haritzpuerto's picture
Upload dataset
12dfed6 verified
---
dataset_info:
features:
- name: example_id
dtype: int64
- name: query
dtype: string
- name: query_id
dtype: int64
- name: product_id
dtype: string
- name: product_locale
dtype: string
- name: esci_label
dtype: string
- name: small_version
dtype: int64
- name: large_version
dtype: int64
- name: split
dtype: string
- name: product_title
dtype: string
- name: product_description
dtype: string
- name: product_bullet_point
dtype: string
- name: product_brand
dtype: string
- name: product_color
dtype: string
- name: source
dtype: string
- name: full_description
dtype: string
- name: Boost Product Index
dtype: int64
- name: description
dtype: string
splits:
- name: train
num_bytes: 130485155
num_examples: 13985
download_size: 58648377
dataset_size: 130485155
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
This dataset is a sample for the [`Amazon Shopping Queries Dataset`](https://github.com/amazon-science/esci-data).
This dataset contains queries for which at least 10 products are available. The products if possible are `exact` matches to the query intent, or at least `substitutes`
It was constructed as follows:
```
import pandas as pd
df_examples = pd.read_parquet("shopping_queries_dataset_examples.parquet")
df_products = pd.read_parquet("shopping_queries_dataset_products.parquet")
df_sources = pd.read_csv("shopping_queries_dataset_sources.csv")
df_examples_products = pd.merge(
df_examples,
df_products,
how="left",
left_on=["product_locale", "product_id"],
right_on=["product_locale", "product_id"],
)
df_examples_products_source = pd.merge(
df_examples_products,
df_sources,
how="left",
left_on=["query_id"],
right_on=["query_id"],
)
list_hits = []
for query_id in tqdm(list_query_id):
df = retrieve_products(query_id, df_examples_products_source)
list_len_desc = []
for row_idx in range(len(df)):
row = df.iloc[row_idx]
full_description = format_product_details(row)
list_len_desc.append(len(full_description))
if len(df) >= 10:
list_hits.append((df, np.mean(list_len_desc)))
# sort by length of full_description
list_hits = sorted(list_hits, key=lambda x: x[1], reverse=True)
df = pd.concat([x[0] for x in list_hits[:1000]])
```
The auxiliary functions are:
```
def format_product_details(product):
template = "List of features:\n{features}\n\nDescription:\n{description}"
features = product["product_bullet_point"]
description = product["product_description"]
return template.format(features=features, description=description)
def retrieve_products(query_id, df_examples_products_source):
df = df_examples_products_source[
df_examples_products_source["query_id"] == query_id
]
# product_locale = en
df = df[df["product_locale"] == "us"]
# remove esci_label I
df = df[df["esci_label"] != "I"]
# remove product_description None
df = df[df["product_description"].notnull()]
# remove product_bullet_point None
df = df[df["product_bullet_point"].notnull()]
# if esci_label E > 10, use only those
if df[df["esci_label"] == "E"].shape[0] > 10:
df = df[df["esci_label"] == "E"]
# if esci_label in [E, S ]> 10, use only those
elif df[df["esci_label"].isin(["E", "S"])].shape[0] > 10:
df = df[df["esci_label"].isin(["E", "S
else:
return []
return df
```