Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code:   DatasetGenerationError
Exception:    ArrowInvalid
Message:      Failed to parse string: 'zinc_finger' as a scalar of type double
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1831, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 644, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2272, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2223, in cast_table_to_schema
                  arrays = [
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2224, in <listcomp>
                  cast_array_to_feature(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1795, in wrapper
                  return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1795, in <listcomp>
                  return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2086, in cast_array_to_feature
                  return array_cast(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1797, in wrapper
                  return func(array, *args, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1949, in array_cast
                  return array.cast(pa_type)
                File "pyarrow/array.pxi", line 996, in pyarrow.lib.Array.cast
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pyarrow/compute.py", line 404, in cast
                  return call_function("cast", [arr], options, memory_pool)
                File "pyarrow/_compute.pyx", line 590, in pyarrow._compute.call_function
                File "pyarrow/_compute.pyx", line 385, in pyarrow._compute.Function.call
                File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: Failed to parse string: 'zinc_finger' as a scalar of type double
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1438, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1055, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 894, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 970, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1702, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1858, in _prepare_split_single
                  raise DatasetGenerationError("An error occurred while generating the dataset") from e
              datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

Type
string
DatasetName
null
AID
int64
ID
int64
IDType
string
SMILES
string
Absorbance
null
720,541
403
CID
Nc1ccc(O)cc1
Absorbance
null
720,541
2,794
CID
CC(C)N=c1cc2n(-c3ccc(Cl)cc3)c3ccccc3nc-2cc1Nc1ccc(Cl)cc1
Absorbance
null
720,541
3,468
CID
CN(C)c1ccc(C(=C2C=CC(=[N+](C)C)C=C2)c2ccc(N(C)C)cc2)cc1
Absorbance
null
720,541
4,485
CID
COC(=O)C1=C(C)NC(C)=C(C(=O)OC)C1c1ccccc1[N+](=O)[O-]
Absorbance
null
720,541
5,291
CID
Cc1ccc(NC(=O)c2ccc(CN3CCN(C)CC3)cc2)cc1Nc1nccc(-c2cccnc2)n1
Absorbance
null
720,541
6,053
CID
CN(C)c1ccc(N=Nc2ccccc2)cc1
Absorbance
null
720,541
6,706
CID
CNc1cccc2c1C(=O)c1ccccc1C2=O
Absorbance
null
720,541
7,589
CID
CCC(C)Nc1ccc(NC(C)CC)cc1
Absorbance
null
720,541
9,305
CID
N[C@@H](Cc1cc(I)c(O)c(I)c1)C(=O)O
Absorbance
null
720,541
14,749
CID
Cc1c(C(=O)O)c(O)cc2c1C(=O)c1c(O)c([C@H]3O[C@H](CO)[C@@H](O)[C@H](O)[C@H]3O)c(O)c(O)c1C2=O
Absorbance
null
720,541
16,414
CID
CN(C)CCCN1c2ccc(O)cc2Sc2ccc(Cl)cc21
Absorbance
null
720,541
16,888
CID
CCN(Cc1cccc(S(=O)(=O)O)c1)c1ccc(C(=C2C=CC(=[N+](CC)Cc3cccc(S(=O)(=O)O)c3)C=C2)c2ccc(O)cc2S(=O)(=O)O)cc1
Absorbance
null
720,541
21,796
CID
COc1ccccc1N1CCN(CCc2c[nH]c3cc4c(cc23)OCO4)CC1.O=C(O)C(O)C(O)C(=O)O
Absorbance
null
720,541
26,248
CID
CC(=O)Oc1cccc2c1C(=O)c1c(OC(C)=O)cc(C(=O)O)cc1C2=O
Absorbance
null
720,541
61,336
CID
CC1(C)Nc2cccc3c(N=Nc4ccc(N=Nc5ccccc5)c5ccccc45)ccc(c23)N1
Absorbance
null
720,541
63,204
CID
O=c1nc(-c2ccccc2)c2cc(Cl)ccc2[nH]1
Absorbance
null
720,541
67,954
CID
CN(C)c1ccc(C=C2C=Cc3ccccc32)cc1
Absorbance
null
720,541
68,939
CID
[O-][S+](c1cc(Cl)cc(Cl)c1O)c1cc(Cl)cc(Cl)c1O
Absorbance
null
720,541
81,124
CID
O=C1C=C(Nc2ccccc2)C(=O)c2ccccc21
Absorbance
null
720,541
83,650
CID
O=C1c2cccc(Sc3ccccc3)c2C(=O)c2c(Sc3ccccc3)cccc21
Absorbance
null
720,541
86,911
CID
CN(C)c1ccc(N=Nc2ccnc3ccccc23)cc1
Absorbance
null
720,541
95,307
CID
O=C(O)c1ccccc1NC(c1ccccc1)c1ccc2cccnc2c1O
Absorbance
null
720,541
115,824
CID
Oc1ccccc1C=NC1CCCCC1N=Cc1ccccc1O
Absorbance
null
720,541
124,496
CID
CN(C)CCNc1ccc2nnn3c4ccc(O)cc4c(=O)c1c23
Absorbance
null
720,541
159,917
CID
COc1cc(C=NO)nc(-c2ccccn2)c1
Absorbance
null
720,541
224,068
CID
CN(C)c1ccc(C=C2c3ccccc3-c3ccccc32)cc1
Absorbance
null
720,541
246,666
CID
Nc1ccc2c(c1Cl)C(=O)c1ccc(N)c(Cl)c1C2=O
Absorbance
null
720,541
256,073
CID
O=C(Cc1ccccc1)c1ccccn1
Absorbance
null
720,541
260,550
CID
CNc1ccc(C=C2c3ccccc3-c3ccccc32)cc1
Absorbance
null
720,541
267,862
CID
CN(C)c1ccc2c(c1)C(=NO)c1ccccc1-2
Absorbance
null
720,541
273,436
CID
CC(=O)Oc1cccc2c1C(=O)C1CC=CC(OC(C)=O)C1C2=O
Absorbance
null
720,541
274,127
CID
O=C(O)CCc1c2ccc(=O)c(O)c-2oc2c(O)c(O)ccc12
Absorbance
null
720,541
274,337
CID
OCCN(Cc1cccnc1)Cc1ccccn1
Absorbance
null
720,541
277,054
CID
COc1cc2c(cc1N)-c1ccc(N)cc1C2=O
Absorbance
null
720,541
278,037
CID
O=C(O)c1ccccc1-c1ccccc1C(=O)Nc1ccc2c(c1)[nH]c(=O)c1ccccc12
Absorbance
null
720,541
278,718
CID
O=C(O)c1ccccc1-c1ccccc1C(=O)Nc1ccc2oc(=O)c3ccccc3c2c1
Absorbance
null
720,541
279,589
CID
COc1cc(N(C(C)=O)c2ccc(O)c(C(=O)O)c2)c2ncccc2c1
Absorbance
null
720,541
283,447
CID
CC1=CC(=O)Nc2ncccc2O1
Absorbance
null
720,541
291,365
CID
O=C1c2ccccc2C(=O)c2c(Nc3ccc(CCO)cc3)ccc(O)c21
Absorbance
null
720,541
296,003
CID
O=c1oc(-c2ccco2)nc2ccccc12
Absorbance
null
720,541
320,334
CID
COc1ccc(-c2c(N)cnc(C(=O)O)c2C)c(OCc2ccccc2)c1OC
Absorbance
null
720,541
328,145
CID
CN(C)c1ccc(Sc2ccc3nc(N)nc(N)c3c2)cc1
Absorbance
null
720,541
330,973
CID
C=C1C(=O)O[C@@H]2C[C@@H](C)[C@@H]3C=CC(=O)[C@@]3(C)[C@@H](OC(=O)CC(=O)O[C@H]3[C@@H]4C(=C)C(=O)O[C@@H]4C[C@@H](C)[C@@H]4C=CC(=O)[C@]43C)[C@H]12
Absorbance
null
720,541
371,509
CID
CN(C)CCNc1ccc2ncn3c4ccc(O)cc4c(=O)c1c23
Absorbance
null
720,541
378,196
CID
O=C1C=CC(=O)c2c(O)c(N3CCN(CCOCCO)CC3)c(Br)c(O)c21
Absorbance
null
720,541
396,090
CID
O=c1c2ccccc2oc2nc3n(c(=O)c12)CCCS3
Absorbance
null
720,541
565,801
CID
NNC(=O)c1nc[nH]c1C(=O)Nc1ccccn1
Absorbance
null
720,541
584,972
CID
CCOC(=O)c1ncccc1NC(=O)CC(=O)Nc1cccnc1C(=O)OCC
Absorbance
null
720,541
631,429
CID
CN(C1=C(N2CCCCC2)C(=O)c2ccccc2C1=O)c1ccccc1
Absorbance
null
720,541
636,397
CID
COc1cccc2c1C(=O)c1c(O)c3c(c(O)c1C2=O)C[C@@](O)(C(=O)CO)C[C@@H]3O[C@H]1C[C@H](N)[C@H](O[C@H]2CCCCO2)[C@H](C)O1
Absorbance
null
720,541
654,122
CID
COc1ccc(OC)c(Nc2nc(-c3sc(N)nc3C)cs2)c1
Absorbance
null
720,541
655,444
CID
COc1cc(NC(=O)c2cccs2)c(OC)cc1NC(=O)CCn1nnc2ccccc21
Absorbance
null
720,541
662,304
CID
COc1ccc(CCn2c(=N)c(C(=O)NCc3ccco3)cc3c(=O)n4ccccc4nc32)cc1OC
Absorbance
null
720,541
665,043
CID
CSc1nc(NCCOCCO)c2sc3nc(-c4ccco4)c4c(c3c2n1)CCC4
Absorbance
null
720,541
688,489
CID
N[C@@H](Cc1cnc[nH]1)C(=O)Nc1ccc2ccccc2c1
Absorbance
null
720,541
691,744
CID
COc1ccc(C(=O)Nc2nnc(-c3ccccc3)o2)cc1OC
Absorbance
null
720,541
697,303
CID
Cc1nc2ncccn2c1-c1csc(Nc2ccccc2)n1
Absorbance
null
720,541
700,996
CID
N#Cc1c(N)n(-c2cccc(C(=O)O)c2)c2nc3ccccc3nc12
Absorbance
null
720,541
701,172
CID
Oc1c(Cl)cc(CN2CCOCC2)c2cccnc12
Absorbance
null
720,541
701,842
CID
O=C(/C=C/c1ccccc1)Oc1cccc2cccnc12
Absorbance
null
720,541
705,209
CID
N#Cc1c(N)n(-c2ccc(C(=O)O)cc2)c2nc3ccccc3nc12
Absorbance
null
720,541
706,057
CID
Cc1sc2nc3ccc(N4CCCCC4)nn3c(=O)c2c1C
Absorbance
null
720,541
709,605
CID
CC(C)c1ccc2oc(-c3ccc(NC(=O)c4ncn[nH]4)cc3)nc2c1
Absorbance
null
720,541
711,946
CID
CCc1ccc2nc3nc(C)cc(C)c3c(N)c2c1
Absorbance
null
720,541
721,647
CID
CCOC(=O)c1cnc2c(C#N)cnn2c1N
Absorbance
null
720,541
741,311
CID
O=c1c(CO)cc(CO)cc(CO)c1O
Absorbance
null
720,541
751,394
CID
Cc1cccc(C)c1Nc1c(-c2ccccn2)nc2ccccn12
Absorbance
null
720,541
767,585
CID
O=c1nc2c(O)cccn2c2c1c(=O)[nH]c1ccccc12
Absorbance
null
720,541
774,142
CID
O=C(O)c1ccc2nc(-c3ccco3)c(-c3ccco3)nc2c1
Absorbance
null
720,541
776,361
CID
CCNc1ccc2noc3c2c1C(=O)c1ccccc1-3
Absorbance
null
720,541
778,948
CID
O=C(/C=C/c1ccco1)Oc1cccc2cccnc12
Absorbance
null
720,541
784,642
CID
O=C(Nc1ccc(F)cc1)c1nc[nH]c1C(=O)O
Absorbance
null
720,541
788,569
CID
CC(=O)Nc1ccc(S(=O)(=O)Nc2cccc3cccnc23)cc1
Absorbance
null
720,541
795,616
CID
CC(=O)c1ccc(OC(=O)/C=C/c2ccccc2)cc1
Absorbance
null
720,541
817,320
CID
Cc1cccc(NC(=S)NC(=O)c2ccco2)n1
Absorbance
null
720,541
817,337
CID
CCN(CC)c1ccc(NC(=S)NC(=O)c2cccs2)cc1
Absorbance
null
720,541
823,571
CID
Cc1ccc(NC(=O)c2[nH]cnc2C(=O)NN)cc1
Absorbance
null
720,541
824,040
CID
O=C(Nc1cccc(O)c1)c1cccc(C(=O)Nc2cccc(O)c2)c1
Absorbance
null
720,541
828,102
CID
COC(=O)c1cc2c(ccc3ccccc32)oc1=O
Absorbance
null
720,541
829,849
CID
COc1ccc(/C=C(/C#N)C(=O)Nc2ccc(O)cc2)cc1C(=O)O
Absorbance
null
720,541
838,386
CID
CN(C)c1ccc(N=c2sc3ccccc3n2C)cc1
Absorbance
null
720,541
841,628
CID
NC(=O)c1c(NC(=O)c2cnccn2)sc2c1CCCC2
Absorbance
null
720,541
844,733
CID
Cn1nc([N+](=O)[O-])nc1Sc1cccc2cccnc12
Absorbance
null
720,541
848,481
CID
Cc1cn2c(nc(=O)c3cccnc32)s1
Absorbance
null
720,541
852,940
CID
CCc1cc2c(=O)[nH]c(-c3ccccn3)nc2s1
Absorbance
null
720,541
866,317
CID
O=C(NC1CC1)c1ccc2nc(-c3ccco3)c(-c3ccco3)nc2c1
Absorbance
null
720,541
877,413
CID
Cc1ccc(NC(=O)CSc2cccc3cccnc23)c(C)c1
Absorbance
null
720,541
878,844
CID
Nc1[nH]nc2ncc3cc4ccccc4nc3c12
Absorbance
null
720,541
888,046
CID
Cc1ccc(/C=C/C(=O)Nc2ccc(N(C)C)cc2)o1
Absorbance
null
720,541
899,295
CID
CCc1nnc2c(N(C)C)nc3ccccc3n12
Absorbance
null
720,541
938,368
CID
COC1=C(Nc2ccc(OC)cc2)C(=O)c2ccccc2C1=O
Absorbance
null
720,541
945,686
CID
COc1cc2c(cc1OC)-c1cc(Nc3ccccc3)nc(=O)n1CC2
Absorbance
null
720,541
950,852
CID
Oc1ccc(Cl)cc1CNc1cccc2cccnc12
Absorbance
null
720,541
972,847
CID
COc1ccc(CCNc2nc(-c3ccccn3)cs2)cc1OC
Absorbance
null
720,541
983,525
CID
O=S(=O)(Nc1cccc(-c2cn3cccnc3n2)c1)c1ccccc1
Absorbance
null
720,541
992,589
CID
CCOc1ccc(S(=O)(=O)Nc2cc(SCC(=O)O)c(O)c3ccccc23)cc1
Absorbance
null
720,541
1,013,432
CID
O=S(=O)(Nc1nnc(-c2ccccc2)s1)c1ccc(Cl)cc1
Absorbance
null
720,541
1,069,848
CID
NC(=O)c1nn2c(C(F)(F)F)cc(-c3ccccc3)nc2c1Br
Absorbance
null
720,541
1,072,899
CID
O=C(Nc1ccc2nc(-c3ccco3)c(-c3ccco3)nc2c1)N1CCCC1
Absorbance
null
720,541
1,077,179
CID
CC(=O)c1ccc(NS(=O)(=O)c2cccc(C(=O)Nc3ccccc3C(=O)O)c2)cc1
End of preview.

ChAFF datasets

This dataset collection contains ~200K curated Active compound lists from ~90 different BioAssay datasets, focusing on known assay interference artifacts. We applied SMILES standardization using RDKit and MolVS, including molecule sanitization and fragment removal. The final dataset is suitable for training and evaluating machine learning models.

Types and Number of Active Compounds

Type NumActiveCompounds
Absorbance 1486
Artifact 10952
Autofluoresence 32054
ColloidalAggregators 19533
HeavyHitters 71981
LuciferaseInhibition 32831
Misannotation 39
Reactivity 3107
REDOX 217

Dataset Columns

Column Description
Type Task domain (e.g. Absorbance)
DatasetName Source dataset name
AID Pubchem Assay ID
ID Identifier for the compound
IDType Type of identifier (e.g. CID)
SMILES Curated SMILES

Datasets can be found in the data folder.

Dataset summary

A summary file is uploaded, which lists:

  • Type
  • DatasetName
  • AID
  • NumActiveCompounds
  • PaperTitle
  • Reference
  • URL
  • AssayName
  • Description

Dataset summary file can be found: ChAFF_dataset_summary.json

License

Each dataset comes from different sources (i.e., PubChem, Papers). Please check our dataset summary file if you are looking for references.

Usage

Load a dataset in python

Each subset can be loaded into python using the Huggingface datasets library. First, from the command line install the datasets library

$ pip install datasets

then, from within python load the datasets library.

>>> import datasets
>>> from datasets import load_dataset, Features, Value

Specifiy column types to prevent pyarrow error.

features = Features({
    "Type": Value("string"),
    "DatasetName": Value("string"),
    "AID": Value("string"), # Treat int as string
    "ID": Value("string"),
    "IDType": Value("string"),
    "SMILES": Value("string")
})

Now load one of the 'ChAFF' datasets, e.g.,

>>> dataset = datasets.load_dataset("maomlab/ChAFF", name = "default", data_files = "data/Absorbance.csv", split = "train", features = features)

You can modify "data/Absorbance.csv" based on your interest (e.g., "data/Reactivity.csv"). The default is split = "train" as we did not split the datasets.

Downloads last month
2,989