|
import datasets |
|
import os |
|
import tarfile |
|
import json |
|
import urllib.request |
|
from PIL import Image |
|
import io |
|
|
|
|
|
class FaceObfuscatedImagenet(datasets.GeneratorBasedBuilder): |
|
"""Comprehensive ImageNet dataset collection with face obfuscation support. |
|
This dataset includes multiple variants such as the full ILSVRC2012 ImageNet (1k), |
|
ImageNet-100, Imagenette (10), and ImageNet-Mini subsets, alongside their corresponding |
|
face-obfuscated (blurred) versions. This dataset supports privacy-preserving research |
|
by providing both original and face-obfuscated images for each subset. |
|
The face-obfuscated versions are designed to protect privacy while maintaining the |
|
utility of the dataset for training and evaluation purposes. |
|
""" |
|
|
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
|
|
_INET_TRAIN_URL = ( |
|
"https://www.image-net.org/data/ILSVRC/2012/ILSVRC2012_img_train.tar" |
|
) |
|
_INET_VAL_URL = "https://www.image-net.org/data/ILSVRC/2012/ILSVRC2012_img_val.tar" |
|
_INET_DEVKIT_URL = ( |
|
"https://www.image-net.org/data/ILSVRC/2012/ILSVRC2012_devkit_t12.tar.gz" |
|
) |
|
_NOFACE_TRAIN_URL = "https://image-net.org/data/ILSVRC/blurred/train_blurred.tar.gz" |
|
_NOFACE_VAL_URL = "https://image-net.org/data/ILSVRC/blurred/val_blurred.tar.gz" |
|
_CLASS_INDEX_URL = "https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json" |
|
|
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="1k", |
|
version=VERSION, |
|
description=( |
|
"Standard ILSVRC2012 ImageNet dataset containing approximately 1.2 million " |
|
"training images across 1000 object categories. This widely used benchmark " |
|
"dataset is designed for image classification and object recognition tasks." |
|
), |
|
), |
|
datasets.BuilderConfig( |
|
name="100", |
|
version=VERSION, |
|
description=( |
|
"ImageNet-100 is a curated subset of the full ImageNet dataset consisting of 100 " |
|
"carefully selected classes. This smaller dataset enables faster experimentation " |
|
"while maintaining a diverse set of categories." |
|
), |
|
), |
|
datasets.BuilderConfig( |
|
name="10", |
|
version=VERSION, |
|
description=( |
|
"Imagenette is a subset of 10 easily classified ImageNet classes intended for " |
|
"quick prototyping and educational purposes. It provides a lightweight alternative " |
|
"for rapid development." |
|
), |
|
), |
|
datasets.BuilderConfig( |
|
name="mini", |
|
version=VERSION, |
|
description=( |
|
"ImageNet-Mini is a compact subset of ImageNet containing 100 classes with fewer " |
|
"images per class. It is intended for faster training and benchmarking while " |
|
"retaining representative class diversity." |
|
), |
|
), |
|
datasets.BuilderConfig( |
|
name="noface-1k", |
|
version=VERSION, |
|
description=( |
|
"Face-obfuscated variant of the standard ILSVRC2012 ImageNet dataset, where all " |
|
"human faces in images have been blurred or obscured to protect privacy, enabling " |
|
"privacy-preserving research without compromising classification utility." |
|
), |
|
), |
|
datasets.BuilderConfig( |
|
name="noface-100", |
|
version=VERSION, |
|
description=( |
|
"Face-obfuscated ImageNet-100 subset with the same 100 classes as the standard " |
|
"ImageNet-100, but with all human faces blurred or masked. Designed to support " |
|
"privacy-conscious applications and studies." |
|
), |
|
), |
|
datasets.BuilderConfig( |
|
name="noface-10", |
|
version=VERSION, |
|
description=( |
|
"Face-obfuscated Imagenette subset with 10 classes, where images have undergone " |
|
"face blurring to safeguard personal identities. Suitable for quick prototyping " |
|
"in privacy-sensitive scenarios." |
|
), |
|
), |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
] |
|
|
|
def _info(self): |
|
|
|
with urllib.request.urlopen(self._CLASS_INDEX_URL) as response: |
|
full_mapping = json.load(response) |
|
|
|
|
|
wnid_to_name = {value[0]: value[1] for key, value in full_mapping.items()} |
|
|
|
|
|
wnids = self._get_class_names() |
|
formatted_class_names = [ |
|
f"{wnid}: {wnid_to_name.get(wnid, wnid)}" for wnid in wnids |
|
] |
|
|
|
|
|
return datasets.DatasetInfo( |
|
description=( |
|
"Comprehensive ImageNet dataset collection including multiple variants such as " |
|
"the full ILSVRC2012 ImageNet (1k), ImageNet-100, Imagenette (10), and ImageNet-Mini subsets, " |
|
"alongside their corresponding face-obfuscated (blurred) versions. " |
|
"This dataset supports privacy-preserving research by providing both original and " |
|
"face-obfuscated images for each subset." |
|
), |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"label": datasets.ClassLabel(names=formatted_class_names), |
|
"is_one": datasets.Value("bool"), |
|
"is_ten": datasets.Value("bool"), |
|
} |
|
), |
|
supervised_keys=("image", "label"), |
|
homepage="https://image-net.org/face-obfuscation/", |
|
citation="""@inproceedings{yang2022study, |
|
title={A Study of Face Obfuscation in ImageNet}, |
|
author={Yang, Kevin and Yau, John and Fei-Fei, Li and Deng, Jia and Russakovsky, Olga}, |
|
booktitle={International Conference on Machine Learning (ICML)}, |
|
year={2022} |
|
}""", |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
if dl_manager.is_streaming: |
|
raise NotImplementedError( |
|
"Streaming is not yet supported for this dataset." |
|
) |
|
|
|
|
|
inet_train_path = ( |
|
"/gpfs/data/shared/imagenet/ILSVRC2012/ILSVRC2012_img_train.tar" |
|
) |
|
inet_val_path = "/gpfs/data/shared/imagenet/ILSVRC2012/ILSVRC2012_img_val.tar" |
|
inet_devkit_archive_path = ( |
|
"/gpfs/data/shared/imagenet/ILSVRC2012/ILSVRC2012_devkit_t12.tar.gz" |
|
) |
|
noface_train_path = "/gpfs/data/shared/imagenet_blurred/train_blurred.tar.gz" |
|
noface_val_path = "/gpfs/data/shared/imagenet_blurred/val_blurred.tar.gz" |
|
|
|
|
|
if not os.path.exists(inet_train_path): |
|
inet_train_path = dl_manager.download(self._INET_TRAIN_URL) |
|
if not os.path.exists(inet_val_path): |
|
inet_val_path = dl_manager.download(self._INET_VAL_URL) |
|
if not os.path.exists(inet_devkit_archive_path): |
|
inet_devkit_archive_path = dl_manager.download(self._INET_DEVKIT_URL) |
|
if not os.path.exists(noface_train_path): |
|
noface_train_path = dl_manager.download(self._NOFACE_TRAIN_URL) |
|
if not os.path.exists(noface_val_path): |
|
noface_val_path = dl_manager.download(self._NOFACE_VAL_URL) |
|
|
|
|
|
noface_train_extract_dir = noface_train_path + "_extracted" |
|
noface_val_extract_dir = noface_val_path + "_extracted" |
|
|
|
|
|
if not os.path.exists(noface_train_extract_dir): |
|
print( |
|
"Extracting noface training archive... This will take a while, but will make the overall process much faster. " |
|
"Do not worry if this takes a long time. Be patient, this is a one-time operation. In the future, this will be cached." |
|
) |
|
with tarfile.open(noface_train_path, "r:gz") as tar: |
|
tar.extractall(path=noface_train_extract_dir) |
|
print("Noface training extraction done.") |
|
|
|
|
|
if not os.path.exists(noface_val_extract_dir): |
|
print( |
|
"Extracting noface validation archive... This may take a while, but will make the overall process much faster. " |
|
"Do not worry if this takes a long time. Be patient, this is a one-time operation. In the future, this will be cached." |
|
) |
|
with tarfile.open(noface_val_path, "r:gz") as tar: |
|
tar.extractall(path=noface_val_extract_dir) |
|
print("Noface alidation extraction done.") |
|
|
|
return self._return_generated_splits( |
|
inet_train_path, |
|
inet_val_path, |
|
inet_devkit_archive_path, |
|
noface_train_extract_dir, |
|
noface_val_extract_dir, |
|
) |
|
|
|
def _generate_examples(self, archive_path, split, devkit_archive=None): |
|
config_name = self.config.name |
|
|
|
|
|
if config_name == "1k": |
|
return self._generate_full_imagenet( |
|
archive_path, split, devkit_archive=devkit_archive |
|
) |
|
elif config_name == "100": |
|
return self._generate_nonblur_subset( |
|
archive_path, |
|
split, |
|
wnid_list=self._inet100_class_names(), |
|
devkit_archive=devkit_archive, |
|
) |
|
elif config_name == "mini": |
|
return self._generate_nonblur_subset( |
|
archive_path, |
|
split, |
|
wnid_list=self._inet_mini_class_names(), |
|
devkit_archive=devkit_archive, |
|
) |
|
elif config_name == "10": |
|
return self._generate_nonblur_subset( |
|
archive_path, |
|
split, |
|
wnid_list=self._imagenette_class_names(), |
|
devkit_archive=devkit_archive, |
|
) |
|
elif config_name == "noface-1k": |
|
train_metadata = "https://huggingface.co/datasets/randall-lab/face-obfuscated-imagenet/resolve/main/metadata/noface_1k/train.txt" |
|
val_metadata = "https://huggingface.co/datasets/randall-lab/face-obfuscated-imagenet/resolve/main/metadata/noface_1k/val.txt" |
|
return self._generate_noface( |
|
archive_path, split, train_metadata, val_metadata |
|
) |
|
elif config_name == "noface-100": |
|
train_metadata = "https://huggingface.co/datasets/randall-lab/face-obfuscated-imagenet/resolve/main/metadata/noface_100/train.txt" |
|
val_metadata = "https://huggingface.co/datasets/randall-lab/face-obfuscated-imagenet/resolve/main/metadata/noface_100/val.txt" |
|
return self._generate_noface( |
|
archive_path, split, train_metadata, val_metadata |
|
) |
|
elif config_name == "noface-10": |
|
train_metadata = "https://huggingface.co/datasets/randall-lab/face-obfuscated-imagenet/resolve/main/metadata/noface_10/train.txt" |
|
val_metadata = "https://huggingface.co/datasets/randall-lab/face-obfuscated-imagenet/resolve/main/metadata/noface_10/val.txt" |
|
return self._generate_noface( |
|
archive_path, split, train_metadata, val_metadata |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
else: |
|
raise ValueError( |
|
f"Unknown config name: {config_name}" |
|
) |
|
|
|
def _return_generated_splits( |
|
self, |
|
inet_train_path, |
|
inet_val_path, |
|
inet_devkit_path, |
|
noface_train_extract_dir, |
|
noface_val_extract_dir, |
|
): |
|
if self.config.name.startswith("noface"): |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"archive_path": noface_train_extract_dir, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"archive_path": noface_val_extract_dir, |
|
"split": "validation", |
|
}, |
|
), |
|
] |
|
else: |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"archive_path": inet_train_path, "split": "train"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"archive_path": inet_val_path, |
|
"split": "validation", |
|
"devkit_archive": inet_devkit_path, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_full_imagenet(self, archive_path, split, devkit_archive=None): |
|
if split == "train": |
|
|
|
with tarfile.open(archive_path, "r:*") as train_tar: |
|
|
|
sub_tar_members = [ |
|
m |
|
for m in train_tar.getmembers() |
|
if m.isfile() and m.name.endswith(".tar") |
|
] |
|
|
|
if not hasattr(self, "_mapping"): |
|
with urllib.request.urlopen(self._CLASS_INDEX_URL) as response: |
|
self._mapping = json.load(response) |
|
mapping = self._mapping |
|
|
|
wnid_to_label = {mapping[str(i)][0]: i for i in range(1000)} |
|
|
|
example_idx = 0 |
|
for m in sub_tar_members: |
|
|
|
wnid = os.path.splitext(m.name)[0] |
|
if wnid not in wnid_to_label: |
|
|
|
continue |
|
label = wnid_to_label[wnid] |
|
sub_tar_file = train_tar.extractfile(m) |
|
|
|
with tarfile.open(fileobj=sub_tar_file, mode="r:*") as sub_tar: |
|
for sub_m in sub_tar.getmembers(): |
|
if sub_m.isfile(): |
|
img_f = sub_tar.extractfile(sub_m) |
|
image_bytes = img_f.read() |
|
img = Image.open(io.BytesIO(image_bytes)) |
|
if img.mode != "RGB": |
|
img = img.convert("RGB") |
|
yield example_idx, { |
|
"image": img, |
|
"label": label, |
|
"is_one": False, |
|
"is_ten": False, |
|
} |
|
example_idx += 1 |
|
|
|
elif split == "validation": |
|
|
|
with tarfile.open(archive_path, "r:*") as val_tar: |
|
|
|
members = [m for m in val_tar.getmembers() if m.isfile()] |
|
|
|
members = sorted(members, key=lambda m: m.name) |
|
|
|
with tarfile.open(devkit_archive, "r:*") as devkit_tar: |
|
gt_member = None |
|
for m in devkit_tar.getmembers(): |
|
if m.name.endswith("ILSVRC2012_validation_ground_truth.txt"): |
|
gt_member = m |
|
break |
|
if gt_member is None: |
|
raise ValueError( |
|
"Could not find the ground truth file in the devkit archive." |
|
) |
|
gt_file = devkit_tar.extractfile(gt_member) |
|
gt_lines = gt_file.read().decode("utf-8").strip().splitlines() |
|
if len(gt_lines) != len(members): |
|
raise ValueError( |
|
"Mismatch between the number of validation images and ground truth labels." |
|
) |
|
for example_idx, (m, gt) in enumerate(zip(members, gt_lines)): |
|
|
|
label = int(gt) - 1 |
|
img_f = val_tar.extractfile(m) |
|
image_bytes = img_f.read() |
|
img = Image.open(io.BytesIO(image_bytes)) |
|
if img.mode != "RGB": |
|
img = img.convert("RGB") |
|
yield example_idx, { |
|
"image": img, |
|
"label": label, |
|
"is_one": False, |
|
"is_ten": False, |
|
} |
|
|
|
def _generate_nonblur_subset( |
|
self, archive_path, split, wnid_list, devkit_archive=None |
|
): |
|
wnid_to_new_label = {wnid: idx for idx, wnid in enumerate(wnid_list)} |
|
|
|
if split == "train": |
|
with tarfile.open(archive_path, "r:*") as train_tar: |
|
|
|
sub_tar_members = [ |
|
m |
|
for m in train_tar.getmembers() |
|
if m.isfile() and m.name.endswith(".tar") |
|
] |
|
example_idx = 0 |
|
for m in sub_tar_members: |
|
|
|
wnid = os.path.splitext(m.name)[0] |
|
|
|
if wnid not in wnid_to_new_label: |
|
continue |
|
new_label = wnid_to_new_label[wnid] |
|
sub_tar_file = train_tar.extractfile(m) |
|
|
|
with tarfile.open(fileobj=sub_tar_file, mode="r:*") as sub_tar: |
|
for sub_m in sub_tar.getmembers(): |
|
if sub_m.isfile(): |
|
img_f = sub_tar.extractfile(sub_m) |
|
image_bytes = img_f.read() |
|
img = Image.open(io.BytesIO(image_bytes)) |
|
if img.mode != "RGB": |
|
img = img.convert("RGB") |
|
yield example_idx, { |
|
"image": img, |
|
"label": new_label, |
|
"is_one": False, |
|
"is_ten": False, |
|
} |
|
example_idx += 1 |
|
|
|
elif split == "validation": |
|
|
|
with tarfile.open(archive_path, "r:*") as val_tar: |
|
members = [m for m in val_tar.getmembers() if m.isfile()] |
|
|
|
members = sorted(members, key=lambda m: m.name) |
|
|
|
with tarfile.open(devkit_archive, "r:*") as devkit_tar: |
|
gt_member = None |
|
for m in devkit_tar.getmembers(): |
|
if m.name.endswith("ILSVRC2012_validation_ground_truth.txt"): |
|
gt_member = m |
|
break |
|
if gt_member is None: |
|
raise ValueError( |
|
"Could not find the ground truth file in the devkit archive." |
|
) |
|
gt_file = devkit_tar.extractfile(gt_member) |
|
gt_lines = gt_file.read().decode("utf-8").strip().splitlines() |
|
|
|
|
|
with urllib.request.urlopen(self._CLASS_INDEX_URL) as response: |
|
full_mapping = json.load(response) |
|
|
|
idx_to_wnid = { |
|
int(key): value[0] for key, value in full_mapping.items() |
|
} |
|
|
|
example_idx = 0 |
|
|
|
for m, gt in zip(members, gt_lines): |
|
original_label = int(gt) - 1 |
|
wnid = idx_to_wnid.get(original_label) |
|
|
|
if wnid not in wnid_to_new_label: |
|
continue |
|
new_label = wnid_to_new_label[wnid] |
|
img_f = val_tar.extractfile(m) |
|
image_bytes = img_f.read() |
|
img = Image.open(io.BytesIO(image_bytes)) |
|
if img.mode != "RGB": |
|
img = img.convert("RGB") |
|
yield example_idx, { |
|
"image": img, |
|
"label": new_label, |
|
"is_one": False, |
|
"is_ten": False, |
|
} |
|
example_idx += 1 |
|
|
|
def _generate_noface(self, archive_path, split, train_txt_url, val_txt_url): |
|
def is_valid_file(path): |
|
return os.path.isfile(path) and os.path.getsize(path) > 0 |
|
|
|
num_failed = 0 |
|
|
|
if split == "train": |
|
with urllib.request.urlopen(train_txt_url) as f: |
|
train_ids = [line.decode("utf-8").strip() for line in f if line.strip()] |
|
|
|
if not hasattr(self, "_mapping"): |
|
with urllib.request.urlopen(self._CLASS_INDEX_URL) as response: |
|
self._mapping = json.load(response) |
|
|
|
wnid_to_label = { |
|
wnid: idx for idx, wnid in enumerate(self._get_class_names()) |
|
} |
|
|
|
valid_entries = [] |
|
for file_id in train_ids: |
|
|
|
|
|
parts = file_id.split("-") |
|
base_file_id = parts[0] |
|
is_one = parts[1] == "1" if len(parts) > 1 else False |
|
is_ten = parts[2] == "1" if len(parts) > 2 else False |
|
|
|
wnid = base_file_id.split("_")[0] |
|
img_name = base_file_id |
|
found = False |
|
for ext in [".JPEG", ".jpg"]: |
|
candidate_path = os.path.join( |
|
archive_path, "train_blurred", wnid, img_name + ext |
|
) |
|
if is_valid_file(candidate_path): |
|
valid_entries.append((candidate_path, wnid, is_one, is_ten)) |
|
found = True |
|
break |
|
if not found: |
|
num_failed += 1 |
|
|
|
print(f"[train] Skipped {num_failed} invalid or zero-byte files.") |
|
|
|
example_idx = 0 |
|
for img_path, wnid, is_one, is_ten in valid_entries: |
|
label = wnid_to_label[wnid] |
|
img = Image.open(img_path) |
|
if img.mode != "RGB": |
|
img = img.convert("RGB") |
|
|
|
yield example_idx, { |
|
"image": img, |
|
"label": label, |
|
"is_one": is_one, |
|
"is_ten": is_ten, |
|
} |
|
example_idx += 1 |
|
|
|
if split == "validation": |
|
with urllib.request.urlopen(val_txt_url) as f: |
|
val_ids = [line.decode("utf-8").strip() for line in f if line.strip()] |
|
|
|
if not hasattr(self, "_mapping"): |
|
with urllib.request.urlopen(self._CLASS_INDEX_URL) as response: |
|
self._mapping = json.load(response) |
|
|
|
wnid_to_label = { |
|
wnid: idx for idx, wnid in enumerate(self._get_class_names()) |
|
} |
|
|
|
valid_entries = [] |
|
for file_id in val_ids: |
|
wnid = file_id.split("_")[0] |
|
img_name = file_id[len(wnid) + 1 :] |
|
found = False |
|
for ext in [".JPEG", ".jpg"]: |
|
candidate_path = os.path.join( |
|
archive_path, "val_blurred", wnid, img_name + ext |
|
) |
|
if is_valid_file(candidate_path): |
|
valid_entries.append((candidate_path, wnid)) |
|
found = True |
|
break |
|
if not found: |
|
num_failed += 1 |
|
|
|
print(f"[validation] Skipped {num_failed} invalid or zero-byte files.") |
|
|
|
example_idx = 0 |
|
for img_path, wnid in valid_entries: |
|
label = wnid_to_label[wnid] |
|
img = Image.open(img_path) |
|
if img.mode != "RGB": |
|
img = img.convert("RGB") |
|
|
|
yield example_idx, { |
|
"image": img, |
|
"label": label, |
|
"is_one": False, |
|
"is_ten": False, |
|
} |
|
example_idx += 1 |
|
|
|
def _get_class_names(self): |
|
|
|
with urllib.request.urlopen(self._CLASS_INDEX_URL) as response: |
|
full_mapping = json.load(response) |
|
|
|
if self.config.name in {"1k", "noface-1k"}: |
|
return [full_mapping[str(i)][0] for i in range(1000)] |
|
|
|
if self.config.name in {"100", "noface-100"}: |
|
return self._inet100_class_names() |
|
elif self.config.name in {"10", "noface-10"}: |
|
return self._imagenette_class_names() |
|
elif self.config.name in {"mini"}: |
|
return self._inet_mini_class_names() |
|
else: |
|
raise ValueError(f"Unknown config name: {self.config.name}") |
|
|
|
|
|
return [f"{wnid}: {wnid_to_name.get(wnid, wnid)}" for wnid in wnid_list] |
|
|
|
@staticmethod |
|
def _inet100_class_names(): |
|
return [ |
|
"n02869837", |
|
"n01749939", |
|
"n02488291", |
|
"n02107142", |
|
"n13037406", |
|
"n02091831", |
|
"n04517823", |
|
"n04589890", |
|
"n03062245", |
|
"n01773797", |
|
"n01735189", |
|
"n07831146", |
|
"n07753275", |
|
"n03085013", |
|
"n04485082", |
|
"n02105505", |
|
"n01983481", |
|
"n02788148", |
|
"n03530642", |
|
"n04435653", |
|
"n02086910", |
|
"n02859443", |
|
"n13040303", |
|
"n03594734", |
|
"n02085620", |
|
"n02099849", |
|
"n01558993", |
|
"n04493381", |
|
"n02109047", |
|
"n04111531", |
|
"n02877765", |
|
"n04429376", |
|
"n02009229", |
|
"n01978455", |
|
"n02106550", |
|
"n01820546", |
|
"n01692333", |
|
"n07714571", |
|
"n02974003", |
|
"n02114855", |
|
"n03785016", |
|
"n03764736", |
|
"n03775546", |
|
"n02087046", |
|
"n07836838", |
|
"n04099969", |
|
"n04592741", |
|
"n03891251", |
|
"n02701002", |
|
"n03379051", |
|
"n02259212", |
|
"n07715103", |
|
"n03947888", |
|
"n04026417", |
|
"n02326432", |
|
"n03637318", |
|
"n01980166", |
|
"n02113799", |
|
"n02086240", |
|
"n03903868", |
|
"n02483362", |
|
"n04127249", |
|
"n02089973", |
|
"n03017168", |
|
"n02093428", |
|
"n02804414", |
|
"n02396427", |
|
"n04418357", |
|
"n02172182", |
|
"n01729322", |
|
"n02113978", |
|
"n03787032", |
|
"n02089867", |
|
"n02119022", |
|
"n03777754", |
|
"n04238763", |
|
"n02231487", |
|
"n03032252", |
|
"n02138441", |
|
"n02104029", |
|
"n03837869", |
|
"n03494278", |
|
"n04136333", |
|
"n03794056", |
|
"n03492542", |
|
"n02018207", |
|
"n04067472", |
|
"n03930630", |
|
"n03584829", |
|
"n02123045", |
|
"n04229816", |
|
"n02100583", |
|
"n03642806", |
|
"n04336792", |
|
"n03259280", |
|
"n02116738", |
|
"n02108089", |
|
"n03424325", |
|
"n01855672", |
|
"n02090622", |
|
] |
|
|
|
@staticmethod |
|
def _inet_mini_class_names(): |
|
return [ |
|
"n01532829", |
|
"n01558993", |
|
"n01704323", |
|
"n01749939", |
|
"n01770081", |
|
"n01843383", |
|
"n01855672", |
|
"n01910747", |
|
"n01930112", |
|
"n01981276", |
|
"n02074367", |
|
"n02089867", |
|
"n02091244", |
|
"n02091831", |
|
"n02099601", |
|
"n02101006", |
|
"n02105505", |
|
"n02108089", |
|
"n02108551", |
|
"n02108915", |
|
"n02110063", |
|
"n02110341", |
|
"n02111277", |
|
"n02113712", |
|
"n02114548", |
|
"n02116738", |
|
"n02120079", |
|
"n02129165", |
|
"n02138441", |
|
"n02165456", |
|
"n02174001", |
|
"n02219486", |
|
"n02443484", |
|
"n02457408", |
|
"n02606052", |
|
"n02687172", |
|
"n02747177", |
|
"n02795169", |
|
"n02823428", |
|
"n02871525", |
|
"n02950826", |
|
"n02966193", |
|
"n02971356", |
|
"n02981792", |
|
"n03017168", |
|
"n03047690", |
|
"n03062245", |
|
"n03075370", |
|
"n03127925", |
|
"n03146219", |
|
"n03207743", |
|
"n03220513", |
|
"n03272010", |
|
"n03337140", |
|
"n03347037", |
|
"n03400231", |
|
"n03417042", |
|
"n03476684", |
|
"n03527444", |
|
"n03535780", |
|
"n03544143", |
|
"n03584254", |
|
"n03676483", |
|
"n03770439", |
|
"n03773504", |
|
"n03775546", |
|
"n03838899", |
|
"n03854065", |
|
"n03888605", |
|
"n03908618", |
|
"n03924679", |
|
"n03980874", |
|
"n03998194", |
|
"n04067472", |
|
"n04146614", |
|
"n04149813", |
|
"n04243546", |
|
"n04251144", |
|
"n04258138", |
|
"n04275548", |
|
"n04296562", |
|
"n04389033", |
|
"n04418357", |
|
"n04435653", |
|
"n04443257", |
|
"n04509417", |
|
"n04515003", |
|
"n04522168", |
|
"n04596742", |
|
"n04604644", |
|
"n04612504", |
|
"n06794110", |
|
"n07584110", |
|
"n07613480", |
|
"n07697537", |
|
"n07747607", |
|
"n09246464", |
|
"n09256479", |
|
"n13054560", |
|
"n13133613", |
|
] |
|
|
|
@staticmethod |
|
def _imagenette_class_names(): |
|
return [ |
|
"n01440764", |
|
"n02102040", |
|
"n02979186", |
|
"n03000684", |
|
"n03028079", |
|
"n03394916", |
|
"n03417042", |
|
"n03425413", |
|
"n03445777", |
|
"n03888257", |
|
] |
|
|