ianhajra commited on
Commit
ee49f1c
·
verified ·
1 Parent(s): 218cdb3

Support is_one and is_ten for noface-inet

Browse files
Files changed (1) hide show
  1. face-obfuscated-imagenet.py +44 -21
face-obfuscated-imagenet.py CHANGED
@@ -135,6 +135,8 @@ class FaceObfuscatedImagenet(datasets.GeneratorBasedBuilder):
135
  {
136
  "image": datasets.Image(),
137
  "label": datasets.ClassLabel(names=formatted_class_names),
 
 
138
  }
139
  ),
140
  supervised_keys=("image", "label"), # type: ignore
@@ -149,8 +151,10 @@ class FaceObfuscatedImagenet(datasets.GeneratorBasedBuilder):
149
 
150
  def _split_generators(self, dl_manager):
151
  if dl_manager.is_streaming:
152
- raise NotImplementedError("Streaming is not yet supported for this dataset.")
153
-
 
 
154
  # cache location for the dataset downloads
155
  inet_train_path = (
156
  "/gpfs/data/shared/imagenet/ILSVRC2012/ILSVRC2012_img_train.tar"
@@ -347,6 +351,8 @@ class FaceObfuscatedImagenet(datasets.GeneratorBasedBuilder):
347
  yield example_idx, {
348
  "image": img,
349
  "label": label,
 
 
350
  }
351
  example_idx += 1
352
 
@@ -385,6 +391,8 @@ class FaceObfuscatedImagenet(datasets.GeneratorBasedBuilder):
385
  yield example_idx, {
386
  "image": img,
387
  "label": label,
 
 
388
  }
389
 
390
  def _generate_nonblur_subset(
@@ -421,6 +429,8 @@ class FaceObfuscatedImagenet(datasets.GeneratorBasedBuilder):
421
  yield example_idx, {
422
  "image": img,
423
  "label": new_label,
 
 
424
  }
425
  example_idx += 1
426
 
@@ -469,70 +479,81 @@ class FaceObfuscatedImagenet(datasets.GeneratorBasedBuilder):
469
  yield example_idx, {
470
  "image": img,
471
  "label": new_label,
 
 
472
  }
473
  example_idx += 1
474
 
475
  def _generate_noface(self, archive_path, split, train_txt_url, val_txt_url):
476
  def is_valid_file(path):
477
  return os.path.isfile(path) and os.path.getsize(path) > 0
478
-
479
  num_failed = 0
480
-
481
  if split == "train":
482
  with urllib.request.urlopen(train_txt_url) as f:
483
  train_ids = [line.decode("utf-8").strip() for line in f if line.strip()]
484
-
485
  if not hasattr(self, "_mapping"):
486
  with urllib.request.urlopen(self._CLASS_INDEX_URL) as response:
487
  self._mapping = json.load(response)
488
-
489
  wnid_to_label = {
490
  wnid: idx for idx, wnid in enumerate(self._get_class_names())
491
  }
492
-
493
  valid_entries = []
494
  for file_id in train_ids:
495
- wnid = file_id.split("_")[0]
496
- img_name = file_id
 
 
 
 
 
 
 
497
  found = False
498
  for ext in [".JPEG", ".jpg"]:
499
  candidate_path = os.path.join(
500
  archive_path, "train_blurred", wnid, img_name + ext
501
  )
502
  if is_valid_file(candidate_path):
503
- valid_entries.append((candidate_path, wnid))
504
  found = True
505
  break
506
  if not found:
507
  num_failed += 1
508
-
509
  print(f"[train] Skipped {num_failed} invalid or zero-byte files.")
510
-
511
  example_idx = 0
512
- for img_path, wnid in valid_entries:
513
  label = wnid_to_label[wnid]
514
  img = Image.open(img_path)
515
  if img.mode != "RGB":
516
  img = img.convert("RGB")
517
-
518
  yield example_idx, {
519
  "image": img,
520
  "label": label,
 
 
521
  }
522
  example_idx += 1
523
-
524
  if split == "validation":
525
  with urllib.request.urlopen(val_txt_url) as f:
526
  val_ids = [line.decode("utf-8").strip() for line in f if line.strip()]
527
-
528
  if not hasattr(self, "_mapping"):
529
  with urllib.request.urlopen(self._CLASS_INDEX_URL) as response:
530
  self._mapping = json.load(response)
531
-
532
  wnid_to_label = {
533
  wnid: idx for idx, wnid in enumerate(self._get_class_names())
534
  }
535
-
536
  valid_entries = []
537
  for file_id in val_ids:
538
  wnid = file_id.split("_")[0]
@@ -548,19 +569,21 @@ class FaceObfuscatedImagenet(datasets.GeneratorBasedBuilder):
548
  break
549
  if not found:
550
  num_failed += 1
551
-
552
  print(f"[validation] Skipped {num_failed} invalid or zero-byte files.")
553
-
554
  example_idx = 0
555
  for img_path, wnid in valid_entries:
556
  label = wnid_to_label[wnid]
557
  img = Image.open(img_path)
558
  if img.mode != "RGB":
559
  img = img.convert("RGB")
560
-
561
  yield example_idx, {
562
  "image": img,
563
  "label": label,
 
 
564
  }
565
  example_idx += 1
566
 
 
135
  {
136
  "image": datasets.Image(),
137
  "label": datasets.ClassLabel(names=formatted_class_names),
138
+ "is_one": datasets.Value("bool"),
139
+ "is_ten": datasets.Value("bool"),
140
  }
141
  ),
142
  supervised_keys=("image", "label"), # type: ignore
 
151
 
152
  def _split_generators(self, dl_manager):
153
  if dl_manager.is_streaming:
154
+ raise NotImplementedError(
155
+ "Streaming is not yet supported for this dataset."
156
+ )
157
+
158
  # cache location for the dataset downloads
159
  inet_train_path = (
160
  "/gpfs/data/shared/imagenet/ILSVRC2012/ILSVRC2012_img_train.tar"
 
351
  yield example_idx, {
352
  "image": img,
353
  "label": label,
354
+ "is_one": False,
355
+ "is_ten": False,
356
  }
357
  example_idx += 1
358
 
 
391
  yield example_idx, {
392
  "image": img,
393
  "label": label,
394
+ "is_one": False,
395
+ "is_ten": False,
396
  }
397
 
398
  def _generate_nonblur_subset(
 
429
  yield example_idx, {
430
  "image": img,
431
  "label": new_label,
432
+ "is_one": False,
433
+ "is_ten": False,
434
  }
435
  example_idx += 1
436
 
 
479
  yield example_idx, {
480
  "image": img,
481
  "label": new_label,
482
+ "is_one": False,
483
+ "is_ten": False,
484
  }
485
  example_idx += 1
486
 
487
  def _generate_noface(self, archive_path, split, train_txt_url, val_txt_url):
488
  def is_valid_file(path):
489
  return os.path.isfile(path) and os.path.getsize(path) > 0
490
+
491
  num_failed = 0
492
+
493
  if split == "train":
494
  with urllib.request.urlopen(train_txt_url) as f:
495
  train_ids = [line.decode("utf-8").strip() for line in f if line.strip()]
496
+
497
  if not hasattr(self, "_mapping"):
498
  with urllib.request.urlopen(self._CLASS_INDEX_URL) as response:
499
  self._mapping = json.load(response)
500
+
501
  wnid_to_label = {
502
  wnid: idx for idx, wnid in enumerate(self._get_class_names())
503
  }
504
+
505
  valid_entries = []
506
  for file_id in train_ids:
507
+ # inputs are like n01440764_2708-0-0
508
+ # Split to get all parts: ["n01440764_2708", "0", "0"]
509
+ parts = file_id.split("-")
510
+ base_file_id = parts[0] # "n01440764_2708"
511
+ is_one = parts[1] == "1" if len(parts) > 1 else False
512
+ is_ten = parts[2] == "1" if len(parts) > 2 else False
513
+
514
+ wnid = base_file_id.split("_")[0]
515
+ img_name = base_file_id
516
  found = False
517
  for ext in [".JPEG", ".jpg"]:
518
  candidate_path = os.path.join(
519
  archive_path, "train_blurred", wnid, img_name + ext
520
  )
521
  if is_valid_file(candidate_path):
522
+ valid_entries.append((candidate_path, wnid, is_one, is_ten))
523
  found = True
524
  break
525
  if not found:
526
  num_failed += 1
527
+
528
  print(f"[train] Skipped {num_failed} invalid or zero-byte files.")
529
+
530
  example_idx = 0
531
+ for img_path, wnid, is_one, is_ten in valid_entries:
532
  label = wnid_to_label[wnid]
533
  img = Image.open(img_path)
534
  if img.mode != "RGB":
535
  img = img.convert("RGB")
536
+
537
  yield example_idx, {
538
  "image": img,
539
  "label": label,
540
+ "is_one": is_one,
541
+ "is_ten": is_ten,
542
  }
543
  example_idx += 1
544
+
545
  if split == "validation":
546
  with urllib.request.urlopen(val_txt_url) as f:
547
  val_ids = [line.decode("utf-8").strip() for line in f if line.strip()]
548
+
549
  if not hasattr(self, "_mapping"):
550
  with urllib.request.urlopen(self._CLASS_INDEX_URL) as response:
551
  self._mapping = json.load(response)
552
+
553
  wnid_to_label = {
554
  wnid: idx for idx, wnid in enumerate(self._get_class_names())
555
  }
556
+
557
  valid_entries = []
558
  for file_id in val_ids:
559
  wnid = file_id.split("_")[0]
 
569
  break
570
  if not found:
571
  num_failed += 1
572
+
573
  print(f"[validation] Skipped {num_failed} invalid or zero-byte files.")
574
+
575
  example_idx = 0
576
  for img_path, wnid in valid_entries:
577
  label = wnid_to_label[wnid]
578
  img = Image.open(img_path)
579
  if img.mode != "RGB":
580
  img = img.convert("RGB")
581
+
582
  yield example_idx, {
583
  "image": img,
584
  "label": label,
585
+ "is_one": False,
586
+ "is_ten": False,
587
  }
588
  example_idx += 1
589