Dataset Viewer
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowInvalid
Message:      Schema at index 1 was different: 
episode_index: int64
task_index: int64
start_frame: int64
end_frame: int64
num_frames: int64
duration: double
video_path: string
split: string
vs
episode_index: int64
stats: struct<action: struct<min: list<item: double>, max: list<item: double>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, observation.state: struct<min: list<item: double>, max: list<item: double>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, observation.images.main: struct<min: list<item: list<item: double>>, max: list<item: list<item: double>>, mean: list<item: list<item: double>>, std: list<item: list<item: double>>, count: list<item: int64>>, timestamp: struct<min: double, max: double, mean: double, std: double, count: list<item: int64>>, frame_index: struct<min: int64, max: int64, mean: double, std: double, count: list<item: int64>>, episode_index: struct<min: int64, max: int64, mean: double, std: double, count: list<item: int64>>, index: struct<min: int64, max: int64, mean: double, std: double, count: list<item: int64>>, task_index: struct<min: int64, max: int64, mean: double, std: double, count: list<item: int64>>>
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 228, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 3422, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2187, in _head
                  return next(iter(self.iter(batch_size=n)))
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2391, in iter
                  for key, example in iterator:
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1882, in __iter__
                  for key, pa_table in self._iter_arrow():
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1904, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 559, in _iter_arrow
                  yield new_key, pa.Table.from_batches(chunks_buffer)
                File "pyarrow/table.pxi", line 4116, in pyarrow.lib.Table.from_batches
                File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: Schema at index 1 was different: 
              episode_index: int64
              task_index: int64
              start_frame: int64
              end_frame: int64
              num_frames: int64
              duration: double
              video_path: string
              split: string
              vs
              episode_index: int64
              stats: struct<action: struct<min: list<item: double>, max: list<item: double>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, observation.state: struct<min: list<item: double>, max: list<item: double>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, observation.images.main: struct<min: list<item: list<item: double>>, max: list<item: list<item: double>>, mean: list<item: list<item: double>>, std: list<item: list<item: double>>, count: list<item: int64>>, timestamp: struct<min: double, max: double, mean: double, std: double, count: list<item: int64>>, frame_index: struct<min: int64, max: int64, mean: double, std: double, count: list<item: int64>>, episode_index: struct<min: int64, max: int64, mean: double, std: double, count: list<item: int64>>, index: struct<min: int64, max: int64, mean: double, std: double, count: list<item: int64>>, task_index: struct<min: int64, max: int64, mean: double, std: double, count: list<item: int64>>>

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

YAML Metadata Warning: The task_ids "robotics-manipulation" is not in the official list: acceptability-classification, entity-linking-classification, fact-checking, intent-classification, language-identification, multi-class-classification, multi-label-classification, multi-input-text-classification, natural-language-inference, semantic-similarity-classification, sentiment-classification, topic-classification, semantic-similarity-scoring, sentiment-scoring, sentiment-analysis, hate-speech-detection, text-scoring, named-entity-recognition, part-of-speech, parsing, lemmatization, word-sense-disambiguation, coreference-resolution, extractive-qa, open-domain-qa, closed-domain-qa, news-articles-summarization, news-articles-headline-generation, dialogue-modeling, dialogue-generation, conversational, language-modeling, text-simplification, explanation-generation, abstractive-qa, open-domain-abstractive-qa, closed-domain-qa, open-book-qa, closed-book-qa, text2text-generation, slot-filling, masked-language-modeling, keyword-spotting, speaker-identification, audio-intent-classification, audio-emotion-recognition, audio-language-identification, multi-label-image-classification, multi-class-image-classification, face-detection, vehicle-detection, instance-segmentation, semantic-segmentation, panoptic-segmentation, image-captioning, image-inpainting, image-colorization, super-resolution, grasping, task-planning, tabular-multi-class-classification, tabular-multi-label-classification, tabular-single-column-regression, rdf-to-text, multiple-choice-qa, multiple-choice-coreference-resolution, document-retrieval, utterance-retrieval, entity-linking-retrieval, fact-checking-retrieval, univariate-time-series-forecasting, multivariate-time-series-forecasting, visual-question-answering, document-question-answering, pose-estimation

Dataset Card for so100 Teleop Dataset

Dataset Summary

This dataset contains teleoperation data for so100 robot manipulation tasks. The dataset includes:

  • Videos: RGB video recordings of robot manipulation
  • Joint States: Per-frame joint angle data
  • Actions: Robot joint actions derived from state differences
  • Metadata: Episode and frame indexing information

Supported Tasks and Leaderboards

This dataset is designed for robot imitation learning and manipulation tasks.

Languages

The dataset contains English language metadata.

Dataset Structure

Data Instances

Each episode contains:

  • Video frames at 24.0 FPS
  • Joint state data for 6 joints
  • Action data for robot control
  • Timestamp information
  • Episode and frame indexing

Data Fields

  • observation.state: Joint angle data (float32, shape: [6])
  • action: Robot joint actions (float32, shape: [6])
  • observation.images.main: RGB video data (video, shape: [704, 1280, 3])
  • frame_index: Frame index within episode (int64)
  • episode_index: Episode identifier (int64)
  • index: Global frame index (int64)
  • task_index: Task identifier (int64)
  • timestamp: Time from episode start (float32)
  • next.done: Episode termination flag (bool)

Data Splits

  • Train: 348 frames across 1 episode

Dataset Creation

Source Data

Initial Data Collection and Normalization

The dataset was created from teleoperation recordings of so100 robot manipulation tasks.

Who are the source language producers?

[Add information about data collection process]

Annotations

Annotation process

[Add information about annotation process if applicable]

Who are the annotators?

[Add information about annotators if applicable]

Personal and Sensitive Information

[Add information about personal/sensitive data handling]

Additional Information

Dataset Curators

[Add curator information]

Licensing Information

This dataset is licensed under the MIT License.

Citation Information

@dataset{so100_teleop_dataset,
  title = {so100 Teleop Dataset},
  author = {[Add author information]},
  year = {2024},
  url = {[Add dataset URL]}
}

Contributions

[Add contribution information]

Contact

[Add contact information]

Downloads last month
14