satyapratheek commited on
Commit
add652b
·
verified ·
1 Parent(s): 9de6441

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+
4
+ task_categories:
5
+
6
+ - text-generation
7
+
8
+ - fill-mask
9
+
10
+ language:
11
+
12
+ - en
13
+
14
+
15
+
16
+ tags:
17
+
18
+ - literature
19
+
20
+ - dostoyevsky
21
+
22
+ - russian-literature
23
+
24
+ - author-style
25
+
26
+ - causal-lm
27
+
28
+ - fine-tuning
29
+ size_categories:
30
+ - 1K<n<10K
31
+ ---
32
+
33
+ # Dostoyevsky Chunks Dataset
34
+
35
+ This dataset contains preprocessed text chunks from four major works by Fyodor Dostoyevsky, prepared for fine-tuning language models on the author's distinctive writing style.
36
+
37
+ ## Dataset Description
38
+
39
+ ### Dataset Summary
40
+
41
+ A curated collection of text segments extracted from public domain English translations of Dostoyevsky's novels, processed into consistent chunks suitable for causal language modeling tasks.
42
+
43
+ ### Supported Tasks
44
+
45
+ - **Causal Language Modeling**: Primary use case for training autoregressive language models
46
+ - **Author Style Transfer**: Learning Dostoyevsky's literary style and narrative techniques
47
+ - **Text Generation**: Generating text in the style of Dostoyevsky
48
+
49
+ ### Languages
50
+
51
+ - **English**: All texts are English translations of original Russian works
52
+
53
+ ## Dataset Structure
54
+
55
+ ### Data Instances
56
+
57
+ Each instance contains a single text chunk:
58
+
59
+ ```json
60
+ {
61
+ "chunks": "But what can be expected of a man who has such a desperate character that he will hang himself for being always late for dinner..."
62
+ }
63
+ ```
64
+
65
+ ### Data Fields
66
+
67
+ - `chunks` (string): A preprocessed text segment of approximately 512 tokens
68
+
69
+ ### Data Splits
70
+
71
+ The dataset contains **6,217 text chunks** in a single split, suitable for:
72
+
73
+ - Training: Use 90% for fine-tuning
74
+ - Validation: Reserve 10% for evaluation
75
+
76
+ ## Source Data
77
+
78
+ ### Initial Data Collection
79
+
80
+ The source texts were downloaded from Project Gutenberg, ensuring all content is in the public domain.
81
+
82
+ #### Source Works
83
+
84
+ 1. **Crime and Punishment** (Project Gutenberg #2554)
85
+ 2. **The Brothers Karamazov** (Project Gutenberg #28054)
86
+ 3. **The Idiot**
87
+ 4. **Notes from the Underground** (Project Gutenberg #600)
88
+
89
+ ### Data Processing Pipeline
90
+
91
+ 1. **Header/Footer Removal**: Used `gutenberg-cleaner` to remove Project Gutenberg boilerplate
92
+ 2. **Text Normalization**: Applied `ftfy` for encoding fixes and `unidecode` for ASCII conversion
93
+ 3. **Content Filtering**:
94
+ - Removed paragraphs shorter than 200 characters
95
+ - Filtered out chapter titles and section headers
96
+ - Excluded epigraphs and other metadata
97
+ 4. **Chunking**: Segmented text into approximately 512-token chunks using SmolLM tokenizer
98
+ 5. **Quality Control**: Manual review of sample chunks for content quality
99
+
100
+ ## Dataset Creation
101
+
102
+ ### Curation Rationale
103
+
104
+ This dataset was created to enable fine-tuning of small language models on Dostoyevsky's writing style, characterized by:
105
+
106
+ - Psychological depth and introspection
107
+ - Philosophical themes and existential questions
108
+ - Complex character development
109
+ - Rich narrative voice and distinctive prose rhythm
110
+
111
+ ### Source Data Analysis
112
+
113
+ - **Total chunks**: 6,217
114
+ - **Average chunk length**: ~512 tokens
115
+ - **Content diversity**: Narrative prose, dialogue, internal monologue, philosophical passages
116
+ - **Temporal coverage**: Spans Dostoyevsky's major creative periods
117
+
118
+ ## Considerations for Using the Data
119
+
120
+ ### Social Impact of Dataset
121
+
122
+ This dataset preserves and makes accessible the literary heritage of one of world literature's greatest authors, enabling:
123
+
124
+ - **Educational applications**: Literary analysis and style studies
125
+ - **Creative writing assistance**: Learning narrative techniques
126
+ - **Cultural preservation**: Maintaining access to classic literature
127
+
128
+ ### Discussion of Biases
129
+
130
+ - **Historical context**: Reflects 19th-century social norms and perspectives
131
+ - **Translation artifacts**: Based on English translations, may not capture original Russian nuances
132
+ - **Selection bias**: Limited to four major works, may not represent complete stylistic evolution
133
+ - **Cultural specificity**: Reflects Russian cultural context and Orthodox Christian themes
134
+
135
+ ### Other Known Limitations
136
+
137
+ - **Temporal scope**: Limited to works from 1864-1880
138
+ - **Genre limitation**: Primarily novels, lacks short stories and journalism
139
+ - **Translation dependency**: Quality dependent on translator choices
140
+ - **Processing artifacts**: Some text segmentation may split related passages
141
+
142
+ ## Additional Information
143
+
144
+ ### Dataset Curators
145
+
146
+ - **Created by**: [satyapratheek](https://huggingface.co/satyapratheek)
147
+ - **Processing date**: July 2025
148
+ - **Contact**: Available through Hugging Face profile
149
+
150
+ ### Licensing Information
151
+
152
+ All source texts are in the **public domain** (published before 1928). The dataset processing and compilation is released under **public domain** as well.
153
+
154
+ ### Citation Information
155
+
156
+ ```bibtex
157
+ @dataset{dostoyevsky_chunks_2025,
158
+ title={Dostoyevsky Chunks: Preprocessed Text Dataset for Author Style Fine-tuning},
159
+ author={satyapratheek},
160
+ year={2025},
161
+ publisher={Hugging Face},
162
+ url={https://huggingface.co/datasets/satyapratheek/dostoyevsky_chunks}
163
+ }
164
+ ```
165
+
166
+ ### Contributions
167
+
168
+ If you use this dataset, please consider citing both the dataset and the original Project Gutenberg sources.
169
+
170
+ ## Usage Example
171
+
172
+ ```python
173
+ from datasets import load_dataset
174
+
175
+ # Load the dataset
176
+ dataset = load_dataset("satyapratheek/dostoyevsky_chunks")
177
+
178
+ # Access the chunks
179
+ chunks = dataset["train"]["chunks"]
180
+ print(f"Total chunks: {len(chunks)}")
181
+ print(f"Sample chunk: {chunks[:200]}...")
182
+
183
+ # Use for fine-tuning
184
+ ```python
185
+ from transformers import AutoTokenizer
186
+ tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM-135M")
187
+
188
+ def tokenize_function(examples):
189
+ return tokenizer(examples["chunks"], truncation=True, padding="max_length", max_length=512)
190
+
191
+ tokenized_dataset = dataset.map(tokenize_function, batched=True)
192
+ ```
193
+
194
+ ## Related Models
195
+
196
+ This dataset was used to fine-tune:
197
+
198
+ - [satyapratheek/smollm-dostoyevsky](https://huggingface.co/satyapratheek/smollm-dostoyevsky) - LoRA fine-tuned SmolLM-135M
199
+
200
+ ---
201
+
202
+ **Processing Stats from Fine-tuning:**
203
+
204
+ - Training duration: 4 hours, 56 minutes, 35 seconds
205
+ - Final training loss: 3.254
206
+ - Training samples/second: 1.048
207
+ - Hardware: Apple M1 MacBook Air (8GB RAM)
cache-3ca313463a4454ec.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf3db8f7789b382f73f56bd1e9e4c6d7106c6976f2ee41e10850f2aee7e8a487
3
+ size 3818880
cache-72480cd92fefd657.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76726d743394f8651bb344681012f2093c19a5924c5da83636a4d15c7f9c77fa
3
+ size 15967968
cache-9d53fb84569235e5.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04bc7fbbdf9ad8ef62e62ad45ba4388d02301352fa6aea5291842942d05ccb80
3
+ size 3818880
cache-aa6f16efdc1b0629.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cedf1effa337ecb5c0aef9aebd75ad1418715622c8c59fd206a731b65af3c15b
3
+ size 15967968
data-00000-of-00001.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ffa18efc935413b2dc27b620659b96e01311696ab7232a22f682eae9c6d62383
3
+ size 3842144
dataset_info.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "builder_name": "json",
3
+ "citation": "",
4
+ "config_name": "default",
5
+ "dataset_name": "json",
6
+ "dataset_size": 3815358,
7
+ "description": "",
8
+ "download_checksums": {
9
+ "/Users/vi/Documents/dost/dostoyevsky.jsonl": {
10
+ "num_bytes": 3934721,
11
+ "checksum": null
12
+ }
13
+ },
14
+ "download_size": 3934721,
15
+ "features": {
16
+ "chunks": {
17
+ "feature": {
18
+ "dtype": "string",
19
+ "_type": "Value"
20
+ },
21
+ "_type": "Sequence"
22
+ }
23
+ },
24
+ "homepage": "",
25
+ "license": "",
26
+ "size_in_bytes": 7750079,
27
+ "splits": {
28
+ "train": {
29
+ "name": "train",
30
+ "num_bytes": 3815358,
31
+ "num_examples": 6006,
32
+ "dataset_name": "json"
33
+ }
34
+ },
35
+ "version": {
36
+ "version_str": "0.0.0",
37
+ "major": 0,
38
+ "minor": 0,
39
+ "patch": 0
40
+ }
41
+ }
state.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_data_files": [
3
+ {
4
+ "filename": "data-00000-of-00001.arrow"
5
+ }
6
+ ],
7
+ "_fingerprint": "5156f4ac1d631c66",
8
+ "_format_columns": null,
9
+ "_format_kwargs": {},
10
+ "_format_type": null,
11
+ "_output_all_columns": false,
12
+ "_split": "train"
13
+ }