_dir=working_dir) md_content = open(md_path).read() github_repo_dir = str(EXAMPLES_GH_LOCATION / folder) site_img_dir = os.path.join("img", "examples", folder, name) md_content = self.preprocess_tutobook_md_source( md_content, name + ".py", github_repo_dir, img_dir, site_img_dir ) open(md_path, "w").write(md_content) def add_guide(self, name, working_dir=None): """e.g. add_guide('functional_api')""" # Prune out the ../ path if name.startswith("../guides/"): name = name.replace("../guides/", "") if name.endswith(".py"): name = name[:-3] ipynb_dir = Path(self.guides_dir) / "ipynb" if not os.path.exists(ipynb_dir): os.makedirs(ipynb_dir) md_dir = Path(self.guides_dir) / "md" if not os.path.exists(md_dir): os.makedirs(md_dir) img_dir = Path(self.guides_dir) / "img" if not os.path.exists(img_dir): os.makedirs(img_dir) py_path = Path(self.guides_dir) / (name + ".py") md_path = md_dir / (name + ".md") nb_path = ipynb_dir / (name + ".ipynb") self.disable_warnings() tutobooks.py_to_nb(py_path, nb_path, fill_outputs=False) tutobooks.py_to_md(py_path, nb_path, md_path, img_dir, working_dir=working_dir) md_content = open(md_path).read() md_content = md_content.replace("../guides/img/", "/img/guides/") github_repo_dir = str(GUIDES_GH_LOCATION) site_img_dir = "img/guides/" + name md_content = self.preprocess_tutobook_md_source( md_content, name + ".py", github_repo_dir, img_dir, site_img_dir ) open(md_path, "w").write(md_content) @staticmethod def disable_warnings(): os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" os.environ["AUTOGRAPH_VERBOSITY"] = "0" def make_tutobook_sources(self, guides=True, examples=True): """Populate `examples/nlp/md`, `examples/nlp/img/`, etc. - guides/md/ & /png/ - examples/nlp/md/ & /png/ - examples/computer_vision/md/ & /png/ - examples/structured_data/md/ & /png/ - examples/timeseries/md/ & /png/ - examples/generative_dl/md/ & /png/ - examples/keras_recipes/md/ & /png/ """ # Guides if guides: target_dir = Path(self.guides_dir) / "md" img_dir = Path(self.guides_dir) / "img" if os.path.exists(target_dir): shutil.rmtree(target_dir) if os.path.exists(img_dir): shutil.rmtree(img_dir) os.makedirs(target_dir) os.makedirs(img_dir) self.make_tutobook_sources_for_directory( src_dir=Path(self.guides_dir), target_dir=target_dir, img_dir=img_dir, site_img_dir="img/guides/", github_repo_dir=str(GUIDES_GH_LOCATION), ) # Examples if examples: for name in os.listdir(self.examples_dir): path = Path(self.examples_dir) / name if os.path.isdir(path): target_dir = path / "md" img_dir = path / "img" if os.path.exists(target_dir): shutil.rmtree(target_dir) if os.path.exists(img_dir): shutil.rmtree(img_dir) os.makedirs(target_dir) os.makedirs(img_dir) self.make_tutobook_sources_for_directory( src_dir=path, # e.g. examples/nlp target_dir=target_dir, # e.g. examples/nlp/md img_dir=img_dir, # e.g. examples/nlp/img site_img_dir="img/examples/" + name, # e.g. img/examples/nlp github_repo_dir=str(EXAMPLES_GH_LOCATION / name), ) def sync_tutobook_templates(self): """Copy generated `.md`s to source_dir. Note: intro guides are copied to getting_started. guides/md/ -> sources/guides/ guides/md/intro_* -> sources/getting_started/ examples/*/md/ -> sources/examples/*/ """ # Guides copy_inner_contents( Path(self.guides_dir) / "md", Path(self.templates_dir) / "guides", ext=".md", ) # Special cases shutil.copyfile( Path(self.templates_dir) / "guides" / "intro_to_keras_for_engineers.md", Path(self.templates_dir) / "getting_started" / "intro_to_keras_for_engineers.md", ) # Examples for dir_name in os.listdir(Path(self.examples_dir)): dir_path = Path(self.examples_dir) / dir_name # e.g. examples/nlp if os.path.isdir(dir_path): dst_dir = Path(self.templates_dir) / "examples" / dir_name if os.path.exists(dst_dir): shutil.rmtree(dst_dir) os.makedirs(dst_dir) copy_inner_contents(dir_path / "md", dst_dir, ext=".md") # Examples touch-up: add Keras version banner to each example example_name_to_version = {} for section in EXAMPLES_MASTER["children"]: section_name = section["path"].replace("/", "") for example in section["children"]: example_name = section_name + "/" + example["path"] if example.get("keras_3"): version = 3 else: version = 2 example_name_to_version[example_name] = version for section_name in os.listdir(Path(self.templates_dir) / "examples"): # e.g. templates/examples/nlp dir_path = Path(self.templates_dir) / "examples" / section_name if not os.path.isdir(dir_path): continue for example_fname in os.listdir(dir_path): if example_fname.endswith(".md"): md_path = dir_path / example_fname with open(md_path) as f: md_content = f.read() example_name = ( section_name + "/" + example_fname.removesuffix(".md") ) version = example_name_to_version.get(example_name, 2) md_content_lines = md_content.split("\n") for i, line in enumerate(md_content_lines): if "View in Colab" in line: md_content_lines.insert( i, f"<div class='example_version_banner keras_{version}'>ⓘ This example uses Keras {version}</div>", ) break md_content = "\n".join(md_content_lines) + "\n" with open(md_path, "w") as f: f.write(md_content) def sync_tutobook_media(self): """Copy generated `.png`s to site_dir. Note: intro guides are copied to getting_started. guides/img/ -> site/img/guides/ examples/*/img/ -> site/img/examples/*/ """ # Copy images for guide notebooks for name in os.listdir(Path(self.guides_dir) / "img"): path = Path(self.guides_dir) / "img" / name if os.path.isdir(path): shutil.copytree(path, Path(self.site_dir) / "img" / "guides" / name) # Copy images for examples notebooks for dir_name in os.listdir(Path(self.examples_dir)): dir_path = Path(self.examples_dir) / dir_name if os.path.isdir(dir_path): if not os.path.exists(dir_path / "img"): continue # No media was generated for this tutobook. dst_dir = Path(self.site_dir) / "img" / "examples" / dir_name if not os.path.exists(dst_dir): os.makedirs(dst_dir) for name in os.listdir(dir_path / "img"): path = dir_path / "img" / name if os.path.isdir(path): shutil.copytree( path, Path(self.site_dir) / "img" / "examples" / dir_name / name, ) def make_nav_index(self): max_depth = 4 path_stack = [] def make_nav_index_for_entry(entry, path_stack, max_depth): if not isinstance(entry, dict): raise ValueError("Incorrectly formatted entry: " f"{entry}") path = entry["path"] if path != "/": path_stack.append(path) url = self.url + str(Path(*path_stack)) + "/" relative_url = "/" + str(Path(*path_stack)) + "/" if len(path_stack) < max_depth: children = [ make_nav_index_for_entry(child, path_stack[:], max_depth) for child in entry.get("children", []) ] else: children = [] return { "title": entry["title"], "relative_url": relative_url, "url": url, "children": children, } return [ make_nav_index_for_entry(entry, path_stack[:], max_depth) for entry in self.master["children"] ] def make_md_source_for_entry(self, entry, path_stack, title_stack): path = entry["path"] if path != "/": path_stack.append(path) title_stack.append(entry["title"]) print("...Processing", Path(*path_stack)) parent_url = self.url + str(Path(*path_stack)) + "/" if path.endswith("/"): dir_path = Path(self.md_sources_dir) / Path(*path_stack) if not os.path.exists(dir_path): os.makedirs(dir_path) template_path = Path(self.templates_dir) / Path(*path_stack) if path.endswith("/"): template_path /= "index.md" else: template_path = template_path.with_suffix(".md") if os.path.exists(template_path): template_file = open(template_path, encoding="utf8") template = template_file.read() template_file.close() else: template = "" if entry.get("toc"): template += "{{toc}}\n\n" if entry.get("generate"): template += "{{autogenerated}}\n" if not template.startswith("# "): template = "# " + entry["title"] + "\n\n" + template generate = entry.get("generate") children = entry.get("children") if generate: generated_md = "" for element in generate: generated_md += self.docstring_printer.render(element) if "{{autogenerated}}" not in template: raise RuntimeError( "Template found for %s but missing " "{{autogenerated}} tag." % (template_path,) ) template = template.replace("{{autogenerated}}", generated_md) if entry.get("toc"): if not children: raise ValueError( f"For template {template_path}, " "a table of contents was requested but " "the entry had no children." ) toc = generate_md_toc(children, parent_url) if "{{toc}}" not in template: raise RuntimeError( "Table of contents requested for %s but " "missing {{toc}} tag." % (template_path,) ) template = template.replace("{{toc}}", toc) if "keras_nlp/" in path_stack and "models/" in path_stack: template = render_tags.render_tags(template, keras_nlp) if "keras_cv/" in path_stack and "models/" in path_stack: template = render_tags.render_tags(template, keras_cv) source_path = Path(self.md_sources_dir) / Path(*path_stack) if path.endswith("/"): md_source_path = source_path / "index.md" metadata_path = source_path / "index_metadata.json" else: md_source_path = source_path.with_suffix(".md") metadata_path = str(source_path) + "_metadata.json" # Save md source file autogen_utils.save_file(md_source_path, template) # Save metadata file location_history = [] for i in range(len(path_stack)): stripped_path_stack = [s.strip("/") for s in path_stack[: i + 1]] url = self.url + "/".join(stripped_path_stack) + "/" location_history.append( { "url": url, "title": title_stack[i], } ) metadata = json.dumps( { "location_history": location_history[:-1], "outline": autogen_utils.make_outline(template) if entry.get("outline", True) else [], "location": "/" + "/".join([s.replace("/", "") for s in path_stack]) + "/", "url": parent_url, "title": entry["title"], } ) autogen_utils.save_file(metadata_path, metadata) if children: for entry in children: self.make_md_source_for_entry(entry, path_stack[:], title_stack[:]) def make_map_of_symbol_names_to_api_urls(self): def recursive_make_map(entry, current_url): current_url /= entry["path"] entry_map = {} if "generate" in entry: for symbol in entry["generate"]: object_ = docstrings.import_object(symbol) object_type = docstrings.get_type(object_) object_name = symbol.split(".")[-1] if symbol.startswith("tensorflow.keras."): symbol = symbol.replace("tensorflow.keras.", "keras.") object_name = object_name.lower().replace("_", "") entry_map[symbol] = ( str(current_url) + "#" + object_name + "-" + object_type ) if "children" in entry: for child in entry["children"]: entry_map.update(recursive_make_map(child, current_url)) return entry_map self._map_of_symbol_names_to_api_urls = recursive_make_map( self.master, Path("") ) def generate_examples_landing_page(self): """Create the html file /examples/index.html. - Load examples information and metadata - Group them by category (e.g. CV) and subcategory (e.g. image classification) - Render a card for each example """ examples_by_category = {} category_names = [] category_paths = [] for child in self.master["children"]: if child["path"] == "examples/": examples_master = child break for category in examples_master["children"]: category_name = category["title"] category_names.append(category_name) category_paths.append(category["path"]) examples_by_category[category_name] = category["children"] categories_to_render = [] for category_name, category_path in zip(category_names, category_paths): examples_by_subcategory = {} subcategory_names = [] for example in examples_by_category[category_name]: subcategory_name = example.get("subcategory", "Other") if subcategory_name not in examples_by_subcategory: examples_by_subcategory[subcategory_name] = [] subcategory_names.append(subcategory_name) example["path"] = "/examples/" + category_path + example["path"] examples_by_subcategory[subcategory_name].append(example) subcategories_to_render = [] for subcategory_name in subcategory_names: subcategories_to_render.append( { "title": subcategory_name, "examples": examples_by_subcategory[subcategory_name], } ) category_dict = { "title": category_name, "path": "/examples/" + category_path, } if len(subcategories_to_render) > 1: category_dict["subcategories"] = subcategories_to_render else: category_dict["examples"] = subcategories_to_render[0]["examples"] categories_to_render.append(category_dict) with open(Path(self.templates_dir) / "examples/index.md") as f: md_content = f.read() with open(Path(self.md_sources_dir) / "examples/index_metadata.json") as f: metadata = json.loads(f.read()) examples_template = jinja2.Template( open(Path(self.theme_dir) / "examples.html").read() ) html_example_cards = examples_template.render( {"categories": categories_to_render, "legend": True} ) html_content = autogen_utils.render_markdown_to_html(md_content) html_content = html_content.replace( "<p>{{examples_list}}</p>", html_example_cards ) html_content = insert_title_ids_in_html(html_content) relative_url = "/examples/" local_nav = [ autogen_utils.set_active_flag_in_nav_entry(entry, relative_url) for entry in self.nav ] self.render_single_docs_page_from_html( target_path=Path(self.site_dir) / "examples/index.html", title="Code examples", html_content=html_content, location_history=metadata["location_history"], outline=metadata["outline"], local_nav=local_nav, relative_url=relative_url, ) # Save per-category landing pages for category_name, category_path in zip(category_names, category_paths): with open( Path(self.md_sources_dir) / "examples" / category_path / "index_metadata.json" ) as f: metadata = json.loads(f.read()) relative_url = f"/examples/{category_path}" local_nav = [ autogen_utils.set_active_flag_in_nav_entry(entry, relative_url) for entry in self.nav ] to_render = [ cat for cat in categories_to_render if cat["title"] == category_name ] html_example_cards = examples_template.render( {"categories": to_render, "legend": False} ) self.render_single_docs_page_from_html( target_path=Path(self.site_dir) / "examples" / category_path / "index.html", title=category_name, html_content=html_example_cards, location_history=metadata["location_history"], outline=metadata["outline"], local_nav=local_nav, relative_url=relative_url, ) def render_md_sources_to_html(self): self.make_map_of_symbol_names_to_api_urls() print("Rendering md sources to HTML") base_template = jinja2.Template(open(Path(self.theme_dir) / "base.html").read()) docs_template = jinja2.Template(open(Path(self.theme_dir) / "docs.html").read()) all_urls_list = [] if os.path.exists(self.site_dir): print("Clearing", self.site_dir) shutil.rmtree(self.site_dir) if USE_MULTIPROCESSING: for src_location, _, fnames in os.walk(self.md_sources_dir): pool = multiprocessing.Pool(processes=8) workers = [ pool.apply_async( self.render_single_file, args=(src_location, fname, self.nav), ) for fname in fnames ] for worker in workers: url = worker.get() if url is not None: all_urls_list.append(url) pool.close() pool.join() else: for src_location, _, fnames in os.walk(self.md_sources_dir): for fname in fnames: print("...Rendering", fname) self.render_single_file(src_location, fname, self.nav) # Images & css shutil.copytree(Path(self.theme_dir) / "css", Path(self.site_dir) / "css") shutil.copytree(Path(self.theme_dir) / "img", Path(self.site_dir) / "img") # Landing page landing_template = jinja2.Template( open(Path(self.theme_dir) / "landing.html").read() ) landing_page = landing_template.render({"base_url": self.url}) autogen_utils.save_file(Path(self.site_dir) / "index.html", landing_page) # Search page search_main = open(Path(self.theme_dir) / "search.html").read() search_page = base_template.render( { "title": "Search Keras documentation", "nav": self.nav, "base_url": self.url, "main": search_main, } ) autogen_utils.save_file(Path(self.site_dir) / "search.html", search_page) # 404 page page404 = base_template.render( { "title": "Page not found", "nav": self.nav, "base_url": self.url, "main": docs_template.render( { "title": "404", "content": "<h1>404: Page not found</h1>", "base_url": self.url, } ), } ) autogen_utils.save_file(Path(self.site_dir) / "404.html", page404) # Keras 3 announcement page keras_3_template = jinja2.Template( open(Path(self.theme_dir) / "keras_3.html").read() ) md_content = open( Path(self.templates_dir) / "keras_3" / "keras_3_announcement.md" ).read() content = autogen_utils.render_markdown_to_html(md_content) keras_core_page = keras_3_template.render( {"base_url": self.url, "content": content} ) autogen_utils.save_file( Path(self.site_dir) / "keras_3" / "index.html", keras_core_page, ) # Favicon shutil.copyfile( Path(self.theme_dir) / "favicon.ico", Path(self.site_dir) / "favicon.ico", ) # Tutobooks self.sync_tutobook_media() sitemap = "\n".join(all_urls_list) + "\n" autogen_utils.save_file(Path(self.site_dir) / "sitemap.txt", sitemap) # Redirects shutil.copytree(self.redirects_dir, self.site_dir, dirs_exist_ok=True) # Examples landing page self.generate_examples_landing_page() def render_single_file(self, src_location, fname, nav): if not fname.endswith(".md"): return src_dir = Path(src_location) target_dir = src_location.replace(self.md_sources_dir, self.site_dir) if not os.path.exists(target_dir): try: os.makedirs(target_dir) except FileExistsError: # Might be created by a concurrent process. pass # Load metadata for page with open(str(Path(src_location) / fname[:-3]) + "_metadata.json") as f: metadata = json.loads(f.read()) if fname == "index.md": # Render as index.html target_path = Path(target_dir) / "index.html" relative_url = (str(target_dir) + "/").replace(self.site_dir, "/") relative_url = relative_url.replace("//", "/") else: # Render as fname_no_ext/index.tml fname_no_ext = ".".join(fname.split(".")[:-1]) full_target_dir = Path(target_dir) / fname_no_ext os.makedirs(full_target_dir) target_path = full_target_dir / "index.html" relative_url = (str(full_target_dir) + "/").replace(self.site_dir, "/") relative_url = relative_url.replace("//", "/") if not relative_url.endswith("/"): relative_url += "/" md_file = open(src_dir / fname, encoding="utf-8") md_content = md_file.read() md_file.close() md_content = replace_links(md_content) # Convert Keras symbols to links to the Keras docs for symbol, symbol_url in self._map_of_symbol_names_to_api_urls.items(): md_content = re.sub( r"`((tf\.|)" + symbol + ")`", r"[`\1`](" + symbol_url + ")", md_content, ) # Convert TF symbols to links to tensorflow.org tmp_content = copy.copy(md_content) replacements = {} while "`tf." in tmp_content: index = tmp_content.find("`tf.") if tmp_content[index - 1] == "[": tmp_content = tmp_content[tmp_content.find("`tf.") + 1 :] tmp_content = tmp_content[tmp_content.find("`") + 1 :] else: tmp_content = tmp_content[tmp_content.find("`tf.") + 1 :] symbol = tmp_content[: tmp_content.find("`")] tmp_content = tmp_content[tmp_content.find("`") + 1 :] if "/" not in symbol and "(" not in symbol: # Check if we're looking at a method on a class symbol_parts = symbol.split(".") if len(symbol_parts) >= 3 and symbol_parts[-2][0].isupper(): # In this case the link should look like ".../class#method" path = "/".join(symbol_parts[:-1]) + "#" + symbol_parts[-1] else: # Otherwise just ".../module/class_or_fn" path = symbol.replace(".", "/") path = path.replace("(", "") path = path.replace(")", "") replacements["`" + symbol + "`"] = ( "[`" + symbol + "`](https://www.tensorflow.org/api_docs/python/" + path + ")" ) for key, value in replacements.items(): md_content = md_content.replace(key, value) html_content = autogen_utils.render_markdown_to_html(md_content) html_content = insert_title_ids_in_html(html_content) local_nav = [ autogen_utils.set_active_flag_in_nav_entry(entry, relative_url) for entry in nav ] title = md_content[2 : md_content.find("\n")] self.render_single_docs_page_from_html( target_path, title, html_content, metadata["location_history"], metadata["outline"], local_nav, relative_url, ) return relative_url def render_single_docs_page_from_html( self, target_path, title, html_content, location_history, outline, local_nav, relative_url, ): base_template = jinja2.Template(open(Path(self.theme_dir) / "base.html").read()) docs_template = jinja2.Template(open(Path(self.theme_dir) / "docs.html").read()) html_docs = docs_template.render( { "title": title, "content": html_content, "location_history": location_history, "base_url": self.url, "outline": outline, } ) html_page = base_template.render( { "title": title, "nav": local_nav, "base_url": self.url, "main": html_docs, "relative_url": relative_url, } ) html_page = html_page.replace("../guides/img/", "/img/guides/") autogen_utils.save_file(target_path, html_page) def make(self): self.make_md_sources() self.render_md_sources_to_html() self.make_tutobook_ipynbs() def serve(self): os.chdir(self.site_dir) socketserver.ThreadingTCPServer.allow_reuse_address = True server = socketserver.ThreadingTCPServer( ("", 8000), http.server.SimpleHTTPRequestHandler ) server.daemon_threads = True def signal_handler(signal, frame): try: if server: server.server_close() finally: sys.exit(0) signal.signal(signal.SIGINT, signal_handler) try: print("Serving on 0.0.0.0:8000") server.serve_forever() except KeyboardInterrupt: pass finally: server.server_close() def replace_links(content): # Make sure all Keras guides point to keras.io. for entry in generate_tf_guides.CONFIG: keras_name = entry["source_name"] tf_name = entry["target_name"] content = content.replace( "https://www.tensorflow.org/guide/keras/" + tf_name, "https://keras.io/guides/" + keras_name, ) return content def strip_markdown_tags(md): # Strip links md = re.sub(r"\[(.*?)\]\(.*?\)", r"\1", md) return md def copy_inner_contents(src, dst, ext=".md"): for fname in os.listdir(src): fpath = Path(src) / fname fdst = Path(dst) / fname if fname.endswith(ext): shutil.copyfile(fpath, fdst) if os.path.isdir(fpath): copy_inner_contents(fpath, fdst, ext) def insert_title_ids_in_html(html): marker = "replace_me_with_id_for:" marker_end = ":end_of_title" for i in range(1, 5): match = "<h" + str(i) + ">(.*?)</h" + str(i) + ">" replace = ( "<h" + str(i) + r' id="' + marker + r"\1" + marker_end + r'">\1</h' + str(i) + ">" ) html = re.sub(match, replace, html) while 1: start = html.find(marker) if start == -1: break title = html[start + len(marker) :] title = title[: title.find(marker_end)] normalized_title = title normalized_title = normalized_title.replace("<code>", "") normalized_title = normalized_title.replace("</code>", "") if ">" in normalized_title: normalized_title = normalized_title[normalized_title.find(">") + 1 :] normalized_title = normalized_title[: normalized_title.find("</")] normalized_title = autogen_utils.turn_title_into_id(normalized_title) html = html.replace(marker + title + marker_end, normalized_title) return html def generate_md_toc(entries, url, depth=2): assert url.endswith("/") entries = [e for e in entries if not e.get("skip_from_toc")] generated = "" if set(len(x.get("generate", [])) for x in entries) == {1}: print_generate = False else: print_generate = True for entry in entries: title = entry["title"] path = entry["path"] if not path.endswith("/"): path += "/" full_url = url + path children = entry.get("children") generate = entry.get("generate") if children or (print_generate and generate): title_prefix = "### " else: title_prefix = "- " generated += title_prefix + "[{title}]({full_url})\n".format( title=title, full_url=full_url ) if children: for child in children: if child.get("skip_from_toc", False): continue child_title = child["title"] child_path = child["path"] child_url = full_url + child_path generated += "- [{child_title}]({child_url})\n".format( child_title=child_title, child_url=child_url ) generated += "\n" elif generate and print_generate: for gen in generate: obj = docstrings.import_object(gen) obj_name = docstrings.get_name(obj) obj_type = docstrings.get_type(obj) link = "{full_url}#{obj_name}-{obj_type}".format( full_url=full_url, obj_name=obj_name, obj_type=obj_type ).lower() name = gen.split(".")[-1] generated += "- [{name} {obj_type}]({link})\n".format( name=name, obj_type=obj_type, link=link ) generated += "\n" return generated def get_working_dir(arg): if not arg.startswith("--working_dir="): return None return arg[len("--working_dir=") :] if __name__ == "__main__": root = Path(__file__).parent.parent.resolve() keras_io = KerasIO( master=MASTER, url=os.path.sep, templates_dir=os.path.join(root, "templates"), md_sources_dir=os.path.join(root, "sources"), site_dir=os.path.join(root, "site"), theme_dir=os.path.join(root, "theme"), guides_dir=os.path.join(root, "guides"), examples_dir=os.path.join(root, "examples"), redirects_dir=os.path.join(root, "redirects"), refresh_guides=False, refresh_examples=False, ) cmd = sys.argv[1] if cmd not in { "make", "serve", "add_example", "add_guide", }: raise ValueError( "Must specify command `make`, `serve`, `add_example`, or `add_guide`." ) if cmd in {"add_example", "add_guide"}: if not len(sys.argv) in (3, 4): raise ValueError( "Must specify example/guide to add, e.g. " "`autogen.py add_example vision/cats_and_dogs`" ) if cmd == "make": keras_io.make_md_sources() keras_io.render_md_sources_to_html() elif cmd == "serve": keras_io.serve() elif cmd == "add_example": keras_io.add_example( sys.argv[2], working_dir=get_working_dir(sys.argv[3]) if len(sys.argv) == 4 else None, ) elif cmd == "add_guide": tutobooks.MAX_LOC = 500 keras_io.add_guide( sys.argv[2], working_dir=get_working_dir(sys.argv[3]) if len(sys.argv) == 4 else None, )
keras-io/scripts/autogen.py/0
{ "file_path": "keras-io/scripts/autogen.py", "repo_id": "keras-io", "token_count": 23137 }
127
# About Keras 3 Keras is a deep learning API written in Python and capable of running on top of either [JAX](https://jax.readthedocs.io/), [TensorFlow](https://github.com/tensorflow/tensorflow), or [PyTorch](https://pytorch.org/). Keras is: - **Simple** -- but not simplistic. Keras reduces developer *cognitive load* to free you to focus on the parts of the problem that really matter. - **Flexible** -- Keras adopts the principle of *progressive disclosure of complexity*: simple workflows should be quick and easy, while arbitrarily advanced workflows should be *possible* via a clear path that builds upon what you've already learned. - **Powerful** -- Keras provides industry-strength performance and scalability: it is used by organizations including NASA, YouTube, or Waymo. --- ## Keras 3 is a multi-framework deep learning API As a multi-framework API, Keras can be used to develop modular components that are compatible with any framework -- JAX, TensorFlow, or PyTorch. This approach has several key benefits: - **Always get the best performance for your models.** In our benchmarks, we found that JAX typically delivers the best training and inference performance on GPU, TPU, and CPU -- but results vary from model to model, as non-XLA TensorFlow is occasionally faster on GPU. The ability to dynamically select the backend that will deliver the best performance for your model *without having to change anything to your code* means you're always guaranteed to train and serve with the highest achievable efficiency. - **Maximize available ecosystem surface for your models.** Any Keras model can be instantiated as a PyTorch `Module`, can be exported as a TensorFlow `SavedModel`, or can be instantiated as a stateless JAX function. That means that you can use your Keras models with PyTorch ecosystem packages, with the full range of TensorFlow deployment & production tools, and with JAX large-scale TPU training infrastructure. Write one `model.py` using Keras APIs, and get access to everything the ML world has to offer. - **Maximize distribution for your open-source model releases.** Want to release a pretrained model? Want as many people as possible to be able to use it? If you implement it in pure TensorFlow or PyTorch, it will be usable by roughly half of the market. If you implement it in Keras, it is instantly usable by anyone regardless of their framework of choice (even if they're not Keras users). Twice the impact at no added development cost. - **Use data pipelines from any source.** The Keras `fit()`/`evaluate()`/`predict()` routines are compatible with `tf.data.Dataset` objects, with PyTorch `DataLoader` objects, with NumPy arrays, Pandas dataframes -- regardless of the backend you're using. You can train a Keras + TensorFlow model on a PyTorch `DataLoader` or train a Keras + PyTorch model on a `tf.data.Dataset`. --- ## First contact with Keras The core data structures of Keras are __layers__ and __models__. The simplest type of model is the [`Sequential` model](/guides/sequential_model/), a linear stack of layers. For more complex architectures, you should use the [Keras functional API](/guides/functional_api/), which allows to build arbitrary graphs of layers, or [write models entirely from scratch via subclasssing](/guides/making_new_layers_and_models_via_subclassing/). Here is the `Sequential` model: ```python import keras model = keras.Sequential() ``` Stacking layers is as easy as `.add()`: ```python from keras import layers model.add(layers.Dense(units=64, activation='relu')) model.add(layers.Dense(units=10, activation='softmax')) ``` Once your model looks good, configure its learning process with `.compile()`: ```python model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) ``` If you need to, you can further configure your optimizer. The Keras philosophy is to keep simple things simple, while allowing the user to be fully in control when they need to (the ultimate control being the easy extensibility of the source code via subclassing). ```python model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.SGD(learning_rate=0.01, momentum=0.9, nesterov=True)) ``` You can now iterate on your training data in batches: ```python # x_train and y_train are Numpy arrays model.fit(x_train, y_train, epochs=5, batch_size=32) ``` Evaluate your test loss and metrics in one line: ```python loss_and_metrics = model.evaluate(x_test, y_test, batch_size=128) ``` Or generate predictions on new data: ```python classes = model.predict(x_test, batch_size=128) ``` What you just saw is the most elementary way to use Keras. However, Keras is also a highly-flexible framework suitable to iterate on state-of-the-art research ideas. Keras follows the principle of **progressive disclosure of complexity**: it makes it easy to get started, yet it makes it possible to handle arbitrarily advanced use cases, only requiring incremental learning at each step. In much the same way that you were able to train and evaluate a simple neural network above in a few lines, you can use Keras to quickly develop new training procedures or state-of-the-art model architectures. Here's an example of a custom Keras layer -- which can be used in low-level workflows in JAX, TensorFlow, or PyTorch, interchangeably: ```python import keras from keras import ops class TokenAndPositionEmbedding(keras.Layer): def __init__(self, max_length, vocab_size, embed_dim): super().__init__() self.token_embed = self.add_weight( shape=(vocab_size, embed_dim), initializer="random_uniform", trainable=True, ) self.position_embed = self.add_weight( shape=(max_length, embed_dim), initializer="random_uniform", trainable=True, ) def call(self, token_ids): # Embed positions length = token_ids.shape[-1] positions = ops.arange(0, length, dtype="int32") positions_vectors = ops.take(self.position_embed, positions, axis=0) # Embed tokens token_ids = ops.cast(token_ids, dtype="int32") token_vectors = ops.take(self.token_embed, token_ids, axis=0) # Sum both embed = token_vectors + positions_vectors # Normalize embeddings power_sum = ops.sum(ops.square(embed), axis=-1, keepdims=True) return embed / ops.sqrt(ops.maximum(power_sum, 1e-7)) ``` For more in-depth tutorials about Keras, you can check out: - [Introduction to Keras for engineers](/getting_started/intro_to_keras_for_engineers/) - [Developer guides](/guides/) --- ## Support You can ask questions and join the development discussion on the [Keras Google group](https://groups.google.com/forum/#!forum/keras-users). You can also post **bug reports and feature requests** (only) in [GitHub issues](https://github.com/keras-team/keras/issues). Make sure to read [our guidelines](https://github.com/keras-team/keras-io/blob/master/templates/contributing.md) first. --- ## Why this name, Keras? Keras (κέρας) means _horn_ in ancient Greek. It is a reference to a literary image from ancient Greek and Latin literature, first found in the _Odyssey_, where dream spirits (_Oneiroi_, singular _Oneiros_) are divided between those who deceive dreamers with false visions, who arrive to Earth through a gate of ivory, and those who announce a future that will come to pass, who arrive through a gate of horn. It's a play on the words κέρας (horn) / κραίνω (fulfill), and ἐλέφας (ivory) / ἐλεφαίρομαι (deceive). Keras was initially developed as part of the research effort of project ONEIROS (Open-ended Neuro-Electronic Intelligent Robot Operating System). >_"Oneiroi are beyond our unravelling - who can be sure what tale they tell? Not all that men look for comes to pass. Two gates there are that give passage to fleeting Oneiroi; one is made of horn, one of ivory. The Oneiroi that pass through sawn ivory are deceitful, bearing a message that will not be fulfilled; **those that come out through polished horn have truth behind them, to be accomplished for men who see them.**"_ Homer, Odyssey 19. 562 ff (Shewring translation).
keras-io/templates/about.md/0
{ "file_path": "keras-io/templates/about.md", "repo_id": "keras-io", "token_count": 2547 }
128
# KerasNLP Models KerasNLP contains end-to-end implementations of popular model architectures. These models can be created in two ways: - Through the `from_preset()` constructor, which instantiates an object with a pre-trained configurations, vocabularies, and (optionally) weights. - Through custom configuration controlled by the user. Below, we list all presets available in the library. For more detailed usage, browse the docstring for a particular class. For an in depth introduction to our API, see the [getting started guide](/guides/keras_nlp/getting_started/). ## Backbone presets The following preset names correspond to a configuration, weights and vocabulary for a model **backbone**. These presets are not inference-ready, and must be fine-tuned for a given task! The names below can be used with any `from_preset()` constructor for a given model. ```python classifier = keras_nlp.models.BertClassifier.from_preset("bert_tiny_en_uncased") backbone = keras_nlp.models.BertBackbone.from_preset("bert_tiny_en_uncased") tokenizer = keras_nlp.models.BertTokenizer.from_preset("bert_tiny_en_uncased") preprocessor = keras_nlp.models.BertPreprocessor.from_preset("bert_tiny_en_uncased") ``` {{backbone_presets_table}} **Note**: The links provided will lead to the model card or to the official README, if no model card has been provided by the author. ## Classification presets The following preset names correspond to a configuration, weights and vocabulary for a model **classifier**. These models are inference ready, but can be further fine-tuned if desired. The names below can be used with the `from_preset()` constructor for classifier models and preprocessing layers. ```python classifier = keras_nlp.models.BertClassifier.from_preset("bert_tiny_en_uncased_sst2") tokenizer = keras_nlp.models.BertTokenizer.from_preset("bert_tiny_en_uncased_sst2") preprocessor = keras_nlp.models.BertPreprocessor.from_preset("bert_tiny_en_uncased_sst2") ``` {{classifier_presets_table}} **Note**: The links provided will lead to the model card or to the official README, if no model card has been provided by the author. ## API Documentation {{toc}}
keras-io/templates/api/keras_nlp/models/index.md/0
{ "file_path": "keras-io/templates/api/keras_nlp/models/index.md", "repo_id": "keras-io", "token_count": 641 }
129
# Probabilistic losses Losses estimating distances between probability distributions. {{autogenerated}}
keras-io/templates/api/losses/probabilistic_losses/index.md/0
{ "file_path": "keras-io/templates/api/losses/probabilistic_losses/index.md", "repo_id": "keras-io", "token_count": 24 }
130
# Getting started with Keras ## Learning resources Are you a machine learning engineer looking for a Keras introduction one-pager? Read our guide [Introduction to Keras for engineers](/getting_started/intro_to_keras_for_engineers/). Want to learn more about Keras 3 and its capabilities? See the [Keras 3 launch announcement](/keras_3/). Are you looking for detailed guides covering in-depth usage of different parts of the Keras API? Read our [Keras developer guides](/guides/). Are you looking for tutorials showing Keras in action across a wide range of use cases? See the [Keras code examples](/examples/): over 150 well-explained notebooks demonstrating Keras best practices in computer vision, natural language processing, and generative AI. --- ## Installing Keras 3 You can install Keras from PyPI via: ``` pip install --upgrade keras ``` You can check your local Keras version number via: ```python import keras print(keras.__version__) ``` To use Keras 3, you will also need to install a backend framework -- either JAX, TensorFlow, or PyTorch: - [Installing JAX](https://jax.readthedocs.io/en/latest/installation.html) - [Installing TensorFlow](https://www.tensorflow.org/install) - [Installing PyTorch](https://pytorch.org/get-started/locally/) If you install TensorFlow, critically, **you should reinstall Keras 3 afterwards**. This is a temporary step while TensorFlow is pinned to Keras 2, and will no longer be necessary after TensorFlow 2.16. The cause is that `tensorflow==2.15` will overwrite your Keras installation with `keras==2.15`. ### Installing KerasCV and KerasNLP KerasCV and KerasNLP can be installed via pip: ``` pip install --upgrade keras-cv pip install --upgrade keras-nlp pip install --upgrade keras ``` Critically, **you should reinstall Keras 3 after installing KerasNLP**. This is a temporary step while TensorFlow is pinned to Keras 2, and will no longer be necessary after TensorFlow 2.16. The cause is that `keras-nlp` depends on `tensorflow-text`, which will install `tensorflow==2.15`, which will overwrite your Keras installation with `keras==2.15`. --- ## Configuring your backend You can export the environment variable `KERAS_BACKEND` or you can edit your local config file at `~/.keras/keras.json` to configure your backend. Available backend options are: `"jax"`, `"tensorflow"`, `"torch"`. Example: ``` export KERAS_BACKEND="jax" ``` In Colab, you can do: ```python import os os.environ["KERAS_BACKEND"] = "jax" import keras ``` **Note:** The backend must be configured before importing Keras, and the backend cannot be changed after the package has been imported. ### GPU dependencies #### Colab or Kaggle If you are running on Colab or Kaggle, the GPU should already be configured, with the correct CUDA version. Installing a newer version of CUDA on Colab or Kaggle is typically not possible. Even though pip installers exist, they rely on a pre-installed NVIDIA driver and there is no way to update the driver on Colab or Kaggle. #### Universal GPU environment If you want to attempt to create a "universal environment" where any backend can use the GPU, we recommend following [the dependency versions used by Colab](https://colab.sandbox.google.com/drive/13cpd3wCwEHpsmypY9o6XB6rXgBm5oSxu) (which seeks to solve this exact problem). You can install the CUDA driver [from here](https://developer.nvidia.com/cuda-downloads), then pip install backends by following their respective CUDA installation instructions: [Installing JAX](https://jax.readthedocs.io/en/latest/installation.html), [Installing TensorFlow](https://www.tensorflow.org/install), [Installing PyTorch](https://pytorch.org/get-started/locally/) #### Most stable GPU environment This setup is recommended if you are a Keras contributor and are running Keras tests. It installs all backends but only gives GPU access to one backend at a time, avoiding potentially conflicting dependency requirements between backends. You can use the following backend-specific requirements files: - [requirements-jax-cuda.txt](https://github.com/keras-team/keras/blob/master/requirements-jax-cuda.txt) - [requirements-tensorflow-cuda.txt](https://github.com/keras-team/keras/blob/master/requirements-tensorflow-cuda.txt) - [requirements-torch-cuda.txt](https://github.com/keras-team/keras/blob/master/requirements-torch-cuda.txt) These install all CUDA-enabled dependencies via pip. They expect a NVIDIA driver to be preinstalled. We recommend a clean python environment for each backend to avoid CUDA version mismatches. As an example, here is how to create a JAX GPU environment with [Conda](https://docs.conda.io/en/latest/): ``` conda create -y -n keras-jax python=3.10 conda activate keras-jax pip install -r requirements-jax-cuda.txt pip install --upgrade keras ``` --- ## TensorFlow + Keras 2 backwards compatibility From TensorFlow 2.0 to TensorFlow 2.15 (included), doing `pip install tensorflow` will also install the corresponding version of Keras 2 -- for instance, `pip install tensorflow==2.14.0` will install `keras==2.14.0`. That version of Keras is then available via both `import keras` and `from tensorflow import keras` (the `tf.keras` namespace). Starting with TensorFlow 2.16, doing `pip install tensorflow` will install Keras 3. When you have TensorFlow >= 2.16 and Keras 3, then by default `from tensorflow import keras` (`tf.keras`) will be Keras 3. Meanwhile, the legacy Keras 2 package is still being released regularly and is available on PyPI as `tf_keras` (or equivalently `tf-keras` -- note that `-` and `_` are equivalent in PyPI package names). To use it, you can install it via `pip install tf_keras` then import it via `import tf_keras as keras`. Should you want `tf.keras` to stay on Keras 2 after upgrading to TensorFlow 2.16+, you can configure your TensorFlow installation so that `tf.keras` points to `tf_keras`. To achieve this: 1. Make sure to install `tf_keras`. Note that TensorFlow does not install by default. 2. Export the environment variable `TF_USE_LEGACY_KERAS=1`. There are several ways to export the environment variable: 1. You can simply run the shell command `export TF_USE_LEGACY_KERAS=1` before launching the Python interpreter. 2. You can add `export TF_USE_LEGACY_KERAS=1` to your `.bashrc` file. That way the variable will still be exported when you restart your shell. 3. You can start your Python script with: ```python import os os.environ["TF_USE_LEGACY_KERAS"] = "1" ``` These lines would need to be before any `import tensorflow` statement. --- ## Compatibility matrix ### JAX compatibility The following Keras + JAX versions are compatible with each other: - `jax==0.4.20` & `keras==3.0.0` ### TensorFlow compatibility The following Keras + TensorFlow versions are compatible with each other: To use Keras 2: - `tensorflow==2.13.0` & `keras==2.13.0` - `tensorflow==2.14.0` & `keras==2.14.0` - `tensorflow==2.15.0` & `keras==2.15.0` To use Keras 3: - `tensorflow==2.15.0` & `keras==3.0.0` - `tensorflow==2.16.0` & `keras==3.0.0` ### PyTorch compatibility The following Keras + PyTorch versions are compatible with each other: - `torch==2.1.0` & `keras==3.0.0`
keras-io/templates/getting_started/index.md/0
{ "file_path": "keras-io/templates/getting_started/index.md", "repo_id": "keras-io", "token_count": 2229 }
131
.codehilite { padding: 1rem; margin-bottom: 1rem; padding-bottom: 0.01rem; font-size: 0.92rem; } @media screen and (max-width: 840px) { .codehilite { font-size: 0.85rem; } } .codehilite pre { color: #ced4da; } .k-default-codeblock .codehilite pre { color: #444; } .k-default-codeblock .codehilite code span { color: #444 !important; } .k-default-codeblock .codehilite { color: #444 !important; background-color: #eee !important; } .codehilite .hll { background-color: #49483e } .codehilite { background: #000000; color: #ffffff } .codehilite .c { color: #75715e } /* Comment */ .codehilite .err { color: #b38aff } /* Error */ .codehilite .k { color: #66d9ef } /* Keyword */ .codehilite .l { color: #ae81ff } /* Literal */ .codehilite .n { color: #f8f8f2 } /* Name */ .codehilite .o { color: #f92672 } /* Operator */ .codehilite .p { color: #f8f8f2 } /* Punctuation */ .codehilite .ch { color: #908d81 } /* Comment.Hashbang */ .codehilite .cm { color: #908d81 } /* Comment.Multiline */ .codehilite .cp { color: #908d81 } /* Comment.Preproc */ .codehilite .cpf { color: #908d81 } /* Comment.PreprocFile */ .codehilite .c1 { color: #908d81 } /* Comment.Single */ .codehilite .cs { color: #908d81 } /* Comment.Special */ .codehilite .gd { color: #f92672 } /* Generic.Deleted */ .codehilite .ge { font-style: italic } /* Generic.Emph */ .codehilite .gi { color: #a6e22e } /* Generic.Inserted */ .codehilite .gs { font-weight: bold } /* Generic.Strong */ .codehilite .gu { color: #75715e } /* Generic.Subheading */ .codehilite .kc { color: #66d9ef } /* Keyword.Constant */ .codehilite .kd { color: #66d9ef } /* Keyword.Declaration */ .codehilite .kn { color: #ff4185 } /* Keyword.Namespace */ .codehilite .kp { color: #66d9ef } /* Keyword.Pseudo */ .codehilite .kr { color: #66d9ef } /* Keyword.Reserved */ .codehilite .kt { color: #66d9ef } /* Keyword.Type */ .codehilite .ld { color: #e6db74 } /* Literal.Date */ .codehilite .m { color: #ae81ff } /* Literal.Number */ .codehilite .s { color: #e6db74 } /* Literal.String */ .codehilite .na { color: #a6e22e } /* Name.Attribute */ .codehilite .nb { color: #f8f8f2 } /* Name.Builtin */ .codehilite .nc { color: #a6e22e } /* Name.Class */ .codehilite .no { color: #66d9ef } /* Name.Constant */ .codehilite .nd { color: #a6e22e } /* Name.Decorator */ .codehilite .ni { color: #f8f8f2 } /* Name.Entity */ .codehilite .ne { color: #a6e22e } /* Name.Exception */ .codehilite .nf { color: #a6e22e } /* Name.Function */ .codehilite .nl { color: #f8f8f2 } /* Name.Label */ .codehilite .nn { color: #ffffff } /* Name.Namespace */ .codehilite .nx { color: #a6e22e } /* Name.Other */ .codehilite .py { color: #f8f8f2 } /* Name.Property */ .codehilite .nt { color: #f92672 } /* Name.Tag */ .codehilite .nv { color: #f8f8f2 } /* Name.Variable */ .codehilite .ow { color: #f92672 } /* Operator.Word */ .codehilite .w { color: #f8f8f2 } /* Text.Whitespace */ .codehilite .mb { color: #ae81ff } /* Literal.Number.Bin */ .codehilite .mf { color: #ae81ff } /* Literal.Number.Float */ .codehilite .mh { color: #ae81ff } /* Literal.Number.Hex */ .codehilite .mi { color: #ae81ff } /* Literal.Number.Integer */ .codehilite .mo { color: #ae81ff } /* Literal.Number.Oct */ .codehilite .sa { color: #e6db74 } /* Literal.String.Affix */ .codehilite .sb { color: #e6db74 } /* Literal.String.Backtick */ .codehilite .sc { color: #e6db74 } /* Literal.String.Char */ .codehilite .dl { color: #e6db74 } /* Literal.String.Delimiter */ .codehilite .sd { color: #e6db74 } /* Literal.String.Doc */ .codehilite .s2 { color: #e6db74 } /* Literal.String.Double */ .codehilite .se { color: #ae81ff } /* Literal.String.Escape */ .codehilite .sh { color: #e6db74 } /* Literal.String.Heredoc */ .codehilite .si { color: #e6db74 } /* Literal.String.Interpol */ .codehilite .sx { color: #e6db74 } /* Literal.String.Other */ .codehilite .sr { color: #e6db74 } /* Literal.String.Regex */ .codehilite .s1 { color: #e6db74 } /* Literal.String.Single */ .codehilite .ss { color: #e6db74 } /* Literal.String.Symbol */ .codehilite .bp { color: #f8f8f2 } /* Name.Builtin.Pseudo */ .codehilite .fm { color: #a6e22e } /* Name.Function.Magic */ .codehilite .vc { color: #f8f8f2 } /* Name.Variable.Class */ .codehilite .vg { color: #f8f8f2 } /* Name.Variable.Global */ .codehilite .vi { color: #f8f8f2 } /* Name.Variable.Instance */ .codehilite .vm { color: #f8f8f2 } /* Name.Variable.Magic */ .codehilite .il { color: #ae81ff } /* Literal.Number.Integer.Long */
keras-io/theme/css/monokai.css/0
{ "file_path": "keras-io/theme/css/monokai.css", "repo_id": "keras-io", "token_count": 1887 }
132
{ "dockerFile": "Dockerfile", "customizations": { "vscode": { "settings": { "python.linting.enabled": true, "python.linting.flake8Enabled": true, "python.linting.pylintEnabled": false, "python.testing.pytestEnabled": true, "editor.formatOnSave": true, "editor.codeActionsOnSave": { "source.organizeImports": true }, "[python]": { "editor.defaultFormatter": "ms-python.black-formatter" }, "editor.rulers": [ 80 ] }, "extensions": [ "ms-python.python", "ms-python.isort", "ms-python.flake8", "ms-python.black-formatter" ] } }, "features": { "ghcr.io/devcontainers/features/github-cli:1": {} }, "postCreateCommand": "sh /setup.sh" }
keras-nlp/.devcontainer/devcontainer.json/0
{ "file_path": "keras-nlp/.devcontainer/devcontainer.json", "repo_id": "keras-nlp", "token_count": 613 }
133
# Code of Conduct This project follows [Google's Open Source Community Guidelines](https://opensource.google/conduct/).
keras-nlp/CODE_OF_CONDUCT.md/0
{ "file_path": "keras-nlp/CODE_OF_CONDUCT.md", "repo_id": "keras-nlp", "token_count": 29 }
134
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Split sentences from raw input documents using nltk. A script to sentence split a raw dataset (e.g. wikipedia or bookscorpus) into sentences for further preproessing for BERT. The output file format is the format expected by `create_pretraining_data.py`, where each file contains one line per sentence, with empty newlines between documents. This script will run muliprocessed, and the number of concurrent process and output file shards can be controlled with `--num_jobs` and `--num_shards`. Usage: python examples/tools/create_sentence_split_data.py \ --input_files ~/datasets/wikipedia,~/datasets/bookscorpus \ --output_directory ~/datasets/bert-sentence-split-data """ import contextlib import multiprocessing import os import random import sys import nltk from absl import app from absl import flags from tensorflow import keras from examples.utils.scripting_utils import list_filenames_for_arg FLAGS = flags.FLAGS flags.DEFINE_string( "input_files", None, "Comma seperated list of directories, files, or globs for input data.", ) flags.DEFINE_string( "output_directory", None, "Directory for output data.", ) flags.DEFINE_integer("num_jobs", None, "Number of file shards to use.") flags.DEFINE_integer("num_shards", 500, "Number of file shards to use.") flags.DEFINE_integer("random_seed", 12345, "Random seed for data generation.") def parse_wiki_file(file): """Read documents from a wikipedia dump file.""" documents = [] in_article = False article_lines = [] for line in file: line = line.strip() # Skip empty lines. if line == "": continue elif "<doc id=" in line: in_article = True elif "</doc>" in line: in_article = False # There are many wikipedia articles that are only titles (one # line) or or redirects (two lines), we will skip these. if len(article_lines) > 2: # Skip the title. documents.append(" ".join(article_lines[1:])) article_lines = [] elif in_article: article_lines.append(line) return documents def parse_text_file(file): """Read documents from a plain text file.""" documents = [] file_lines = [] for line in file: line = line.strip() # Skip empty lines. if line == "": continue file_lines.append(line) documents.append(" ".join(file_lines)) return documents def read_file(filename): """Read documents from an input file.""" with open(filename, mode="r") as file: firstline = file.readline() file.seek(0) # Very basic autodetection of file type. # Wikipedia dump files all start with a doc id tag. if "<doc id=" in firstline: return parse_wiki_file(file) return parse_text_file(file) def process_file(filename): """Read documents from an input file and split into sentences with nltk.""" split_documents = [] for document in read_file(filename): sentences = nltk.tokenize.sent_tokenize(document) split_documents.append(sentences) return split_documents def main(_): nltk.download("punkt") print(f"Reading input data from {FLAGS.input_files}") input_filenames = list_filenames_for_arg(FLAGS.input_files) if not input_filenames: print("No input files found. Check `input_files` flag.") sys.exit(1) # Randomize files so we aren't processing input directories sequentially. rng = random.Random(FLAGS.random_seed) rng.shuffle(input_filenames) # We will read and sentence split with multiprocessing, but write from # a single thread to balance our shard sizes well. pool = multiprocessing.Pool(FLAGS.num_jobs) print(f"Outputting to {FLAGS.output_directory}.") if not os.path.exists(FLAGS.output_directory): os.mkdir(FLAGS.output_directory) progbar = keras.utils.Progbar(len(input_filenames), unit_name="files") progbar.update(0) with contextlib.ExitStack() as stack: # Open all files. output_files = [] for i in range(FLAGS.num_shards): path = os.path.join(FLAGS.output_directory, f"shard_{i}.txt") output_files.append(stack.enter_context(open(path, "w"))) # Write documents to disk. total_files = 0 total_documents = 0 for documents in pool.imap_unordered(process_file, input_filenames): for document in documents: output_file = output_files[total_documents % FLAGS.num_shards] for sentence in document: output_file.write(sentence + "\n") # Blank newline marks a new document. output_file.write("\n") total_documents += 1 total_files += 1 progbar.update(total_files) print("Done.") print(f"Read {total_files} files.") print(f"Processed {total_documents} documents.") if __name__ == "__main__": flags.mark_flag_as_required("input_files") flags.mark_flag_as_required("output_directory") app.run(main)
keras-nlp/examples/tools/split_sentences.py/0
{ "file_path": "keras-nlp/examples/tools/split_sentences.py", "repo_id": "keras-nlp", "token_count": 2193 }
135