|
--- |
|
license: mit |
|
tags: |
|
- dna |
|
- variant-effect-prediction |
|
- biology |
|
- genomics |
|
configs: |
|
- config_name: "mendelian_traits" |
|
data_files: |
|
- split: test |
|
path: "mendelian_traits_matched_9/test.parquet" |
|
- config_name: "complex_traits" |
|
data_files: |
|
- split: test |
|
path: "complex_traits_matched_9/test.parquet" |
|
- config_name: "mendelian_traits_full" |
|
data_files: |
|
- split: test |
|
path: "mendelian_traits_all/test.parquet" |
|
- config_name: "complex_traits_full" |
|
data_files: |
|
- split: test |
|
path: "complex_traits_all/test.parquet" |
|
--- |
|
# 🧬 TraitGym |
|
Benchmarking DNA Sequence Models for Causal Regulatory Variant Prediction in Human Genetics |
|
|
|
🏆 Leaderboard: https://huggingface.co/spaces/songlab/TraitGym-leaderboard |
|
|
|
## ⚡️ Quick start |
|
- Load a dataset |
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset("songlab/TraitGym", "mendelian_traits", split="test") |
|
``` |
|
- Example notebook to run variant effect prediction with a gLM, runs in 5 min on Google Colab: `TraitGym.ipynb` [](https://colab.research.google.com/github/songlab-cal/TraitGym/blob/main/TraitGym.ipynb) |
|
|
|
## 🤗 Resources (https://huggingface.co/datasets/songlab/TraitGym) |
|
- Datasets: `{dataset}/test.parquet` |
|
- Subsets: `{dataset}/subset/{subset}.parquet` |
|
- Features: `{dataset}/features/{features}.parquet` |
|
- Predictions: `{dataset}/preds/{subset}/{model}.parquet` |
|
- Metrics: `{dataset}/{metric}/{subset}/{model}.csv` |
|
|
|
`dataset` examples (`load_dataset` config name): |
|
- `mendelian_traits_matched_9` (`mendelian_traits`) |
|
- `complex_traits_matched_9` (`complex_traits`) |
|
- `mendelian_traits_all` (`mendelian_traits_full`) |
|
- `complex_traits_all` (`complex_traits_full`) |
|
|
|
`subset` examples: |
|
- `all` (default) |
|
- `3_prime_UTR_variant` |
|
- `disease` |
|
- `BMI` |
|
|
|
`features` examples: |
|
- `GPN-MSA_LLR` |
|
- `GPN-MSA_InnerProducts` |
|
- `Borzoi_L2` |
|
|
|
`model` examples: |
|
- `GPN-MSA_LLR.minus.score` |
|
- `GPN-MSA.LogisticRegression.chrom` |
|
- `CADD+GPN-MSA+Borzoi.LogisticRegression.chrom` |
|
|
|
`metric` examples: |
|
- `AUPRC_by_chrom_weighted_average` (main metric) |
|
- `AUPRC` |
|
|
|
## 💻 Code (https://github.com/songlab-cal/TraitGym) |
|
- Tries to follow [recommended Snakemake structure](https://snakemake.readthedocs.io/en/stable/snakefiles/deployment.html) |
|
- GPN-Promoter code is in [the main GPN repo](https://github.com/songlab-cal/gpn) |