|
--- |
|
dataset_info: |
|
features: |
|
- name: example_id |
|
dtype: int64 |
|
- name: query |
|
dtype: string |
|
- name: query_id |
|
dtype: int64 |
|
- name: product_id |
|
dtype: string |
|
- name: product_locale |
|
dtype: string |
|
- name: esci_label |
|
dtype: string |
|
- name: small_version |
|
dtype: int64 |
|
- name: large_version |
|
dtype: int64 |
|
- name: split |
|
dtype: string |
|
- name: product_title |
|
dtype: string |
|
- name: product_description |
|
dtype: string |
|
- name: product_bullet_point |
|
dtype: string |
|
- name: product_brand |
|
dtype: string |
|
- name: product_color |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
- name: full_description |
|
dtype: string |
|
- name: Boost Product Index |
|
dtype: int64 |
|
- name: description |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 130485155 |
|
num_examples: 13985 |
|
download_size: 58648377 |
|
dataset_size: 130485155 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
--- |
|
|
|
|
|
|
|
|
|
This dataset is a sample for the [`Amazon Shopping Queries Dataset`](https://github.com/amazon-science/esci-data). |
|
|
|
This dataset contains queries for which at least 10 products are available. The products if possible are `exact` matches to the query intent, or at least `substitutes` |
|
It was constructed as follows: |
|
|
|
|
|
``` |
|
import pandas as pd |
|
|
|
df_examples = pd.read_parquet("shopping_queries_dataset_examples.parquet") |
|
df_products = pd.read_parquet("shopping_queries_dataset_products.parquet") |
|
df_sources = pd.read_csv("shopping_queries_dataset_sources.csv") |
|
|
|
df_examples_products = pd.merge( |
|
df_examples, |
|
df_products, |
|
how="left", |
|
left_on=["product_locale", "product_id"], |
|
right_on=["product_locale", "product_id"], |
|
) |
|
|
|
df_examples_products_source = pd.merge( |
|
df_examples_products, |
|
df_sources, |
|
how="left", |
|
left_on=["query_id"], |
|
right_on=["query_id"], |
|
) |
|
|
|
list_hits = [] |
|
for query_id in tqdm(list_query_id): |
|
df = retrieve_products(query_id, df_examples_products_source) |
|
list_len_desc = [] |
|
for row_idx in range(len(df)): |
|
row = df.iloc[row_idx] |
|
full_description = format_product_details(row) |
|
list_len_desc.append(len(full_description)) |
|
if len(df) >= 10: |
|
list_hits.append((df, np.mean(list_len_desc))) |
|
|
|
# sort by length of full_description |
|
list_hits = sorted(list_hits, key=lambda x: x[1], reverse=True) |
|
|
|
df = pd.concat([x[0] for x in list_hits[:1000]]) |
|
``` |
|
|
|
|
|
The auxiliary functions are: |
|
|
|
``` |
|
def format_product_details(product): |
|
template = "List of features:\n{features}\n\nDescription:\n{description}" |
|
features = product["product_bullet_point"] |
|
description = product["product_description"] |
|
return template.format(features=features, description=description) |
|
|
|
|
|
def retrieve_products(query_id, df_examples_products_source): |
|
df = df_examples_products_source[ |
|
df_examples_products_source["query_id"] == query_id |
|
] |
|
# product_locale = en |
|
df = df[df["product_locale"] == "us"] |
|
# remove esci_label I |
|
df = df[df["esci_label"] != "I"] |
|
# remove product_description None |
|
df = df[df["product_description"].notnull()] |
|
# remove product_bullet_point None |
|
df = df[df["product_bullet_point"].notnull()] |
|
# if esci_label E > 10, use only those |
|
if df[df["esci_label"] == "E"].shape[0] > 10: |
|
df = df[df["esci_label"] == "E"] |
|
# if esci_label in [E, S ]> 10, use only those |
|
elif df[df["esci_label"].isin(["E", "S"])].shape[0] > 10: |
|
df = df[df["esci_label"].isin(["E", "S |
|
else: |
|
return [] |
|
return df |
|
|
|
``` |
|
|