face-obfuscated-imagenet / face-obfuscated-imagenet.py
ianhajra's picture
Support is_one and is_ten for noface-inet
ee49f1c verified
import datasets
import os
import tarfile
import json
import urllib.request
from PIL import Image
import io
class FaceObfuscatedImagenet(datasets.GeneratorBasedBuilder):
"""Comprehensive ImageNet dataset collection with face obfuscation support.
This dataset includes multiple variants such as the full ILSVRC2012 ImageNet (1k),
ImageNet-100, Imagenette (10), and ImageNet-Mini subsets, alongside their corresponding
face-obfuscated (blurred) versions. This dataset supports privacy-preserving research
by providing both original and face-obfuscated images for each subset.
The face-obfuscated versions are designed to protect privacy while maintaining the
utility of the dataset for training and evaluation purposes.
"""
# This could be a more descriptive name, but we keep it simple for now
VERSION = datasets.Version("1.0.0")
# URLs for automatic download
_INET_TRAIN_URL = (
"https://www.image-net.org/data/ILSVRC/2012/ILSVRC2012_img_train.tar"
)
_INET_VAL_URL = "https://www.image-net.org/data/ILSVRC/2012/ILSVRC2012_img_val.tar"
_INET_DEVKIT_URL = (
"https://www.image-net.org/data/ILSVRC/2012/ILSVRC2012_devkit_t12.tar.gz"
)
_NOFACE_TRAIN_URL = "https://image-net.org/data/ILSVRC/blurred/train_blurred.tar.gz"
_NOFACE_VAL_URL = "https://image-net.org/data/ILSVRC/blurred/val_blurred.tar.gz"
_CLASS_INDEX_URL = "https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json"
# this allows us to use the same class and cache for different "versions" of the dataset"
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="1k",
version=VERSION,
description=(
"Standard ILSVRC2012 ImageNet dataset containing approximately 1.2 million "
"training images across 1000 object categories. This widely used benchmark "
"dataset is designed for image classification and object recognition tasks."
),
),
datasets.BuilderConfig(
name="100",
version=VERSION,
description=(
"ImageNet-100 is a curated subset of the full ImageNet dataset consisting of 100 "
"carefully selected classes. This smaller dataset enables faster experimentation "
"while maintaining a diverse set of categories."
),
),
datasets.BuilderConfig(
name="10",
version=VERSION,
description=(
"Imagenette is a subset of 10 easily classified ImageNet classes intended for "
"quick prototyping and educational purposes. It provides a lightweight alternative "
"for rapid development."
),
),
datasets.BuilderConfig(
name="mini",
version=VERSION,
description=(
"ImageNet-Mini is a compact subset of ImageNet containing 100 classes with fewer "
"images per class. It is intended for faster training and benchmarking while "
"retaining representative class diversity."
),
),
datasets.BuilderConfig(
name="noface-1k",
version=VERSION,
description=(
"Face-obfuscated variant of the standard ILSVRC2012 ImageNet dataset, where all "
"human faces in images have been blurred or obscured to protect privacy, enabling "
"privacy-preserving research without compromising classification utility."
),
),
datasets.BuilderConfig(
name="noface-100",
version=VERSION,
description=(
"Face-obfuscated ImageNet-100 subset with the same 100 classes as the standard "
"ImageNet-100, but with all human faces blurred or masked. Designed to support "
"privacy-conscious applications and studies."
),
),
datasets.BuilderConfig(
name="noface-10",
version=VERSION,
description=(
"Face-obfuscated Imagenette subset with 10 classes, where images have undergone "
"face blurring to safeguard personal identities. Suitable for quick prototyping "
"in privacy-sensitive scenarios."
),
),
# datasets.BuilderConfig(
# name="noface-mini",
# version=VERSION,
# description=(
# "Face-obfuscated ImageNet-Mini subset with 100 classes, preserving the original "
# "class diversity while anonymizing human faces for privacy preservation during "
# "model training and evaluation."
# ),
# ),
]
def _info(self):
# depending on the config, we will set the class names
with urllib.request.urlopen(self._CLASS_INDEX_URL) as response:
full_mapping = json.load(response) # { "0": ["n01440764", "tench"], ... }
# Build mapping from wnid to class name
wnid_to_name = {value[0]: value[1] for key, value in full_mapping.items()}
# Use the mapping to get formatted class names (e.g., "n01440764: tench")
wnids = self._get_class_names()
formatted_class_names = [
f"{wnid}: {wnid_to_name.get(wnid, wnid)}" for wnid in wnids
]
# generic description for the dataset -- specific subsets are indicated by the config name
return datasets.DatasetInfo(
description=(
"Comprehensive ImageNet dataset collection including multiple variants such as "
"the full ILSVRC2012 ImageNet (1k), ImageNet-100, Imagenette (10), and ImageNet-Mini subsets, "
"alongside their corresponding face-obfuscated (blurred) versions. "
"This dataset supports privacy-preserving research by providing both original and "
"face-obfuscated images for each subset."
),
features=datasets.Features(
{
"image": datasets.Image(),
"label": datasets.ClassLabel(names=formatted_class_names),
"is_one": datasets.Value("bool"),
"is_ten": datasets.Value("bool"),
}
),
supervised_keys=("image", "label"), # type: ignore
homepage="https://image-net.org/face-obfuscation/",
citation="""@inproceedings{yang2022study,
title={A Study of Face Obfuscation in ImageNet},
author={Yang, Kevin and Yau, John and Fei-Fei, Li and Deng, Jia and Russakovsky, Olga},
booktitle={International Conference on Machine Learning (ICML)},
year={2022}
}""",
)
def _split_generators(self, dl_manager):
if dl_manager.is_streaming:
raise NotImplementedError(
"Streaming is not yet supported for this dataset."
)
# cache location for the dataset downloads
inet_train_path = (
"/gpfs/data/shared/imagenet/ILSVRC2012/ILSVRC2012_img_train.tar"
)
inet_val_path = "/gpfs/data/shared/imagenet/ILSVRC2012/ILSVRC2012_img_val.tar"
inet_devkit_archive_path = (
"/gpfs/data/shared/imagenet/ILSVRC2012/ILSVRC2012_devkit_t12.tar.gz"
)
noface_train_path = "/gpfs/data/shared/imagenet_blurred/train_blurred.tar.gz"
noface_val_path = "/gpfs/data/shared/imagenet_blurred/val_blurred.tar.gz"
# download if missing (this should only happen once)
if not os.path.exists(inet_train_path):
inet_train_path = dl_manager.download(self._INET_TRAIN_URL)
if not os.path.exists(inet_val_path):
inet_val_path = dl_manager.download(self._INET_VAL_URL)
if not os.path.exists(inet_devkit_archive_path):
inet_devkit_archive_path = dl_manager.download(self._INET_DEVKIT_URL)
if not os.path.exists(noface_train_path):
noface_train_path = dl_manager.download(self._NOFACE_TRAIN_URL)
if not os.path.exists(noface_val_path):
noface_val_path = dl_manager.download(self._NOFACE_VAL_URL)
# Define extraction directories
noface_train_extract_dir = noface_train_path + "_extracted" # type: ignore
noface_val_extract_dir = noface_val_path + "_extracted" # type: ignore
# Extract train if not already extracted
if not os.path.exists(noface_train_extract_dir):
print(
"Extracting noface training archive... This will take a while, but will make the overall process much faster. "
"Do not worry if this takes a long time. Be patient, this is a one-time operation. In the future, this will be cached."
)
with tarfile.open(noface_train_path, "r:gz") as tar: # type: ignore
tar.extractall(path=noface_train_extract_dir)
print("Noface training extraction done.")
# Extract val if not already extracted
if not os.path.exists(noface_val_extract_dir):
print(
"Extracting noface validation archive... This may take a while, but will make the overall process much faster. "
"Do not worry if this takes a long time. Be patient, this is a one-time operation. In the future, this will be cached."
)
with tarfile.open(noface_val_path, "r:gz") as tar: # type: ignore
tar.extractall(path=noface_val_extract_dir)
print("Noface alidation extraction done.")
return self._return_generated_splits(
inet_train_path,
inet_val_path,
inet_devkit_archive_path,
noface_train_extract_dir,
noface_val_extract_dir,
)
def _generate_examples(self, archive_path, split, devkit_archive=None):
config_name = self.config.name
# Depending on the config name, we will generate examples for the appropriate subset
if config_name == "1k":
return self._generate_full_imagenet(
archive_path, split, devkit_archive=devkit_archive
)
elif config_name == "100":
return self._generate_nonblur_subset(
archive_path,
split,
wnid_list=self._inet100_class_names(),
devkit_archive=devkit_archive,
)
elif config_name == "mini":
return self._generate_nonblur_subset(
archive_path,
split,
wnid_list=self._inet_mini_class_names(),
devkit_archive=devkit_archive,
)
elif config_name == "10":
return self._generate_nonblur_subset(
archive_path,
split,
wnid_list=self._imagenette_class_names(),
devkit_archive=devkit_archive,
)
elif config_name == "noface-1k":
train_metadata = "https://huggingface.co/datasets/randall-lab/face-obfuscated-imagenet/resolve/main/metadata/noface_1k/train.txt"
val_metadata = "https://huggingface.co/datasets/randall-lab/face-obfuscated-imagenet/resolve/main/metadata/noface_1k/val.txt"
return self._generate_noface(
archive_path, split, train_metadata, val_metadata
)
elif config_name == "noface-100":
train_metadata = "https://huggingface.co/datasets/randall-lab/face-obfuscated-imagenet/resolve/main/metadata/noface_100/train.txt"
val_metadata = "https://huggingface.co/datasets/randall-lab/face-obfuscated-imagenet/resolve/main/metadata/noface_100/val.txt"
return self._generate_noface(
archive_path, split, train_metadata, val_metadata
)
elif config_name == "noface-10":
train_metadata = "https://huggingface.co/datasets/randall-lab/face-obfuscated-imagenet/resolve/main/metadata/noface_10/train.txt"
val_metadata = "https://huggingface.co/datasets/randall-lab/face-obfuscated-imagenet/resolve/main/metadata/noface_10/val.txt"
return self._generate_noface(
archive_path, split, train_metadata, val_metadata
)
# elif config_name == "noface-mini":
# # TODO: Update the URLs to point to the correct metadata files
# train_metadata = "/path/to/noface_mini/train.txt"
# val_metadata = "/path/to/noface_mini/val.txt"
# return self._generate_noface(
# archive_path, split, train_metadata, val_metadata
# )
else:
raise ValueError(
f"Unknown config name: {config_name}"
) # this should never happen
def _return_generated_splits(
self,
inet_train_path,
inet_val_path,
inet_devkit_path,
noface_train_extract_dir,
noface_val_extract_dir,
):
if self.config.name.startswith("noface"):
# For all blurred (noface) configs
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, # type: ignore
gen_kwargs={
"archive_path": noface_train_extract_dir,
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, # type: ignore
gen_kwargs={
"archive_path": noface_val_extract_dir,
"split": "validation",
},
),
]
else:
# For all non-blurred (normal) configs
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, # type: ignore
gen_kwargs={"archive_path": inet_train_path, "split": "train"},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, # type: ignore
gen_kwargs={
"archive_path": inet_val_path,
"split": "validation",
"devkit_archive": inet_devkit_path,
},
),
]
def _generate_full_imagenet(self, archive_path, split, devkit_archive=None):
if split == "train":
# Open the training tar archive.
with tarfile.open(archive_path, "r:*") as train_tar:
# The training archive contains many tar files (one per class).
sub_tar_members = [
m
for m in train_tar.getmembers()
if m.isfile() and m.name.endswith(".tar")
]
# Download and cache the class mapping (if not already done).
if not hasattr(self, "_mapping"):
with urllib.request.urlopen(self._CLASS_INDEX_URL) as response:
self._mapping = json.load(response)
mapping = self._mapping
# Build a mapping from WordNet ID (wnid) to integer label.
wnid_to_label = {mapping[str(i)][0]: i for i in range(1000)}
example_idx = 0
for m in sub_tar_members:
# Each member’s name is e.g. "n01440764.tar"; extract the wnid.
wnid = os.path.splitext(m.name)[0]
if wnid not in wnid_to_label:
# Skip any unexpected files.
continue
label = wnid_to_label[wnid]
sub_tar_file = train_tar.extractfile(m)
# Open the inner tar file containing images for this class.
with tarfile.open(fileobj=sub_tar_file, mode="r:*") as sub_tar:
for sub_m in sub_tar.getmembers():
if sub_m.isfile():
img_f = sub_tar.extractfile(sub_m)
image_bytes = img_f.read()
img = Image.open(io.BytesIO(image_bytes))
if img.mode != "RGB":
img = img.convert("RGB")
yield example_idx, {
"image": img,
"label": label,
"is_one": False,
"is_ten": False,
}
example_idx += 1
elif split == "validation":
# For validation, open the validation tar archive.
with tarfile.open(archive_path, "r:*") as val_tar:
# Get all file members (each a validation image).
members = [m for m in val_tar.getmembers() if m.isfile()]
# Sort by filename to ensure the same order as in the ground truth file.
members = sorted(members, key=lambda m: m.name)
# Open the devkit archive to extract the ground truth file.
with tarfile.open(devkit_archive, "r:*") as devkit_tar:
gt_member = None
for m in devkit_tar.getmembers():
if m.name.endswith("ILSVRC2012_validation_ground_truth.txt"):
gt_member = m
break
if gt_member is None:
raise ValueError(
"Could not find the ground truth file in the devkit archive."
)
gt_file = devkit_tar.extractfile(gt_member)
gt_lines = gt_file.read().decode("utf-8").strip().splitlines()
if len(gt_lines) != len(members):
raise ValueError(
"Mismatch between the number of validation images and ground truth labels."
)
for example_idx, (m, gt) in enumerate(zip(members, gt_lines)):
# Convert the ground truth label from 1-indexed to 0-indexed.
label = int(gt) - 1
img_f = val_tar.extractfile(m)
image_bytes = img_f.read()
img = Image.open(io.BytesIO(image_bytes))
if img.mode != "RGB":
img = img.convert("RGB")
yield example_idx, {
"image": img,
"label": label,
"is_one": False,
"is_ten": False,
}
def _generate_nonblur_subset(
self, archive_path, split, wnid_list, devkit_archive=None
):
wnid_to_new_label = {wnid: idx for idx, wnid in enumerate(wnid_list)}
if split == "train":
with tarfile.open(archive_path, "r:*") as train_tar:
# The training tar archive contains many tar files (one per class)
sub_tar_members = [
m
for m in train_tar.getmembers()
if m.isfile() and m.name.endswith(".tar")
]
example_idx = 0
for m in sub_tar_members:
# Each member’s name is, e.g., "n01440764.tar"; extract the wnid.
wnid = os.path.splitext(m.name)[0]
# Only process if the wnid is in our selected subset.
if wnid not in wnid_to_new_label:
continue
new_label = wnid_to_new_label[wnid]
sub_tar_file = train_tar.extractfile(m)
# Open the inner tar file containing images for this class.
with tarfile.open(fileobj=sub_tar_file, mode="r:*") as sub_tar:
for sub_m in sub_tar.getmembers():
if sub_m.isfile():
img_f = sub_tar.extractfile(sub_m)
image_bytes = img_f.read()
img = Image.open(io.BytesIO(image_bytes))
if img.mode != "RGB":
img = img.convert("RGB")
yield example_idx, {
"image": img,
"label": new_label,
"is_one": False,
"is_ten": False,
}
example_idx += 1
elif split == "validation":
# For validation, filter examples based on their wnid.
with tarfile.open(archive_path, "r:*") as val_tar:
members = [m for m in val_tar.getmembers() if m.isfile()]
# Sort by filename to match the ground truth order.
members = sorted(members, key=lambda m: m.name)
# Open the devkit archive to extract the ground truth file.
with tarfile.open(devkit_archive, "r:*") as devkit_tar:
gt_member = None
for m in devkit_tar.getmembers():
if m.name.endswith("ILSVRC2012_validation_ground_truth.txt"):
gt_member = m
break
if gt_member is None:
raise ValueError(
"Could not find the ground truth file in the devkit archive."
)
gt_file = devkit_tar.extractfile(gt_member)
gt_lines = gt_file.read().decode("utf-8").strip().splitlines()
# Download the full class mapping to convert the original label to wnid.
with urllib.request.urlopen(self._CLASS_INDEX_URL) as response:
full_mapping = json.load(response)
# Build a mapping from original index (0-indexed) to wnid.
idx_to_wnid = {
int(key): value[0] for key, value in full_mapping.items()
}
example_idx = 0
# Iterate over the validation tar members paired with the ground truth lines.
for m, gt in zip(members, gt_lines):
original_label = int(gt) - 1 # original labels are 1-indexed
wnid = idx_to_wnid.get(original_label)
# Only include the example if its wnid is in our selected subset.
if wnid not in wnid_to_new_label:
continue
new_label = wnid_to_new_label[wnid]
img_f = val_tar.extractfile(m)
image_bytes = img_f.read()
img = Image.open(io.BytesIO(image_bytes))
if img.mode != "RGB":
img = img.convert("RGB")
yield example_idx, {
"image": img,
"label": new_label,
"is_one": False,
"is_ten": False,
}
example_idx += 1
def _generate_noface(self, archive_path, split, train_txt_url, val_txt_url):
def is_valid_file(path):
return os.path.isfile(path) and os.path.getsize(path) > 0
num_failed = 0
if split == "train":
with urllib.request.urlopen(train_txt_url) as f:
train_ids = [line.decode("utf-8").strip() for line in f if line.strip()]
if not hasattr(self, "_mapping"):
with urllib.request.urlopen(self._CLASS_INDEX_URL) as response:
self._mapping = json.load(response)
wnid_to_label = {
wnid: idx for idx, wnid in enumerate(self._get_class_names())
}
valid_entries = []
for file_id in train_ids:
# inputs are like n01440764_2708-0-0
# Split to get all parts: ["n01440764_2708", "0", "0"]
parts = file_id.split("-")
base_file_id = parts[0] # "n01440764_2708"
is_one = parts[1] == "1" if len(parts) > 1 else False
is_ten = parts[2] == "1" if len(parts) > 2 else False
wnid = base_file_id.split("_")[0]
img_name = base_file_id
found = False
for ext in [".JPEG", ".jpg"]:
candidate_path = os.path.join(
archive_path, "train_blurred", wnid, img_name + ext
)
if is_valid_file(candidate_path):
valid_entries.append((candidate_path, wnid, is_one, is_ten))
found = True
break
if not found:
num_failed += 1
print(f"[train] Skipped {num_failed} invalid or zero-byte files.")
example_idx = 0
for img_path, wnid, is_one, is_ten in valid_entries:
label = wnid_to_label[wnid]
img = Image.open(img_path)
if img.mode != "RGB":
img = img.convert("RGB")
yield example_idx, {
"image": img,
"label": label,
"is_one": is_one,
"is_ten": is_ten,
}
example_idx += 1
if split == "validation":
with urllib.request.urlopen(val_txt_url) as f:
val_ids = [line.decode("utf-8").strip() for line in f if line.strip()]
if not hasattr(self, "_mapping"):
with urllib.request.urlopen(self._CLASS_INDEX_URL) as response:
self._mapping = json.load(response)
wnid_to_label = {
wnid: idx for idx, wnid in enumerate(self._get_class_names())
}
valid_entries = []
for file_id in val_ids:
wnid = file_id.split("_")[0]
img_name = file_id[len(wnid) + 1 :]
found = False
for ext in [".JPEG", ".jpg"]:
candidate_path = os.path.join(
archive_path, "val_blurred", wnid, img_name + ext
)
if is_valid_file(candidate_path):
valid_entries.append((candidate_path, wnid))
found = True
break
if not found:
num_failed += 1
print(f"[validation] Skipped {num_failed} invalid or zero-byte files.")
example_idx = 0
for img_path, wnid in valid_entries:
label = wnid_to_label[wnid]
img = Image.open(img_path)
if img.mode != "RGB":
img = img.convert("RGB")
yield example_idx, {
"image": img,
"label": label,
"is_one": False,
"is_ten": False,
}
example_idx += 1
def _get_class_names(self):
# Load the full ImageNet class index from the JSON
with urllib.request.urlopen(self._CLASS_INDEX_URL) as response:
full_mapping = json.load(response) # { "0": ["n01440764", "tench"], ... }
if self.config.name in {"1k", "noface-1k"}:
return [full_mapping[str(i)][0] for i in range(1000)]
if self.config.name in {"100", "noface-100"}:
return self._inet100_class_names()
elif self.config.name in {"10", "noface-10"}:
return self._imagenette_class_names()
elif self.config.name in {"mini"}: # "noface-mini"
return self._inet_mini_class_names()
else:
raise ValueError(f"Unknown config name: {self.config.name}")
# Build list of formatted class names like "n01558993: robin"
return [f"{wnid}: {wnid_to_name.get(wnid, wnid)}" for wnid in wnid_list]
@staticmethod
def _inet100_class_names():
return [
"n02869837",
"n01749939",
"n02488291",
"n02107142",
"n13037406",
"n02091831",
"n04517823",
"n04589890",
"n03062245",
"n01773797",
"n01735189",
"n07831146",
"n07753275",
"n03085013",
"n04485082",
"n02105505",
"n01983481",
"n02788148",
"n03530642",
"n04435653",
"n02086910",
"n02859443",
"n13040303",
"n03594734",
"n02085620",
"n02099849",
"n01558993",
"n04493381",
"n02109047",
"n04111531",
"n02877765",
"n04429376",
"n02009229",
"n01978455",
"n02106550",
"n01820546",
"n01692333",
"n07714571",
"n02974003",
"n02114855",
"n03785016",
"n03764736",
"n03775546",
"n02087046",
"n07836838",
"n04099969",
"n04592741",
"n03891251",
"n02701002",
"n03379051",
"n02259212",
"n07715103",
"n03947888",
"n04026417",
"n02326432",
"n03637318",
"n01980166",
"n02113799",
"n02086240",
"n03903868",
"n02483362",
"n04127249",
"n02089973",
"n03017168",
"n02093428",
"n02804414",
"n02396427",
"n04418357",
"n02172182",
"n01729322",
"n02113978",
"n03787032",
"n02089867",
"n02119022",
"n03777754",
"n04238763",
"n02231487",
"n03032252",
"n02138441",
"n02104029",
"n03837869",
"n03494278",
"n04136333",
"n03794056",
"n03492542",
"n02018207",
"n04067472",
"n03930630",
"n03584829",
"n02123045",
"n04229816",
"n02100583",
"n03642806",
"n04336792",
"n03259280",
"n02116738",
"n02108089",
"n03424325",
"n01855672",
"n02090622",
]
@staticmethod
def _inet_mini_class_names():
return [
"n01532829",
"n01558993",
"n01704323",
"n01749939",
"n01770081",
"n01843383",
"n01855672",
"n01910747",
"n01930112",
"n01981276",
"n02074367",
"n02089867",
"n02091244",
"n02091831",
"n02099601",
"n02101006",
"n02105505",
"n02108089",
"n02108551",
"n02108915",
"n02110063",
"n02110341",
"n02111277",
"n02113712",
"n02114548",
"n02116738",
"n02120079",
"n02129165",
"n02138441",
"n02165456",
"n02174001",
"n02219486",
"n02443484",
"n02457408",
"n02606052",
"n02687172",
"n02747177",
"n02795169",
"n02823428",
"n02871525",
"n02950826",
"n02966193",
"n02971356",
"n02981792",
"n03017168",
"n03047690",
"n03062245",
"n03075370",
"n03127925",
"n03146219",
"n03207743",
"n03220513",
"n03272010",
"n03337140",
"n03347037",
"n03400231",
"n03417042",
"n03476684",
"n03527444",
"n03535780",
"n03544143",
"n03584254",
"n03676483",
"n03770439",
"n03773504",
"n03775546",
"n03838899",
"n03854065",
"n03888605",
"n03908618",
"n03924679",
"n03980874",
"n03998194",
"n04067472",
"n04146614",
"n04149813",
"n04243546",
"n04251144",
"n04258138",
"n04275548",
"n04296562",
"n04389033",
"n04418357",
"n04435653",
"n04443257",
"n04509417",
"n04515003",
"n04522168",
"n04596742",
"n04604644",
"n04612504",
"n06794110",
"n07584110",
"n07613480",
"n07697537",
"n07747607",
"n09246464",
"n09256479",
"n13054560",
"n13133613",
]
@staticmethod
def _imagenette_class_names():
return [
"n01440764",
"n02102040",
"n02979186",
"n03000684",
"n03028079",
"n03394916",
"n03417042",
"n03425413",
"n03445777",
"n03888257",
]