repo
stringlengths
5
53
instance_id
stringlengths
11
56
base_commit
stringlengths
40
40
patch
stringlengths
339
56.6k
test_patch
stringlengths
0
895k
problem_statement
stringlengths
27
55.6k
hints_text
stringlengths
0
72k
created_at
int64
1,447B
1,739B
labels
sequencelengths
0
7
category
stringclasses
4 values
edit_functions
sequencelengths
1
10
added_functions
sequencelengths
0
32
flet-dev/flet
flet-dev__flet-4384
5fb877b3a3f886f3475cd8ebca1cee52472d0ef7
diff --git a/sdk/python/packages/flet/src/flet/core/icon.py b/sdk/python/packages/flet/src/flet/core/icon.py index 8944f28bf..5af67aa7b 100644 --- a/sdk/python/packages/flet/src/flet/core/icon.py +++ b/sdk/python/packages/flet/src/flet/core/icon.py @@ -130,6 +130,7 @@ def _get_control_name(self): return "icon" def before_update(self): + super().before_update() self._set_attr_json("shadows", self.__shadows) # name
Icon rotation doesn't work with flet-0.25.0.dev3711 ### Duplicate Check - [X] I have searched the [opened issues](https://github.com/flet-dev/flet/issues) and there are no duplicates ### Describe the bug Icon rotation doesn't work anymore with flet 0.25 IconButton and other controls are OK ### Code sample <details open><summary>Code</summary> flet 0.24.1 : ```python import flet as ft import math def main(page: ft.Page): page.add( ft.Icon( name=ft.icons.FAVORITE, ), ft.Icon( name=ft.icons.FAVORITE, size=60, rotate=ft.Rotate(0.5*math.pi) ), ) ft.app(target=main) ``` flet-0.25.0.dev3711 : ```python import flet as ft import math def main(page: ft.Page): page.add( ft.Icon( name=ft.Icons.FAVORITE, ), ft.Icon( name=ft.Icons.FAVORITE, size=60, rotate=ft.Rotate(0.5*math.pi) ), ) ft.app(target=main) ``` </details> ### To reproduce Nothing particular : With the same code, icon is rotated with flet 0.24.1 and lower, not rotated with 0.25 ### Expected behavior Icon rotate.. ### Screenshots / Videos <details open> <summary>Captures</summary> 0.24.1 : ![image](https://github.com/user-attachments/assets/620d5cd8-c867-4cd7-8ecf-73837665cb68) flet-0.25.0.dev3711 ![image](https://github.com/user-attachments/assets/25a13b91-3de3-4831-86cf-06b201c28312) </details> ### Operating System Windows ### Operating system details windows 11 24H2 ### Flet version flet-0.25.0.dev3711 ### Regression Yes, it used to work in a previous Flet version (please specify the version in additional details) ### Suggestions _No response_ ### Logs <details open><summary>Logs</summary> ```console [Paste your logs here] ``` </details> ### Additional details _No response_
There is a lot of issues we are facing after 0.24.1
1,731,816,481,000
null
Bug Report
[ "sdk/python/packages/flet/src/flet/core/icon.py:Icon.before_update" ]
[]
flet-dev/flet
flet-dev__flet-4373
5fb877b3a3f886f3475cd8ebca1cee52472d0ef7
diff --git a/sdk/python/packages/flet/src/flet/core/markdown.py b/sdk/python/packages/flet/src/flet/core/markdown.py index 118e4e1c4..77a761c88 100644 --- a/sdk/python/packages/flet/src/flet/core/markdown.py +++ b/sdk/python/packages/flet/src/flet/core/markdown.py @@ -400,7 +400,12 @@ def before_update(self): self._set_attr_json("codeStyle", self.__code_style) self._set_attr_json("codeStyleSheet", self.__code_style_sheet) self._set_attr_json("mdStyleSheet", self.__md_style_sheet) - self._set_attr_json("codeTheme", self.__code_theme) + self._set_attr_json( + "codeTheme", + self.__code_theme.value + if isinstance(self.__code_theme, MarkdownCodeTheme) + else self.__code_theme, + ) def _get_children(self): if self.__img_error_content is not None: @@ -483,11 +488,13 @@ def md_style_sheet(self, value: Optional[MarkdownStyleSheet]): # code_theme @property - def code_theme(self) -> Optional[MarkdownCodeTheme]: + def code_theme(self) -> Optional[Union[MarkdownCodeTheme, MarkdownCustomCodeTheme]]: return self.__code_theme @code_theme.setter - def code_theme(self, value: Optional[MarkdownCodeTheme]): + def code_theme( + self, value: Optional[Union[MarkdownCodeTheme, MarkdownCustomCodeTheme]] + ): self.__code_theme = value # code_style
Regression in `Markdown.code_theme` when using `MarkdownCodeTheme` enum A custom theme works great although the only issue I faced was setting `code_theme` with `ft.MarkdownCodeTheme.ATOM_ONE_DARK` or any other value but **only** using `ft.MarkdownTheme` class the error it throws is: # Code ```python import flet as ft data = """ ```python class MyClass(object): def __init__(self): pass def greet(self): print("Hello World") ``` """ def main(page: ft.Page): page.add( ft.Markdown( value=data, code_theme=ft.MarkdownCodeTheme.ATOM_ONE_DARK, extension_set=ft.MarkdownExtensionSet.GITHUB_WEB, ) ) ft.app(main) ``` <details> <summary>Error</summary> ```bash (.venv) PS D:\CodingFolder\myCodingFilesPy\Flet\leraning> flet run .\theme\ --web http://127.0.0.1:54949 D:\CodingFolder\myCodingFilesPy\Flet\leraning\.venv\Lib\site-packages\websockets\legacy\server.py:1185: DeprecationWarning: remove second argument of ws_handler warnings.warn("remove second argument of ws_handler", DeprecationWarning) Unhandled error processing page session 49apGh5JlJ9Wkk0V: Traceback (most recent call last): File "D:\CodingFolder\myCodingFilesPy\Flet\leraning\.venv\Lib\site-packages\flet_web\fastapi\flet_app.py", line 141, in __on_session_created await asyncio.get_running_loop().run_in_executor( File "C:\ProgramData\anaconda3\Lib\concurrent\futures\thread.py", line 58, in run result = self.fn(*self.args, **self.kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\CodingFolder\myCodingFilesPy\Flet\leraning\theme\main.py", line 12, in main page.add( File "D:\CodingFolder\myCodingFilesPy\Flet\leraning\.venv\Lib\site-packages\flet\core\page.py", line 737, in add r = self.__update(self) ^^^^^^^^^^^^^^^^^^^ File "D:\CodingFolder\myCodingFilesPy\Flet\leraning\.venv\Lib\site-packages\flet\core\page.py", line 835, in __update commands, added_controls, removed_controls = self.__prepare_update(*controls) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\CodingFolder\myCodingFilesPy\Flet\leraning\.venv\Lib\site-packages\flet\core\page.py", line 851, in __prepare_update control.build_update_commands( File "D:\CodingFolder\myCodingFilesPy\Flet\leraning\.venv\Lib\site-packages\flet\core\control.py", line 497, in build_update_commands innerCmds = ctrl._build_add_commands( ^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\CodingFolder\myCodingFilesPy\Flet\leraning\.venv\Lib\site-packages\flet\core\control.py", line 562, in _build_add_commands childCmd = control._build_add_commands( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\CodingFolder\myCodingFilesPy\Flet\leraning\.venv\Lib\site-packages\flet\core\control.py", line 551, in _build_add_commands command = self._build_command(False) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\CodingFolder\myCodingFilesPy\Flet\leraning\.venv\Lib\site-packages\flet\core\control.py", line 578, in _build_command self.before_update() File "D:\CodingFolder\myCodingFilesPy\Flet\leraning\.venv\Lib\site-packages\flet\core\markdown.py", line 403, in before_update self._set_attr_json("codeTheme", self.__code_theme) File "D:\CodingFolder\myCodingFilesPy\Flet\leraning\.venv\Lib\site-packages\flet\core\control.py", line 189, in _set_attr_json nv = self._convert_attr_json( ^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\CodingFolder\myCodingFilesPy\Flet\leraning\.venv\Lib\site-packages\flet\core\control.py", line 197, in _convert_attr_json json.dumps(value, cls=EmbedJsonEncoder, separators=(",", ":")) File "C:\ProgramData\anaconda3\Lib\json\__init__.py", line 238, in dumps **kw).encode(obj) ^^^^^^^^^^^ File "D:\CodingFolder\myCodingFilesPy\Flet\leraning\.venv\Lib\site-packages\flet\core\embed_json_encoder.py", line 59, in encode return super().encode(self._convert_enums(o)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\ProgramData\anaconda3\Lib\json\encoder.py", line 200, in encode chunks = self.iterencode(o, _one_shot=True) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\ProgramData\anaconda3\Lib\json\encoder.py", line 258, in iterencode return _iterencode(o, 0) ^^^^^^^^^^^^^^^^^ File "D:\CodingFolder\myCodingFilesPy\Flet\leraning\.venv\Lib\site-packages\flet\core\embed_json_encoder.py", line 49, in default obj_as_dict = self._convert_enums(obj.__dict__) ^^^^^^^^^^^^ AttributeError: 'mappingproxy' object has no attribute '__dict__' ``` </details> ![image](https://github.com/user-attachments/assets/79ad892b-aa1b-4e68-9570-108835a23f54) ### I think there's something wrong with `ft.MarkdownTheme` class because when I used `"atom-one-dark"` it worked. When I run the same code but with `flet` version, `0.24.1` it worked as expected. Kindly raise issue regarding this. _Originally posted by @tanmay-bhatgare in https://github.com/flet-dev/flet/issues/4342#issuecomment-2476781933_
1,731,605,637,000
null
Bug Report
[ "sdk/python/packages/flet/src/flet/core/markdown.py:Markdown.before_update", "sdk/python/packages/flet/src/flet/core/markdown.py:Markdown.code_theme" ]
[]
flet-dev/flet
flet-dev__flet-4340
0f7b14b787eb4249b93e2abd5da23cc953b1e091
diff --git a/sdk/python/packages/flet/src/flet/core/colors.py b/sdk/python/packages/flet/src/flet/core/colors.py index 0fb695878..66b4293e8 100644 --- a/sdk/python/packages/flet/src/flet/core/colors.py +++ b/sdk/python/packages/flet/src/flet/core/colors.py @@ -37,9 +37,12 @@ import random from enum import Enum, EnumMeta -from typing import Dict, List, Optional, Union +from typing import TYPE_CHECKING, Dict, List, Optional, Union from warnings import warn +if TYPE_CHECKING: + from flet.core.types import ColorValue + from flet.utils import deprecated @@ -56,9 +59,16 @@ def __getattribute__(self, item): class colors(str, Enum, metaclass=ColorsDeprecated): - def with_opacity(self, opacity: Union[int, float]) -> str: + @staticmethod + @deprecated( + reason="Use Colors.with_opacity() method instead.", + version="0.25.0", + delete_version="0.28.0", + ) + def with_opacity(opacity: Union[int, float], color: "ColorValue") -> str: assert 0 <= opacity <= 1, "opacity must be between 0 and 1" - return f"{self.value},{opacity}" + color_str = color.value if isinstance(color, Enum) else color + return f"{color_str},{opacity}" @staticmethod def random(): @@ -416,21 +426,11 @@ def random_color(): class Colors(str, Enum): - def with_opacity(self, opacity: Union[int, float]) -> str: - """ - Returns the color with the specified opacity. - - Args: - opacity: The opacity value, which must be between 0 and 1. - - Returns: - A string representing the color value with the specified opacity appended. - - Raises: - AssertionError: If the opacity is not between 0 and 1 (inclusive). - """ + @staticmethod + def with_opacity(opacity: Union[int, float], color: "ColorValue") -> str: assert 0 <= opacity <= 1, "opacity must be between 0 and 1" - return f"{self.value},{opacity}" + color_str = color.value if isinstance(color, Enum) else color + return f"{color_str},{opacity}" @staticmethod def random(
Using `ft.colors.with_opacity` returns exception, should be warning ### Duplicate Check - [X] I have searched the [opened issues](https://github.com/flet-dev/flet/issues) and there are no duplicates ### Describe the bug This code used to work before: ``` tooltip_bgcolor=ft.Colors.with_opacity(0.5, ft.Colors.GREY_300) ``` Now it returns exception: ERROR:asyncio:Future exception was never retrieved future: <Future finished exception=TypeError("'<=' not supported between instances of 'int' and 'Colors'")> Traceback (most recent call last): File "/Users/inesa/.pyenv/versions/3.12.6/lib/python3.12/concurrent/futures/thread.py", line 58, in run result = self.fn(*self.args, **self.kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/inesa/Library/Caches/pypoetry/virtualenvs/controls-gallery-WumZyC-d-py3.12/lib/python3.12/site-packages/flet/core/page.py", line 944, in wrapper handler(*args) File "/Users/inesa/projects/flet-dev/examples/python/apps/controls-gallery/main.py", line 36, in route_change gallery_view.display_control_examples(route_list[0], route_list[1]) File "/Users/inesa/projects/flet-dev/examples/python/apps/controls-gallery/components/gallery_view.py", line 30, in display_control_examples self.examples_view.display( File "/Users/inesa/projects/flet-dev/examples/python/apps/controls-gallery/components/examples_view.py", line 55, in display content=example.example(), ^^^^^^^^^^^^^^^^^ File "/Users/inesa/projects/flet-dev/examples/python/apps/controls-gallery/examples/charts/barchart/01_barchart_1.py", line 87, in example tooltip_bgcolor=ft.colors.with_opacity(0.5, ft.Colors.GREY_300), ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/inesa/Library/Caches/pypoetry/virtualenvs/controls-gallery-WumZyC-d-py3.12/lib/python3.12/site-packages/flet/core/colors.py", line 60, in with_opacity assert 0 <= opacity <= 1, "opacity must be between 0 and 1" ### Code sample <details open><summary>Code</summary> ```python import flet as ft def main(page: ft.Page): chart = ft.BarChart( bar_groups=[ ft.BarChartGroup( x=0, bar_rods=[ ft.BarChartRod( from_y=0, to_y=40, width=40, color=ft.colors.AMBER, tooltip="Apple", border_radius=0, ), ], ), ft.BarChartGroup( x=1, bar_rods=[ ft.BarChartRod( from_y=0, to_y=100, width=40, color=ft.colors.BLUE, tooltip="Blueberry", border_radius=0, ), ], ), ft.BarChartGroup( x=2, bar_rods=[ ft.BarChartRod( from_y=0, to_y=30, width=40, color=ft.colors.RED, tooltip="Cherry", border_radius=0, ), ], ), ft.BarChartGroup( x=3, bar_rods=[ ft.BarChartRod( from_y=0, to_y=60, width=40, color=ft.colors.ORANGE, tooltip="Orange", border_radius=0, ), ], ), ], border=ft.border.all(1, ft.colors.GREY_400), left_axis=ft.ChartAxis( labels_size=40, title=ft.Text("Fruit supply"), title_size=40 ), bottom_axis=ft.ChartAxis( labels=[ ft.ChartAxisLabel( value=0, label=ft.Container(ft.Text("Apple"), padding=10) ), ft.ChartAxisLabel( value=1, label=ft.Container(ft.Text("Blueberry"), padding=10) ), ft.ChartAxisLabel( value=2, label=ft.Container(ft.Text("Cherry"), padding=10) ), ft.ChartAxisLabel( value=3, label=ft.Container(ft.Text("Orange"), padding=10) ), ], labels_size=40, ), horizontal_grid_lines=ft.ChartGridLines( color=ft.colors.GREY_300, width=1, dash_pattern=[3, 3] ), tooltip_bgcolor=ft.colors.with_opacity(0.5, ft.colors.GREY_300), max_y=110, interactive=True, expand=True, ) page.add(chart) ft.app(main) ``` </details> ### To reproduce Run the repro code -> BarChart is not displayed, error in in log: Unhandled error processing page session : Traceback (most recent call last): File "/Users/inesa/projects/flet-dev/flet/sdk/python/packages/flet/src/flet/app.py", line 247, in on_session_created await asyncio.get_running_loop().run_in_executor( File "/Users/inesa/.pyenv/versions/3.12.6/lib/python3.12/concurrent/futures/thread.py", line 58, in run result = self.fn(*self.args, **self.kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/inesa/projects/flet-dev/flet/sdk/python/playground/bar_chart_test.py", line 84, in main tooltip_bgcolor=ft.colors.with_opacity(0.5, ft.colors.GREY_300), ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/inesa/projects/flet-dev/flet/sdk/python/packages/flet/src/flet/core/colors.py", line 60, in with_opacity assert 0 <= opacity <= 1, "opacity must be between 0 and 1" ^^^^^^^^^^^^^^^^^ TypeError: '<=' not supported between instances of 'int' and 'colors` ### Expected behavior Expected to see a warning ### Screenshots / Videos <details open> <summary>Captures</summary> [Upload media here] </details> ### Operating System macOS ### Operating system details 15 ### Flet version 0.25.0.dev3679 ### Regression Yes, it used to work in a previous Flet version (please specify the version in additional details) ### Suggestions _No response_ ### Logs <details open><summary>Logs</summary> ```console [Paste your logs here] ``` </details> ### Additional details _No response_
1,731,103,482,000
null
Bug Report
[ "sdk/python/packages/flet/src/flet/core/colors.py:colors.with_opacity", "sdk/python/packages/flet/src/flet/core/colors.py:colors", "sdk/python/packages/flet/src/flet/core/colors.py:Colors.with_opacity", "sdk/python/packages/flet/src/flet/core/colors.py:Colors" ]
[ "sdk/python/packages/flet/src/flet/core/colors.py:colors" ]
flet-dev/flet
flet-dev__flet-4314
3b7241e3f5024ee47f3bcba3092a9e71e56bfe42
diff --git a/sdk/python/packages/flet/src/flet/core/segmented_button.py b/sdk/python/packages/flet/src/flet/core/segmented_button.py index 01f303af6..7c1934834 100644 --- a/sdk/python/packages/flet/src/flet/core/segmented_button.py +++ b/sdk/python/packages/flet/src/flet/core/segmented_button.py @@ -203,12 +203,11 @@ def before_update(self): assert ( len(self.selected) < 2 or self.allow_multiple_selection ), "allow_multiple_selection must be True for selected to have more than one item" - if self.__style is None: - self.__style = ButtonStyle() - self.__style.side = self._wrap_attr_dict(self.__style.side) - self.__style.shape = self._wrap_attr_dict(self.__style.shape) - self.__style.padding = self._wrap_attr_dict(self.__style.padding) - self._set_attr_json("style", self.__style) + style = self.__style or ButtonStyle() + style.side = self._wrap_attr_dict(style.side) + style.shape = self._wrap_attr_dict(style.shape) + style.padding = self._wrap_attr_dict(style.padding) + self._set_attr_json("style", style) def _get_children(self): for segment in self.segments:
user customized style for SegmentedButton not wrapped ### Duplicate Check - [X] I have searched the [opened issues](https://github.com/flet-dev/flet/issues) and there are no duplicates ### Describe the bug user cutomized style is not working in SegmentButton ![image](https://github.com/user-attachments/assets/7c5f6f9c-9c29-43b5-a4d4-87f52d0d420d) ### Code sample <details open><summary>Code</summary> ```python import flet as ft def main(page: ft.Page): page.window.width = 800 page.window.height = 500 page.window.alignment = ft.alignment.center def handle_change(e): print("on_change data : " + str(e.data)) def on_error(e) -> None: print("error: ", e.data) page.on_error = on_error style = ft.ButtonStyle(shape=ft.RoundedRectangleBorder(radius=5)) page.add( ft.SegmentedButton( on_change=handle_change, selected_icon=ft.Icon(ft.icons.ONETWOTHREE), selected={"1", "4"}, allow_multiple_selection=True, style=style, segments=[ ft.Segment( value="1", label=ft.Text("1"), icon=ft.Icon(ft.icons.LOOKS_ONE), ), ft.Segment( value="2", label=ft.Text("2"), icon=ft.Icon(ft.icons.LOOKS_TWO), ), ft.Segment( value="3", label=ft.Text("3"), icon=ft.Icon(ft.icons.LOOKS_3), ), ft.Segment( value="4", label=ft.Text("4"), icon=ft.Icon(ft.icons.LOOKS_4), ), ], ) ) ft.app(main) ``` </details> ### To reproduce pass customized style to SegmentedButton (style has customized attribute value, e.g. `style = ft.ButtonStyle(shape=ft.RoundedRectangleBorder(radius=5))`) ### Expected behavior SegmentedButton has RoundedRectangleBorder ### Screenshots / Videos <details open> <summary>Captures</summary> [Upload media here] ![Code_2eBKOg7ESB](https://github.com/user-attachments/assets/e8389abd-23e6-4328-89b4-0ebbb9ac0200) </details> ### Operating System Windows ### Operating system details Windows 11 24H2 ### Flet version 0.24.1 ### Regression No, it isn't ### Suggestions _No response_ ### Logs <details open><summary>Logs</summary> ```console [Paste your logs here] ``` </details> ### Additional details _No response_
1,730,865,480,000
null
Bug Report
[ "sdk/python/packages/flet/src/flet/core/segmented_button.py:SegmentedButton.before_update" ]
[]
explodinggradients/ragas
explodinggradients__ragas-1627
c3a183167b375bf5e22c8c8959d212e6b58103be
diff --git a/src/ragas/metrics/_noise_sensitivity.py b/src/ragas/metrics/_noise_sensitivity.py index a6a903b68..4074d0edc 100644 --- a/src/ragas/metrics/_noise_sensitivity.py +++ b/src/ragas/metrics/_noise_sensitivity.py @@ -101,7 +101,6 @@ async def _decompose_answer_into_statements( sentences_with_index = { i: sentence for i, sentence in enumerate(sentences) - if sentence.strip().endswith(".") } statements_simplified = await self.statement_prompt.generate(
In NoiseSensitivity, the `.` should be deleted as the split condition. [ ] I checked the [documentation](https://docs.ragas.io/) and related resources and couldn't find an answer to my question. **Your Question** After the sentence is split, i think the `.` should no longer be used as a split condition. Many other languages ​​do not use `.` as a split condition. Just follow the result of `sentence_segmenter`. **Code Examples** https://github.com/explodinggradients/ragas/blob/main/src/ragas/metrics/_noise_sensitivity.py#L104C13-L104C46 **Additional context** I will provide a pr.
1,730,804,031,000
null
Feature Request
[ "src/ragas/metrics/_noise_sensitivity.py:NoiseSensitivity._decompose_answer_into_statements" ]
[]
scikit-learn/scikit-learn
scikit-learn__scikit-learn-30241
551d56c254197c4b6ad63974d749824ed2c7bc58
diff --git a/sklearn/utils/estimator_checks.py b/sklearn/utils/estimator_checks.py index f5d542d9a59fc..da1300817b148 100644 --- a/sklearn/utils/estimator_checks.py +++ b/sklearn/utils/estimator_checks.py @@ -2076,11 +2076,11 @@ def check_regressor_multioutput(name, estimator): assert y_pred.dtype == np.dtype("float64"), ( "Multioutput predictions by a regressor are expected to be" - " floating-point precision. Got {} instead".format(y_pred.dtype) + f" floating-point precision. Got {y_pred.dtype} instead" ) assert y_pred.shape == y.shape, ( "The shape of the prediction for multioutput data is incorrect." - " Expected {}, got {}." + f" Expected {y_pred.shape}, got {y.shape}." )
Missing format string arguments This assertion error string is not properly formatted as the 2 format arguments `y_pred.shape` and `y.shape` are missing: https://github.com/scikit-learn/scikit-learn/blob/551d56c254197c4b6ad63974d749824ed2c7bc58/sklearn/utils/estimator_checks.py#L2139 ```python assert y_pred.shape == y.shape, ( "The shape of the prediction for multioutput data is incorrect." " Expected {}, got {}." ) ``` should become ```python assert y_pred.shape == y.shape, ( "The shape of the prediction for multioutput data is incorrect." " Expected {}, got {}.".format(y_pred.shape, y.shape) ) ```
Please feel free to directly submit a PR with the fix in the future in such cases :)
1,731,059,196,000
null
Bug Report
[ "sklearn/utils/estimator_checks.py:check_regressor_multioutput" ]
[]
Lightning-AI/pytorch-lightning
Lightning-AI__pytorch-lightning-20484
601c0608059ed33ac617a57bb122e17b88c35c9a
diff --git a/src/lightning/pytorch/loops/prediction_loop.py b/src/lightning/pytorch/loops/prediction_loop.py index 7044ccea87a7f..dcfd873a28b4b 100644 --- a/src/lightning/pytorch/loops/prediction_loop.py +++ b/src/lightning/pytorch/loops/prediction_loop.py @@ -233,8 +233,9 @@ def _predict_step( self.batch_progress.increment_ready() - if not using_dataloader_iter: - any_on_epoch = self._store_data_for_prediction_writer(batch_idx, dataloader_idx) + any_on_epoch = ( + self._store_data_for_prediction_writer(batch_idx, dataloader_idx) if not using_dataloader_iter else False + ) # the `_step` methods don't take a batch_idx when `dataloader_iter` is used, but all other hooks still do, # so we need different kwargs
UnboundLocalError: local variable 'any_on_epoch' referenced before assignment in prediction loop ### Bug description `UnboundLocalError` raises when using the predict method with `return_predictions=False`. This is due to `any_on_epoch` [not being defined](https://github.com/Lightning-AI/pytorch-lightning/blob/be608fa355b835b9b0727df2f5476f0a1d90bc59/src/lightning/pytorch/loops/prediction_loop.py#L236) if `data_fetcher` is [an instance](https://github.com/Lightning-AI/pytorch-lightning/blob/be608fa355b835b9b0727df2f5476f0a1d90bc59/src/lightning/pytorch/loops/prediction_loop.py#L229) of `_DataLoaderIterDataFetcher`. ### What version are you seeing the problem on? v2.4 ### How to reproduce the bug _No response_ ### Error messages and logs ``` UnboundLocalError: local variable 'any_on_epoch' referenced before assignment ``` ### Environment <details> <summary>Current environment</summary> ``` #- PyTorch Lightning Version (e.g., 2.4.0): #- PyTorch Version (e.g., 2.4): #- Python version (e.g., 3.12): #- OS (e.g., Linux): #- CUDA/cuDNN version: #- GPU models and configuration: #- How you installed Lightning(`conda`, `pip`, source): ``` </details> ### More info _No response_
nice catch > This is due to any_on_epoch [not being defined](https://github.com/Lightning-AI/pytorch-lightning/blob/be608fa355b835b9b0727df2f5476f0a1d90bc59/src/lightning/pytorch/loops/prediction_loop.py#L236) if data_fetcher is [not an instance](https://github.com/Lightning-AI/pytorch-lightning/blob/be608fa355b835b9b0727df2f5476f0a1d90bc59/src/lightning/pytorch/loops/prediction_loop.py#L229) of _DataLoaderIterDataFetcher. it's actually the other way around, it errors out when it *is* an instance of `_DataLoaderIterDataFetcher` the solution is to replace lines 236 and 237: https://github.com/Lightning-AI/pytorch-lightning/blob/be608fa355b835b9b0727df2f5476f0a1d90bc59/src/lightning/pytorch/loops/prediction_loop.py#L236-L237 with ```python any_on_epoch = self._store_data_for_prediction_writer(batch_idx, dataloader_idx) if not using_dataloader_iter else False ``` Would you like to volunteer for a quick PR?
1,733,763,932,000
null
Bug Report
[ "src/lightning/pytorch/loops/prediction_loop.py:_PredictionLoop._predict_step" ]
[]
Lightning-AI/pytorch-lightning
Lightning-AI__pytorch-lightning-20420
20d19d2f5728f7049272f2db77a9748ff4cf5ccd
diff --git a/examples/fabric/build_your_own_trainer/run.py b/examples/fabric/build_your_own_trainer/run.py index 01044f5d94fa8..c0c2ff28ddc41 100644 --- a/examples/fabric/build_your_own_trainer/run.py +++ b/examples/fabric/build_your_own_trainer/run.py @@ -41,7 +41,8 @@ def training_step(self, batch, batch_idx: int): def configure_optimizers(self): optim = torch.optim.Adam(self.parameters(), lr=1e-4) - return optim, { + return { + "optimizer": optim, "scheduler": torch.optim.lr_scheduler.ReduceLROnPlateau(optim, mode="max", verbose=True), "monitor": "val_accuracy", "interval": "epoch",
OptimizerLRScheduler typing does not fit examples ### Bug description The return type of `LightningModule.configure_optimizers()` is `OptimizerLRScheduler`, see the [source code](https://github.com/Lightning-AI/pytorch-lightning/blob/e6c26d2d22fc4678b2cf47d57697ebae68b09529/src/lightning/pytorch/core/module.py#L954). However, the examples give return types not fitting this return type. See e.g. the example [here](https://github.com/Lightning-AI/pytorch-lightning/blob/e6c26d2d22fc4678b2cf47d57697ebae68b09529/examples/fabric/build_your_own_trainer/run.py#L42-L49). Furthermore, the `OptimizerLRScheduler` is only used as a return type, but I don't see where it is actually used, i.e. the other part of the typed interface. A [search for it](https://github.com/search?q=repo%3ALightning-AI%2Fpytorch-lightning%20OptimizerLRScheduler&type=code) does not reveal it. ### What version are you seeing the problem on? 2.3.1 ### How to reproduce the bug Just run mypy on an example, e.g. https://github.com/Lightning-AI/pytorch-lightning/blob/e6c26d2d22fc4678b2cf47d57697ebae68b09529/examples/fabric/build_your_own_trainer/run.py#L42-L49. ### Error messages and logs Running mypy on this causes a bug: ``` Error: Incompatible return value type (got "tuple[Adam, dict[str, object]]", expected "Optimizer | Sequence[Optimizer] | tuple[Sequence[Optimizer], Sequence[LRScheduler | ReduceLROnPlateau | LRSchedulerConfig]] | OptimizerLRSchedulerConfig | Sequence[OptimizerLRSchedulerConfig] | None") ``` ### Environment <details> <summary>Current environment</summary> * CUDA: - GPU: None - available: False - version: None * Lightning: - lightning-utilities: 0.11.3.post0 - pytorch-lightning: 2.3.1 - torch: 2.3.1 - torchmetrics: 0.8.0 - torchvision: 0.18.1 * Packages: - absl-py: 2.1.0 - aenum: 3.1.15 - aiohttp: 3.9.5 - aiosignal: 1.3.1 - alabaster: 0.7.16 - albumentations: 1.3.1 - antlr4-python3-runtime: 4.9.3 - arabic-reshaper: 3.0.0 - asn1crypto: 1.5.1 - async-timeout: 4.0.3 - attrs: 23.2.0 - babel: 2.15.0 - boto3: 1.34.137 - botocore: 1.34.137 - build: 1.2.1 - certifi: 2024.6.2 - cffi: 1.16.0 - charset-normalizer: 3.3.2 - click: 8.1.7 - coloredlogs: 15.0.1 - contourpy: 1.2.1 - coverage: 5.3.1 - cryptography: 42.0.8 - cssselect2: 0.7.0 - cycler: 0.12.1 - data-gradients: 0.3.2 - deprecated: 1.2.14 - docutils: 0.17.1 - einops: 0.3.2 - exceptiongroup: 1.2.1 - filelock: 3.15.4 - flatbuffers: 24.3.25 - fonttools: 4.53.0 - frozenlist: 1.4.1 - fsspec: 2024.6.1 - future: 1.0.0 - grpcio: 1.64.1 - html5lib: 1.1 - huggingface-hub: 0.23.4 - humanfriendly: 10.0 - hydra-core: 1.3.2 - idna: 3.7 - imagededup: 0.3.1 - imageio: 2.34.2 - imagesize: 1.4.1 - iniconfig: 2.0.0 - jinja2: 3.1.4 - jmespath: 1.0.1 - joblib: 1.4.2 - json-tricks: 3.16.1 - jsonschema: 4.22.0 - jsonschema-specifications: 2023.12.1 - kiwisolver: 1.4.5 - lazy-loader: 0.4 - lightly: 1.5.8 - lightly-train: 0.1.0 - lightly-utils: 0.0.2 - lightning-utilities: 0.11.3.post0 - lxml: 5.2.2 - markdown: 3.6 - markdown-it-py: 3.0.0 - markupsafe: 2.1.5 - matplotlib: 3.9.0 - mdurl: 0.1.2 - mpmath: 1.3.0 - multidict: 6.0.5 - mypy: 1.10.1 - mypy-extensions: 1.0.0 - networkx: 3.3 - numpy: 1.23.0 - omegaconf: 2.3.0 - onnx: 1.15.0 - onnxruntime: 1.15.0 - onnxsim: 0.4.36 - opencv-python: 4.10.0.84 - opencv-python-headless: 4.10.0.84 - oscrypto: 1.3.0 - packaging: 24.1 - pandas: 2.2.2 - pillow: 10.4.0 - pip: 24.1.1 - pip-tools: 7.4.1 - platformdirs: 4.2.2 - pluggy: 1.5.0 - protobuf: 3.20.3 - psutil: 6.0.0 - pycparser: 2.22 - pydantic: 1.10.17 - pydeprecate: 0.3.2 - pygments: 2.18.0 - pyhanko: 0.25.0 - pyhanko-certvalidator: 0.26.3 - pyparsing: 3.1.2 - pypdf: 4.2.0 - pypng: 0.20220715.0 - pyproject-hooks: 1.1.0 - pytest: 8.2.2 - pytest-mock: 3.14.0 - python-bidi: 0.4.2 - python-dateutil: 2.9.0.post0 - pytorch-lightning: 2.3.1 - pytz: 2024.1 - pywavelets: 1.6.0 - pyyaml: 6.0.1 - qrcode: 7.4.2 - qudida: 0.0.4 - rapidfuzz: 3.9.3 - referencing: 0.35.1 - reportlab: 3.6.13 - requests: 2.32.3 - rich: 13.7.1 - rpds-py: 0.18.1 - ruff: 0.5.0 - s3transfer: 0.10.2 - safetensors: 0.4.3 - scikit-image: 0.24.0 - scikit-learn: 1.5.0 - scipy: 1.13.1 - seaborn: 0.13.2 - selftrain: 0.1.0 - setuptools: 70.2.0 - six: 1.16.0 - snowballstemmer: 2.2.0 - sphinx: 4.0.3 - sphinx-rtd-theme: 1.3.0 - sphinxcontrib-applehelp: 1.0.8 - sphinxcontrib-devhelp: 1.0.6 - sphinxcontrib-htmlhelp: 2.0.5 - sphinxcontrib-jquery: 4.1 - sphinxcontrib-jsmath: 1.0.1 - sphinxcontrib-qthelp: 1.0.7 - sphinxcontrib-serializinghtml: 1.1.10 - stringcase: 1.2.0 - super-gradients: 3.7.1 - svglib: 1.5.1 - sympy: 1.12.1 - tensorboard: 2.17.0 - tensorboard-data-server: 0.7.2 - termcolor: 1.1.0 - threadpoolctl: 3.5.0 - tifffile: 2024.6.18 - timm: 1.0.7 - tinycss2: 1.3.0 - tomli: 2.0.1 - torch: 2.3.1 - torchmetrics: 0.8.0 - torchvision: 0.18.1 - tqdm: 4.66.4 - treelib: 1.6.1 - typing-extensions: 4.12.2 - tzdata: 2024.1 - tzlocal: 5.2 - uritools: 4.0.3 - urllib3: 2.2.2 - webencodings: 0.5.1 - werkzeug: 3.0.3 - wheel: 0.43.0 - wrapt: 1.16.0 - xhtml2pdf: 0.2.11 - yarl: 1.9.4 * System: - OS: Darwin - architecture: - 64bit - - processor: arm - python: 3.10.8 - release: 23.5.0 - version: Darwin Kernel Version 23.5.0: Wed May 1 20:12:58 PDT 2024; root:xnu-10063.121.3~5/RELEASE_ARM64_T6000 ### More info _No response_
Hey @MalteEbner The optimizer should be inside the dict in that example. Thank you for noticing it. Would you like to send a PR with this quick fix? Would be much appreciated 😃 > Hey @MalteEbner The optimizer should be inside the dict in that example. Thank you for noticing it. Would you like to send a PR with this quick fix? Would be much appreciated 😃 Unfortunately, the problem is not that the example is wrong. This is just a symptom of an underlying problem. The problem is that the `LightningModule.configure_optimizers() -> OptimizerLRScheduler` and its usage don't fit. Toe see why, have a look at where `configure_optimizers()` is used, see the source code [here](https://github.com/Lightning-AI/pytorch-lightning/blob/f91349c961103af48091654775248789b6e03bd1/src/lightning/pytorch/core/optimizer.py#L179-L200): The output of it is stored under the variable name `optim_conf` and then passed to the function ```python def _configure_optimizers( optim_conf: Union[Dict[str, Any], List, Optimizer, Tuple], ) ``` However, these definition type `OptimizerLRScheduler` and the usage type `Union[Dict[str, Any], List, Optimizer, Tuple] `don't align. To fix this, more is needed 1. Change it to `optim_conf: OptimizerLRScheduler`, so that the usage of `configure_optimizers()` has the same type as its definition. 2. Redefine the `OptimizerLRScheduler` such that it fits the supported types in `_configure_optimizers`. I'm not seeing any mypy errors regarding this. Which version did you use and what was the command you ran? The version we test with you can see here: https://github.com/Lightning-AI/pytorch-lightning/blob/master/requirements/typing.txt We typically bump it together when an new torch version comes out (which is soon again). Maybe your issue will show up, but I'm not seeing it locally. Yes sure, the internal `_configure_optimizers` uses a bit more generic typing. Feel free to update it to be more specific 👍 . The return type of `LightningModule.configure_optimizers()` should not be changed, this looks all good to me still.
1,731,575,568,000
null
Bug Report
[ "examples/fabric/build_your_own_trainer/run.py:MNISTModule.configure_optimizers" ]
[]
Lightning-AI/pytorch-lightning
Lightning-AI__pytorch-lightning-20401
c110f4f3f60c643740f5e3573546abfcb5355315
diff --git a/src/lightning/pytorch/cli.py b/src/lightning/pytorch/cli.py index 26af335f7be93..e0de8a24b38f5 100644 --- a/src/lightning/pytorch/cli.py +++ b/src/lightning/pytorch/cli.py @@ -389,6 +389,7 @@ def __init__( self._add_instantiators() self.before_instantiate_classes() self.instantiate_classes() + self.after_instantiate_classes() if self.subcommand is not None: self._run_subcommand(self.subcommand) @@ -560,6 +561,9 @@ def instantiate_classes(self) -> None: self._add_configure_optimizers_method_to_model(self.subcommand) self.trainer = self.instantiate_trainer() + def after_instantiate_classes(self) -> None: + """Implement to run some code after instantiating the classes.""" + def instantiate_trainer(self, **kwargs: Any) -> Trainer: """Instantiates the trainer.
Proposal(CLI): after_instantiate_classes hook ### Description & Motivation Adds a `after_instantiate_classes` hook to the Lightning CLI, called after `self.instantiate_classes()` during the initalization of `LightningCLI`. ### Pitch While having the Lightning CLI is great, it is not perfect for each use case out-of-the-box. Hence, you included hooks like `before_instantiate_classes` and describe in the docs how to extend the CLI. Problem is, you cannot extend this feature without hacks or substantial copy-pasta. I think, to further improve the CLI, without adding any complexity, it makes sense to add a `after_instantiate_classes` hook, too. ### Alternatives 1. Hacks - Extend the Lightning CLI and run the `after_instantiate_classes` function before the `self._run_subcommand` function. - Problems: it's not intuitive that the function is called there, won't be called if `self.subcommand is None` 2. Copy-Pasta - Extend the Lightning CLI and replace the original `__init__` with the proposed one. - Problems: could break with any update, lots of code duplication ### Additional context _No response_ cc @borda @tchaton @justusschock @awaelchli @mauvilsa
1,730,892,823,000
null
Feature Request
[ "src/lightning/pytorch/cli.py:LightningCLI.__init__" ]
[ "src/lightning/pytorch/cli.py:LightningCLI.after_instantiate_classes" ]
kornia/kornia
kornia__kornia-3084
b230615f08bb0fff1b3044fc8ccb38f21bd9e817
diff --git a/kornia/augmentation/container/augment.py b/kornia/augmentation/container/augment.py index a9cad91924..ebd892bf17 100644 --- a/kornia/augmentation/container/augment.py +++ b/kornia/augmentation/container/augment.py @@ -507,11 +507,9 @@ def __call__( if output_type == "tensor": self._output_image = _output_image if isinstance(_output_image, dict): - self._output_image[original_keys[idx]] = self._detach_tensor_to_cpu( - _output_image[original_keys[idx]] - ) + self._output_image[original_keys[idx]] = _output_image[original_keys[idx]] else: - self._output_image[idx] = self._detach_tensor_to_cpu(_output_image[idx]) + self._output_image[idx] = _output_image[idx] elif isinstance(_output_image, dict): self._output_image[original_keys[idx]] = _output_image[original_keys[idx]] else:
AugmentationSequential explicitly moves the output to the CPU if data_keys is given ### Describe the bug With the 0.7.4 release, augmentations on the GPU are not possible anymore because the output of the input tensor is always explicitly moved to the CPU. The problem is that `_detach_tensor_to_cpu` is called explicitly on every tensor in [augment.py](https://github.com/kornia/kornia/blob/main/kornia/augmentation/container/augment.py#L507). ### Reproduction steps The augmented version of the input gets moved to the CPU: ```python import torch import kornia input = torch.randn(1, 3, 10, 10, device="cuda") mask = torch.randn(1, 10, 10, device="cuda") aug_list = kornia.augmentation.AugmentationSequential(kornia.augmentation.RandomHorizontalFlip(p=1)) for a in aug_list(input, mask, data_keys=["input", "mask"]): print(a.dtype, a.device) # torch.float32 cpu # torch.float32 cuda:0 ``` Without `data_keys` and only one input, the output device is as expected: ```python for a in aug_list(input): print(a.dtype, a.device) # torch.float32 cuda:0 ``` ### Expected behavior I would expect the augmented version of the input tensor to reside on the GPU. ### Environment - PyTorch Version (e.g., 1.0): 2.5.1 - OS (e.g., Linux): Ubuntu - How you installed PyTorch (`conda`, `pip`, source): pip - Build command you used (if compiling from source): - Python version: 3.12 - CUDA/cuDNN version: 12.4 - GPU models and configuration: NVIDIA 4090 RTX - Any other relevant information: ### Additional context Reverting back to 0.7.3 fixes the problem.
i can see that this was touched in https://github.com/kornia/kornia/pull/2979 @ashnair1 @shijianjian @johnnv1 do you recall why we need here `_detach_tensor_to_cpu` instead of something like `_detach_tensor_to_device` ? It was mainly for passing the tests, due to the randomness handling for CUDA and CPU are different. I think the bug is because the dict tensors are not handled properly to be move back to CUDA. @ashnair1, can you fix this? We may need to do a patch release after this. BTW, I think we may need a pre-merge action to run CUDA tests. At least to run it for one-time for each merge. It has happened many times I think that some CUDA errors after all CPU tests passed. > BTW, I think we may need a pre-merge action to run CUDA tests. At least to run it for one-time for each merge. It has happened many times I think that some CUDA errors after all CPU tests passed. For that, we need someone to sponsor with access to a machine that has a cuda device. Will the meta device be helpful? So we mock cuda instead? https://pytorch.org/docs/stable/meta.html https://github.com/pytorch/pytorch/issues/61654#issuecomment-879989145 we can try yes One of Kornia's biggest strengths is fast GPU augmentations. This bug makes 0.7.4 unusable for many including me - are there any updates on a fix? hey @ashnair1, can you help fix this issue?
1,733,310,216,000
null
Bug Report
[ "kornia/augmentation/container/augment.py:AugmentationSequential.__call__" ]
[]
wandb/wandb
wandb__wandb-9011
87070417bcde22e45fc3a662b2dfd73d79981ad9
diff --git a/wandb/apis/public/runs.py b/wandb/apis/public/runs.py index c605630e079..b29b5109f91 100644 --- a/wandb/apis/public/runs.py +++ b/wandb/apis/public/runs.py @@ -236,7 +236,6 @@ def histories( if not histories: return pd.DataFrame() combined_df = pd.concat(histories) - combined_df.sort_values("run_id", inplace=True) combined_df.reset_index(drop=True, inplace=True) # sort columns for consistency combined_df = combined_df[(sorted(combined_df.columns))] @@ -262,9 +261,9 @@ def histories( histories.append(df) if not histories: return pl.DataFrame() - combined_df = pl.concat(histories, how="align") + combined_df = pl.concat(histories, how="vertical") # sort columns for consistency - combined_df = combined_df.select(sorted(combined_df.columns)).sort("run_id") + combined_df = combined_df.select(sorted(combined_df.columns)) return combined_df
[Bug]: Incorrect order in `runs.histories()` ### Describe the bug `Runs` have a `order` attribute. However in the `Runs.histories()` method the order is not respected and the `runid` is used to sort instead (see [Relevant code](https://github.com/wandb/wandb/blob/v0.18.7/wandb/apis/public/runs.py#L236). I don't think this is desirable and also is undocumented behavior. I would recommend that the order specified in the `Runs` object is used or to not reorder all so that it is preserved to match the order obtained when iterating over the `runs` object via the iterator interface. wandb: 0.17.3 python 3.11.8 operating system: Ubuntu 22.04
Hi @GuillaumeOpenAI! Thank you for writing in! I have tried out something like this on my end: ``` import wandb api = wandb.Api() runs = api.runs("acyrtest/support-team-external-storage") hist = runs.histories() for hists in hist: print(hists) ``` and got this as the result, which is now sorted by run_id, and is sorted by creation date, just like it is in the W&B UI: ``` ... {'_runtime': 0.43318, '_timestamp': 1730926130.456495, 'test': 3, '_step': 3, 'run_id': 'ry7uzzqp'} {'_runtime': 0.433185, '_timestamp': 1730926130.456522, 'test': 4, '_step': 4, 'run_id': 'ry7uzzqp'} {'_runtime': 0.43319, '_timestamp': 1730926130.456544, 'test': 5, '_step': 5, 'run_id': 'ry7uzzqp'} {'_runtime': 0.43322, '_timestamp': 1730926130.4565701, 'test': 6, '_step': 6, 'run_id': 'ry7uzzqp'} {'_runtime': 0.433225, '_timestamp': 1730926130.456596, 'test': 7, '_step': 7, 'run_id': 'ry7uzzqp'} {'_runtime': 0.433297, '_timestamp': 1730926130.4566169, 'test': 8, '_step': 8, 'run_id': 'ry7uzzqp'} {'_runtime': 0.433305, '_timestamp': 1730926130.456641, 'test': 9, '_step': 9, 'run_id': 'ry7uzzqp'} {'test': 0, '_step': 0, '_runtime': 0.33756, '_timestamp': 1730926195.386603, 'run_id': 'rdav159p'} {'test': 1, '_step': 1, '_runtime': 0.337583, '_timestamp': 1730926195.386668, 'run_id': 'rdav159p'} {'test': 2, '_step': 2, '_runtime': 0.337587, '_timestamp': 1730926195.3867, 'run_id': 'rdav159p'} {'test': 3, '_step': 3, '_runtime': 0.337592, '_timestamp': 1730926195.3867269, 'run_id': 'rdav159p'} {'test': 4, '_step': 4, '_runtime': 0.337597, '_timestamp': 1730926195.386753, 'run_id': 'rdav159p'} {'test': 5, '_step': 5, '_runtime': 0.337613, '_timestamp': 1730926195.386775, 'run_id': 'rdav159p'} {'test': 6, '_step': 6, '_runtime': 0.337673, '_timestamp': 1730926195.3867981, 'run_id': 'rdav159p'} {'test': 7, '_step': 7, '_runtime': 0.337688, '_timestamp': 1730926195.386824, 'run_id': 'rdav159p'} {'test': 8, '_step': 8, '_runtime': 0.337705, '_timestamp': 1730926195.386844, 'run_id': 'rdav159p'} {'test': 9, '_step': 9, '_runtime': 0.337723, '_timestamp': 1730926195.3868642, 'run_id': 'rdav159p'} {'_timestamp': 1730926993.72419, 'test': 0, '_step': 0, '_runtime': 0.340699, 'run_id': 'aesgkd8u'} {'_timestamp': 1730926993.72425, 'test': 1, '_step': 1, '_runtime': 0.340727, 'run_id': 'aesgkd8u'} {'_timestamp': 1730926993.724282, 'test': 2, '_step': 2, '_runtime': 0.340733, 'run_id': 'aesgkd8u'} {'_timestamp': 1730926993.72431, 'test': 3, '_step': 3, '_runtime': 0.340739, 'run_id': 'aesgkd8u'} {'_timestamp': 1730926993.7243352, 'test': 4, '_step': 4, '_runtime': 0.340757, 'run_id': 'aesgkd8u'} {'_timestamp': 1730926993.724362, 'test': 5, '_step': 5, '_runtime': 0.340792, 'run_id': 'aesgkd8u'} {'_timestamp': 1730926993.7243829, 'test': 6, '_step': 6, '_runtime': 0.34085, 'run_id': 'aesgkd8u'} {'_timestamp': 1730926993.724406, 'test': 7, '_step': 7, '_runtime': 0.340863, 'run_id': 'aesgkd8u'} {'_timestamp': 1730926993.724425, 'test': 8, '_step': 8, '_runtime': 0.340896, 'run_id': 'aesgkd8u'} {'_timestamp': 1730926993.724446, 'test': 9, '_step': 9, '_runtime': 0.340904, 'run_id': 'aesgkd8u'} {'_timestamp': 1730927371.951988, 'test': 0, '_step': 0, '_runtime': 0.300452, 'run_id': 'k633grbi'} {'_timestamp': 1730927371.952055, 'test': 1, '_step': 1, '_runtime': 0.30048, 'run_id': 'k633grbi'} {'_timestamp': 1730927371.952088, 'test': 2, '_step': 2, '_runtime': 0.300486, 'run_id': 'k633grbi'} {'_timestamp': 1730927371.952116, 'test': 3, '_step': 3, '_runtime': 0.300492, 'run_id': 'k633grbi'} {'_timestamp': 1730927371.9521449, 'test': 4, '_step': 4, '_runtime': 0.300496, 'run_id': 'k633grbi'} {'_timestamp': 1730927371.9521668, 'test': 5, '_step': 5, '_runtime': 0.300524, 'run_id': 'k633grbi'} {'_timestamp': 1730927371.952188, 'test': 6, '_step': 6, '_runtime': 0.300585, 'run_id': 'k633grbi'} {'_timestamp': 1730927371.9522078, 'test': 7, '_step': 7, '_runtime': 0.300596, 'run_id': 'k633grbi'} {'_timestamp': 1730927371.952228, 'test': 8, '_step': 8, '_runtime': 0.300603, 'run_id': 'k633grbi'} {'_timestamp': 1730927371.952248, 'test': 9, '_step': 9, '_runtime': 0.300609, 'run_id': 'k633grbi'} ... ``` In the example above you can tell the runs are not sorted by run_id but by the timestamp instead. Are you seeing a different behavior on your end? My point is that they should be sorted by the order specified when the `runs` object is created. When I iterate on my runs via a `for` loop or via `histories` I get a different ordering which is problematic as it's hard to match the `metadata` to the history of a run if the two methods return different orders Gotcha thank you for the quick follow-up. I have gone ahead and sent the feedback over to our engineering team. I'll let you know when I get an update from them.
1,733,315,969,000
null
Bug Report
[ "wandb/apis/public/runs.py:Runs.histories" ]
[]
wandb/wandb
wandb__wandb-8931
70058a9e7bf09249d546226192ad3f8b0de04cb7
diff --git a/wandb/sdk/data_types/video.py b/wandb/sdk/data_types/video.py index 54e338ef2a5..41310640d6f 100644 --- a/wandb/sdk/data_types/video.py +++ b/wandb/sdk/data_types/video.py @@ -138,10 +138,21 @@ def __init__( self.encode(fps=fps) def encode(self, fps: int = 4) -> None: - mpy = util.get_module( - "moviepy.editor", - required='wandb.Video requires moviepy when passing raw data. Install with "pip install wandb[media]"', - ) + # Try to import ImageSequenceClip from the appropriate MoviePy module + mpy = None + try: + # Attempt to load moviepy.editor for MoviePy < 2.0 + mpy = util.get_module( + "moviepy.editor", + required='wandb.Video requires moviepy when passing raw data. Install with "pip install wandb[media]"', + ) + except wandb.Error: + # Fallback to moviepy for MoviePy >= 2.0 + mpy = util.get_module( + "moviepy", + required='wandb.Video requires moviepy when passing raw data. Install with "pip install wandb[media]"', + ) + tensor = self._prepare_video(self.data) _, self._height, self._width, self._channels = tensor.shape # type: ignore
[Bug]: "wandb.Video requires moviepy when passing raw data" Error due to new moviepy version ### Describe the bug The moviepy package was updated to 2.x and removed the `moviepy.editor` namespace (see [here](https://zulko.github.io/moviepy/getting_started/updating_to_v2.html)), breaking the `Video.encode` method. Fixing by either migrating to moviepy 2.x or pinning the earlier version. Version info: NixOS 24.05 Python 3.11.10 wandb 0.18.7 moviepy 2.1.1
1,732,214,869,000
null
Bug Report
[ "wandb/sdk/data_types/video.py:Video.encode" ]
[]
speechbrain/speechbrain
speechbrain__speechbrain-2760
16b6420d4ff23210cfca2e888be8853264e0cb17
diff --git a/speechbrain/lobes/models/huggingface_transformers/weighted_ssl.py b/speechbrain/lobes/models/huggingface_transformers/weighted_ssl.py index 1507f85093..2dad9e1e46 100644 --- a/speechbrain/lobes/models/huggingface_transformers/weighted_ssl.py +++ b/speechbrain/lobes/models/huggingface_transformers/weighted_ssl.py @@ -42,6 +42,8 @@ class WeightedSSLModel(HFTransformersInterface): freeze : bool (default: True) If True, the model is frozen. If False, the model will be trained alongside with the rest of the pipeline. + **kwargs : dict + Additional arguments to pass to HFTransformersInterface Example ------- @@ -52,14 +54,19 @@ class WeightedSSLModel(HFTransformersInterface): >>> outputs = model(inputs) """ - def __init__(self, hub, save_path="", layernorm=False, freeze=False): - super().__init__(source=hub, save_path=save_path, freeze=freeze) + def __init__( + self, hub, save_path="", layernorm=False, freeze=False, **kwargs + ): + super().__init__( + source=hub, save_path=save_path, freeze=freeze, **kwargs + ) self.model.eval() + self.layernorm = layernorm + self.freeze = freeze self.num_layers = self.config.num_hidden_layers + 1 # Initializing the learnable weights zero_init = torch.cat([torch.zeros(self.num_layers)]) self.weights = torch.nn.Parameter(zero_init, requires_grad=True) - self.layernorm = layernorm def forward(self, wav, wav_lens=None): """This method outputs a weighted sum of the layer representations of the SSL encoder @@ -78,21 +85,25 @@ def forward(self, wav, wav_lens=None): """ feats = self.model(wav) - hidden_states = torch.stack(feats.hidden_states, dim=0).detach() + if self.freeze: + hidden_states = torch.stack(feats.hidden_states, dim=0).detach() + else: + hidden_states = torch.stack(feats.hidden_states, dim=0) + # First dimension should be equal to the number of layers in the hparams assert ( self.num_layers == hidden_states.shape[0] ), "Num layers not equal to num hidden states" - norm_weights = torch.nn.functional.softmax(self.weights, dim=-1) + # Layernorming the layers representations if asked if self.layernorm: - hidden_states = [ - F.layer_norm(t, (t.shape[-1],)) for t in hidden_states - ] + normalized_shape = (hidden_states.size(-1),) + hidden_states = F.layer_norm(hidden_states, normalized_shape) + # Summing the weighted layers - weighted_feats = ( - hidden_states * norm_weights[:, None, None, None] - ).sum(axis=0) + norm_weights = F.softmax(self.weights, dim=-1).view(-1, 1, 1, 1) + weighted_feats = (hidden_states * norm_weights).sum(axis=0) + return weighted_feats def override_config(self, config):
Weighted SSL model not unfreezable ### Describe the bug In our HF Weighted SSL model implementation, we `detach()` the hidden states, meaning weights are not updated. Relevant code: https://github.com/speechbrain/speechbrain/blob/develop/speechbrain/lobes/models/huggingface_transformers/weighted_ssl.py#L81 ``` hidden_states = torch.stack(feats.hidden_states, dim=0).detach() ``` ### Expected behaviour If passing `freeze=False` I'd expect the weights to get updated. ### To Reproduce _No response_ ### Environment Details _No response_ ### Relevant Log Output _No response_ ### Additional Context _No response_
Also if `layernorm=True` then the hidden states are converted to a list which causes a program crash. They should be re-stacked into a tensor.
1,732,134,555,000
null
Bug Report
[ "speechbrain/lobes/models/huggingface_transformers/weighted_ssl.py:WeightedSSLModel.__init__", "speechbrain/lobes/models/huggingface_transformers/weighted_ssl.py:WeightedSSLModel.forward" ]
[]
speechbrain/speechbrain
speechbrain__speechbrain-2742
c4a424306a58a08dbdf3f86f4c9a32eecf7c94f3
diff --git a/recipes/LibriSpeech/ASR/transformer/train_with_whisper.py b/recipes/LibriSpeech/ASR/transformer/train_with_whisper.py index 5c65a49682..90e0d118d3 100644 --- a/recipes/LibriSpeech/ASR/transformer/train_with_whisper.py +++ b/recipes/LibriSpeech/ASR/transformer/train_with_whisper.py @@ -107,7 +107,6 @@ def compute_objectives(self, predictions, batch, stage): target_words = self.tokenizer.batch_decode( target_words, skip_special_tokens=True ) - if hasattr(self.hparams, "normalized_transcripts"): if hasattr(self.tokenizer, "normalize"): @@ -237,7 +236,10 @@ def audio_pipeline(wav): "wrd", "tokens_list", "tokens_bos", "tokens_eos", "tokens" ) def text_pipeline(wrd): - if "normalized_transcripts" in hparams: + if ( + "normalized_transcripts" in hparams + and hparams["normalized_transcripts"] + ): wrd = tokenizer.normalize(wrd) yield wrd tokens_list = tokenizer.encode(wrd, add_special_tokens=False)
Syntax Bug in Librispeech Whisper Recipe ### Describe the bug These bugs listed below are related to whisper specifically following this [recipe](recipes/LibriSpeech/ASR/transformer/train_with_whisper.py) 1) line 228 in dataio_prepare, hparams is a dictionary so `hasattr(hparams, "normalized_transcripts")` does not work as intended. 2) line 50. I've gotten some rounding issues for some batches where the .long() rounds down rather than to the nearest int. (i.e. 12.998 gets rounded down to 12, excluding the last token). ### Expected behaviour 1) just change syntax to check keys in dictionary 2) use torch.round() to ensure proper mask computation ### To Reproduce _No response_ ### Environment Details _No response_ ### Relevant Log Output _No response_ ### Additional Context _No response_
Hi @matthewkperez, thanks for opening this issue! Would you like to open a PR to fix it? It would be a very welcome contribution :) Just submitted PR #2737 for this. Cheers!
1,730,394,415,000
null
Bug Report
[ "recipes/LibriSpeech/ASR/transformer/train_with_whisper.py:dataio_prepare" ]
[]
mesonbuild/meson
mesonbuild__meson-13881
f0851c9e4b1760c552f7921e6b6a379b006ba014
diff --git a/mesonbuild/backend/ninjabackend.py b/mesonbuild/backend/ninjabackend.py index cb3552d7f0c1..7b573e4e4d8a 100644 --- a/mesonbuild/backend/ninjabackend.py +++ b/mesonbuild/backend/ninjabackend.py @@ -2369,7 +2369,7 @@ def generate_dynamic_link_rules(self) -> None: options = self._rsp_options(compiler) self.add_rule(NinjaRule(rule, command, args, description, **options, extra=pool)) - if self.environment.machines[for_machine].is_aix(): + if self.environment.machines[for_machine].is_aix() and complist: rule = 'AIX_LINKER{}'.format(self.get_rule_suffix(for_machine)) description = 'Archiving AIX shared library' cmdlist = compiler.get_command_to_archive_shlib()
Building meson-python fails in AIX When I tried to meson-python master branch in AIX using meson, I get the below error ``` Traceback (most recent call last): File "/meson/install/opt/freeware/lib/python3.9/site-packages/mesonbuild/mesonmain.py", line 193, in run return options.run_func(options) File "/meson/install/opt/freeware/lib/python3.9/site-packages/mesonbuild/msetup.py", line 365, in run app.generate() File "/meson/install/opt/freeware/lib/python3.9/site-packages/mesonbuild/msetup.py", line 188, in generate return self._generate(env, capture, vslite_ctx) File "/meson/install/opt/freeware/lib/python3.9/site-packages/mesonbuild/msetup.py", line 253, in _generate captured_compile_args = intr.backend.generate(capture, vslite_ctx) File "/meson/install/opt/freeware/lib/python3.9/site-packages/mesonbuild/backend/ninjabackend.py", line 642, in generate self.generate_rules() File "/meson/install/opt/freeware/lib/python3.9/site-packages/mesonbuild/backend/ninjabackend.py", line 1354, in generate_rules self.generate_dynamic_link_rules() File "/meson/install/opt/freeware/lib/python3.9/site-packages/mesonbuild/backend/ninjabackend.py", line 2376, in generate_dynamic_link_rules cmdlist = compiler.get_command_to_archive_shlib() UnboundLocalError: local variable 'compiler' referenced before assignment ``` For this I would like to propose a simple fix that handles the scenario when compiler is empty ``` diff --git a/mesonbuild/backend/ninjabackend.py b/mesonbuild/backend/ninjabackend.py index cb3552d7f..7b573e4e4 100644 --- a/mesonbuild/backend/ninjabackend.py +++ b/mesonbuild/backend/ninjabackend.py @@ -2369,7 +2369,7 @@ class NinjaBackend(backends.Backend): options = self._rsp_options(compiler) self.add_rule(NinjaRule(rule, command, args, description, **options, extra=pool)) - if self.environment.machines[for_machine].is_aix(): + if self.environment.machines[for_machine].is_aix() and complist: rule = 'AIX_LINKER{}'.format(self.get_rule_suffix(for_machine)) description = 'Archiving AIX shared library' cmdlist = compiler.get_command_to_archive_shlib() ``` Kindly let me know if can I raise a PR and you're okay with this.
cc: @eli-schwartz I can confirm this bug exists and the fix solves the issue. Ah hmm, right. This happens because we only iterate over all configured project languages that also support using a linker, and then create AIX_LINKER for the last one basically. This fails for projects that don't have any configured languages, which is okay since they also do not need to run the AIX_LINKER archiving rule. The fix seems reasonable...
1,730,961,926,000
null
Bug Report
[ "mesonbuild/backend/ninjabackend.py:NinjaBackend.generate_dynamic_link_rules" ]
[]
ultralytics/ultralytics
ultralytics__ultralytics-18212
626e42ef253b5c20fa83412e7daf9b713484a866
diff --git a/ultralytics/engine/model.py b/ultralytics/engine/model.py index db8d87ebc2..8affd958f2 100644 --- a/ultralytics/engine/model.py +++ b/ultralytics/engine/model.py @@ -115,7 +115,7 @@ def __init__( self.predictor = None # reuse predictor self.model = None # model object self.trainer = None # trainer object - self.ckpt = None # if loaded from *.pt + self.ckpt = {} # if loaded from *.pt self.cfg = None # if loaded from *.yaml self.ckpt_path = None self.overrides = {} # overrides for trainer object @@ -807,7 +807,7 @@ def train( # Update model and cfg after training if RANK in {-1, 0}: ckpt = self.trainer.best if self.trainer.best.exists() else self.trainer.last - self.model, _ = attempt_load_one_weight(ckpt) + self.model, self.ckpt = attempt_load_one_weight(ckpt) self.overrides = self.model.args self.metrics = getattr(self.trainer.validator, "metrics", None) # TODO: no metrics returned by DDP return self.metrics
Saving yolov6n crashes ### Search before asking - [X] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and found no similar bug report. ### Ultralytics YOLO Component Export ### Bug Crash on "yolov6n.yaml" save. ``` New https://pypi.org/project/ultralytics/8.3.49 available 😃 Update with 'pip install -U ultralytics' Ultralytics 8.3.44 🚀 Python-3.10.12 torch-2.5.1+cu124 CPU (AMD Ryzen 3 3200G with Radeon Vega Graphics) engine/trainer: task=detect, mode=train, model=yolov6n.yaml, data=coco8.yaml, epochs=1, time=None, patience=100, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=train11, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=True, opset=None, workspace=None, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, copy_paste_mode=flip, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs/detect/train11 activation: nn.ReLU() from n params module arguments 0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2] 1 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2] 2 -1 2 18560 ultralytics.nn.modules.conv.Conv [32, 32, 3, 1] 3 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2] 4 -1 4 147968 ultralytics.nn.modules.conv.Conv [64, 64, 3, 1] 5 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2] 6 -1 6 886272 ultralytics.nn.modules.conv.Conv [128, 128, 3, 1] 7 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2] 8 -1 2 1180672 ultralytics.nn.modules.conv.Conv [256, 256, 3, 1] 9 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5] 10 -1 1 16512 ultralytics.nn.modules.conv.Conv [256, 64, 1, 1] 11 -1 1 16448 torch.nn.modules.conv.ConvTranspose2d [64, 64, 2, 2, 0] 12 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1] 13 -1 1 110720 ultralytics.nn.modules.conv.Conv [192, 64, 3, 1] 14 -1 3 110976 ultralytics.nn.modules.conv.Conv [64, 64, 3, 1] 15 -1 1 2112 ultralytics.nn.modules.conv.Conv [64, 32, 1, 1] 16 -1 1 4128 torch.nn.modules.conv.ConvTranspose2d [32, 32, 2, 2, 0] 17 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1] 18 -1 1 27712 ultralytics.nn.modules.conv.Conv [96, 32, 3, 1] 19 -1 3 27840 ultralytics.nn.modules.conv.Conv [32, 32, 3, 1] 20 -1 1 9280 ultralytics.nn.modules.conv.Conv [32, 32, 3, 2] 21 [-1, 15] 1 0 ultralytics.nn.modules.conv.Concat [1] 22 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 1] 23 -1 3 110976 ultralytics.nn.modules.conv.Conv [64, 64, 3, 1] 24 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2] 25 [-1, 10] 1 0 ultralytics.nn.modules.conv.Concat [1] 26 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 1] 27 -1 3 443136 ultralytics.nn.modules.conv.Conv [128, 128, 3, 1] 28 [19, 23, 27] 1 607360 ultralytics.nn.modules.head.Detect [80, [32, 64, 128]] YOLOv6n summary: 195 layers, 4,500,080 parameters, 4,500,064 gradients, 13.1 GFLOPs TensorBoard: Start with 'tensorboard --logdir runs/detect/train11', view at http://localhost:6006/ Freezing layer 'model.28.dfl.conv.weight' train: Scanning datasets/coco8/labels/train.cache... 4 images, 0 backgrounds, 0 corrupt: 100%|██████████| 4/4 [00:00<?, ?it/s] val: Scanning datasets/coco8/labels/val.cache... 4 images, 0 backgrounds, 0 corrupt: 100%|██████████| 4/4 [00:00<?, ?it/s] Plotting labels to runs/detect/train11/labels.jpg... optimizer: 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and determining best 'optimizer', 'lr0' and 'momentum' automatically... optimizer: AdamW(lr=0.000119, momentum=0.9) with parameter groups 53 weight(decay=0.0), 62 weight(decay=0.0005), 61 bias(decay=0.0) TensorBoard: model graph visualization added ✅ Image sizes 640 train, 640 val Using 0 dataloader workers Logging results to runs/detect/train11 Starting training for 1 epochs... Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 1/1 0G 3.483 5.686 4.311 22 640: 100%|██████████| 1/1 [00:05<00:00, 5.91s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:02<00:00, 2.16s/it] all 4 17 0 0 0 0 1 epochs completed in 0.006 hours. Optimizer stripped from runs/detect/train11/weights/last.pt, 9.2MB Optimizer stripped from runs/detect/train11/weights/best.pt, 9.2MB Validating runs/detect/train11/weights/best.pt... WARNING ⚠️ validating an untrained model YAML will result in 0 mAP. Ultralytics 8.3.44 🚀 Python-3.10.12 torch-2.5.1+cu124 CPU (AMD Ryzen 3 3200G with Radeon Vega Graphics) YOLOv6n summary (fused): 142 layers, 4,495,392 parameters, 0 gradients, 13.0 GFLOPs Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:01<00:00, 1.31s/it] all 4 17 0 0 0 0 Speed: 4.7ms preprocess, 314.3ms inference, 0.0ms loss, 2.3ms postprocess per image Results saved to runs/detect/train11 Traceback (most recent call last): File "main.py", line 91, in <module> detectImageWithYolo() File "main.py", line 70, in detectImageWithYolo model.save("yolov6coco.pt") File ".venv/lib/python3.10/site-packages/ultralytics/engine/model.py", line 414, in save torch.save({**self.ckpt, **updates}, filename) TypeError: 'NoneType' object is not a mapping ``` ### Environment Ultralytics 8.3.44 🚀 Python-3.10.12 torch-2.5.1+cu124 CPU (AMD Ryzen 3 3200G with Radeon Vega Graphics) Setup complete ✅ (4 CPUs, 23.3 GB RAM, 2769.5/3185.4 GB disk) OS Linux-6.8.0-49-generic-x86_64-with-glibc2.35 Environment Linux Python 3.10.12 Install pip RAM 23.35 GB Disk 2769.5/3185.4 GB CPU AMD Ryzen 3 3200G with Radeon Vega Graphics CPU count 4 GPU None GPU count None CUDA None numpy ✅ 2.0.2>=1.23.0 numpy ✅ 2.0.2<2.0.0; sys_platform == "darwin" matplotlib ✅ 3.9.2>=3.3.0 opencv-python ✅ 4.10.0.84>=4.6.0 pillow ✅ 11.0.0>=7.1.2 pyyaml ✅ 6.0.2>=5.3.1 requests ✅ 2.32.3>=2.23.0 scipy ✅ 1.14.1>=1.4.1 torch ✅ 2.5.1>=1.8.0 torch ✅ 2.5.1!=2.4.0,>=1.8.0; sys_platform == "win32" torchvision ✅ 0.20.1>=0.9.0 tqdm ✅ 4.67.1>=4.64.0 psutil ✅ 6.1.0 py-cpuinfo ✅ 9.0.0 pandas ✅ 2.2.3>=1.1.4 seaborn ✅ 0.13.2>=0.11.0 ultralytics-thop ✅ 2.0.12>=2.0.0 {'OS': 'Linux-6.8.0-49-generic-x86_64-with-glibc2.35', 'Environment': 'Linux', 'Python': '3.10.12', 'Install': 'pip', 'RAM': '23.35 GB', 'Disk': '2769.5/3185.4 GB', 'CPU': 'AMD Ryzen 3 3200G with Radeon Vega Graphics', 'CPU count': 4, 'GPU': None, 'GPU count': None, 'CUDA': None, 'Package Info': {'numpy': '✅ 2.0.2<2.0.0; sys_platform == "darwin"', 'matplotlib': '✅ 3.9.2>=3.3.0', 'opencv-python': '✅ 4.10.0.84>=4.6.0', 'pillow': '✅ 11.0.0>=7.1.2', 'pyyaml': '✅ 6.0.2>=5.3.1', 'requests': '✅ 2.32.3>=2.23.0', 'scipy': '✅ 1.14.1>=1.4.1', 'torch': '✅ 2.5.1!=2.4.0,>=1.8.0; sys_platform == "win32"', 'torchvision': '✅ 0.20.1>=0.9.0', 'tqdm': '✅ 4.67.1>=4.64.0', 'psutil': '✅ 6.1.0', 'py-cpuinfo': '✅ 9.0.0', 'pandas': '✅ 2.2.3>=1.1.4', 'seaborn': '✅ 0.13.2>=0.11.0', 'ultralytics-thop': '✅ 2.0.12>=2.0.0'}} ### Minimal Reproducible Example ``` model = YOLO("yolov6n.yaml") model.train(data="coco8.yaml", epochs=1, imgsz=640) model.save("yolov6coco.pt") ``` ### Additional _No response_ ### Are you willing to submit a PR? - [ ] Yes I'd like to help by submitting a PR!
👋 Hello @EmmanuelMess, thank you for your interest in Ultralytics 🚀! We appreciate you taking the time to report this issue. To help us investigate further, could you please confirm the reproducibility of this issue using the latest version of Ultralytics? You can upgrade with the command below: ```bash pip install -U ultralytics ``` We also noticed that you've shared a reproducible example (thank you for that!). If the issue persists in the most recent version, this example will be very helpful for us to debug. Please also ensure that your `ultralytics` environment is aligned with our recommended setups: ### Environments YOLO can be run in any of the following up-to-date verified environments (pre-installed with all necessary dependencies such as [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/)): - **Notebooks** with free GPU: <a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"/></a> <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/models/ultralytics/yolo11"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a> - **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial/) - **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial/) - **Docker Image**. See [Docker Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/docker_image_quickstart_tutorial/) <a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Docker Pulls"></a> ### Join the Community - For real-time debugging or discussions, join our [Discord](https://discord.com/invite/ultralytics) server 🎧. - Share your insights or questions on [Discourse](https://community.ultralytics.com) or [Reddit](https://reddit.com/r/Ultralytics) to interact with the thriving community. ### Helpful Resources If you'd like to further explore concepts or troubleshoot other issues, check out our comprehensive [Docs](https://docs.ultralytics.com), including: - [Model Training Tips](https://docs.ultralytics.com/guides/model-training-tips/) - [Minimum Reproducible Example Guide](https://docs.ultralytics.com/help/minimum_reproducible_example/) If this is a 🐛 bug as appears to be the case, an Ultralytics engineer will assist you soon to look deeper into the root cause. We'll stay on top of resolving this for you! 🔍😊 ## Status <a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml?query=event%3Aschedule"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a> If this badge is green, all [Ultralytics CI](https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml?query=event%3Aschedule) tests are currently passing. CI tests run on macOS, Windows, and Ubuntu frequently to maintain performance and reliability. Let us know how it goes! 🚀 The model is automatically saved during training inside the runs/detect folder. You don't need to use `model.save()`. > The model is automatically saved during training inside the runs/detect folder. You don't need to use `model.save()`. But I want to explicitly save it to a file. It works with YOLOv11, why not with v6? It doesn't work if you load from yaml. > It doesn't work if you load from yaml. Thanks for the explanation, but it probably shouldn't crash. Maybe add an error message?
1,734,061,207,000
null
Bug Report
[ "ultralytics/engine/model.py:Model.__init__", "ultralytics/engine/model.py:Model.train" ]
[]
ultralytics/ultralytics
ultralytics__ultralytics-17872
21162bd870444550286983a601afbfb142f4c198
diff --git a/ultralytics/engine/predictor.py b/ultralytics/engine/predictor.py index c28e1895d07..c5250166e9e 100644 --- a/ultralytics/engine/predictor.py +++ b/ultralytics/engine/predictor.py @@ -155,7 +155,7 @@ def pre_transform(self, im): same_shapes = len({x.shape for x in im}) == 1 letterbox = LetterBox( self.imgsz, - auto=same_shapes and (self.model.pt or getattr(self.model, "dynamic", False)), + auto=same_shapes and (self.model.pt or (getattr(self.model, "dynamic", False) and not self.model.imx)), stride=self.model.stride, ) return [letterbox(image=x) for x in im]
Imx500 usage example error ### Search before asking - [X] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and found no similar bug report. ### Ultralytics YOLO Component Export ### Bug I encountered an error when running the example code from the [Sony IMX500 usage examples](https://docs.ultralytics.com/integrations/sony-imx500/#usage-examples). The image is resized to 480x640 instead of the expected 640x640, despite both the ONNX model input and the packerOut description specifying a 640x640 input. The model is exported successfully, but unable to run the inference. ``` Export complete (298.0s) Results saved to /home/magi/mido/ultralytics Predict: yolo predict task=detect model=yolov8n_imx_model imgsz=640 int8 Validate: yolo val task=detect model=yolov8n_imx_model imgsz=640 data=coco.yaml int8 Visualize: https://netron.app WARNING ⚠️ Unable to automatically guess model task, assuming 'task=detect'. Explicitly define task for your model, i.e. 'task=detect', 'segment', 'classify','pose' or 'obb'. Loading yolov8n_imx_model for ONNX Runtime inference... Preferring ONNX Runtime AzureExecutionProvider Loading yolov8n_imx_model/yolov8n_imx.onnx for ONNX IMX inference... Found https://ultralytics.com/images/bus.jpg locally at bus.jpg Traceback (most recent call last): File "/home/magi/mido/ultralytics/yolo_v8_playground.py", line 13, in <module> results = imx_model("https://ultralytics.com/images/bus.jpg") ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/magi/mido/ultralytics/.venv/lib/python3.11/site-packages/ultralytics/engine/model.py", line 176, in __call__ return self.predict(source, stream, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/magi/mido/ultralytics/.venv/lib/python3.11/site-packages/ultralytics/engine/model.py", line 554, in predict return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/magi/mido/ultralytics/.venv/lib/python3.11/site-packages/ultralytics/engine/predictor.py", line 173, in __call__ return list(self.stream_inference(source, model, *args, **kwargs)) # merge list of Result into one ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/magi/mido/ultralytics/.venv/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 36, in generator_context response = gen.send(None) ^^^^^^^^^^^^^^ File "/home/magi/mido/ultralytics/.venv/lib/python3.11/site-packages/ultralytics/engine/predictor.py", line 259, in stream_inference preds = self.inference(im, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/magi/mido/ultralytics/.venv/lib/python3.11/site-packages/ultralytics/engine/predictor.py", line 143, in inference return self.model(im, augment=self.args.augment, visualize=visualize, embed=self.args.embed, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/magi/mido/ultralytics/.venv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/magi/mido/ultralytics/.venv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/magi/mido/ultralytics/.venv/lib/python3.11/site-packages/ultralytics/nn/autobackend.py", line 542, in forward y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im}) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/magi/mido/ultralytics/.venv/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py", line 220, in run return self._sess.run(output_names, input_feed, run_options) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ onnxruntime.capi.onnxruntime_pybind11_state.InvalidArgument: [ONNXRuntimeError] : 2 : INVALID_ARGUMENT : Got invalid dimensions for input: input for the following indices index: 3 Got: 480 Expected: 640 Please fix either the inputs/outputs or the model. ``` I tested resizing the image to 640x640 before inference, and it worked properly. However, I assume that the inference call should handle the resizing automatically without requiring manual adjustment beforehand. ### Environment Ultralytics 8.3.37 🚀 Python-3.11.10 torch-2.5.1+cu124 CUDA:0 (NVIDIA GeForce GTX 1650 Ti, 3906MiB) Setup complete ✅ (12 CPUs, 31.0 GB RAM, 444.7/913.8 GB disk) OS Linux-6.8.0-49-generic-x86_64-with-glibc2.35 Environment Linux Python 3.11.10 Install pip RAM 30.97 GB Disk 444.7/913.8 GB CPU Intel Core(TM) i7-10750H 2.60GHz CPU count 12 GPU NVIDIA GeForce GTX 1650 Ti, 3906MiB GPU count 1 CUDA 12.4 numpy ✅ 1.26.4>=1.23.0 numpy ✅ 1.26.4<2.0.0; sys_platform == "darwin" matplotlib ✅ 3.9.2>=3.3.0 opencv-python ✅ 4.10.0.84>=4.6.0 pillow ✅ 11.0.0>=7.1.2 pyyaml ✅ 6.0.2>=5.3.1 requests ✅ 2.32.3>=2.23.0 scipy ✅ 1.14.1>=1.4.1 torch ✅ 2.5.1>=1.8.0 torch ✅ 2.5.1!=2.4.0,>=1.8.0; sys_platform == "win32" torchvision ✅ 0.20.1>=0.9.0 tqdm ✅ 4.67.1>=4.64.0 psutil ✅ 6.1.0 py-cpuinfo ✅ 9.0.0 pandas ✅ 2.2.3>=1.1.4 seaborn ✅ 0.13.2>=0.11.0 ultralytics-thop ✅ 2.0.12>=2.0.0 {'OS': 'Linux-6.8.0-49-generic-x86_64-with-glibc2.35', 'Environment': 'Linux', 'Python': '3.11.10', 'Install': 'pip', 'RAM': '30.97 GB', 'Disk': '444.7/913.8 GB', 'CPU': 'Intel Core(TM) i7-10750H 2.60GHz', 'CPU count': 12, 'GPU': 'NVIDIA GeForce GTX 1650 Ti, 3906MiB', 'GPU count': 1, 'CUDA': '12.4', 'Package Info': {'numpy': '✅ 1.26.4<2.0.0; sys_platform == "darwin"', 'matplotlib': '✅ 3.9.2>=3.3.0', 'opencv-python': '✅ 4.10.0.84>=4.6.0', 'pillow': '✅ 11.0.0>=7.1.2', 'pyyaml': '✅ 6.0.2>=5.3.1', 'requests': '✅ 2.32.3>=2.23.0', 'scipy': '✅ 1.14.1>=1.4.1', 'torch': '✅ 2.5.1!=2.4.0,>=1.8.0; sys_platform == "win32"', 'torchvision': '✅ 0.20.1>=0.9.0', 'tqdm': '✅ 4.67.1>=4.64.0', 'psutil': '✅ 6.1.0', 'py-cpuinfo': '✅ 9.0.0', 'pandas': '✅ 2.2.3>=1.1.4', 'seaborn': '✅ 0.13.2>=0.11.0', 'ultralytics-thop': '✅ 2.0.12>=2.0.0'}} ### Minimal Reproducible Example ```python from ultralytics import YOLO # Load a YOLOv8n PyTorch model model = YOLO("yolov8n.pt") # # # Export the model model.export(format="imx") # exports with PTQ quantization by default # Load the exported model imx_model = YOLO("yolov8n_imx_model") # Run inference results = imx_model("https://ultralytics.com/images/bus.jpg") ``` ### Additional _No response_ ### Are you willing to submit a PR? - [ ] Yes I'd like to help by submitting a PR!
👋 Hello @Magitoneu, thank you for your interest in Ultralytics 🚀! We appreciate you taking the time to report this issue. Here’s a quick guide to help us investigate this further: It seems like you’re experiencing an error related to image resizing when running the Sony IMX500 example. If this is indeed a 🐛 Bug Report, we kindly request you to confirm the behavior by sharing a [minimum reproducible example](https://docs.ultralytics.com/help/minimum_reproducible_example/). This will help ensure we can reproduce and debug the issue effectively. In the meantime, please ensure that you’ve updated to the latest version of the `ultralytics` package and all related requirements. You can do so by running the following command in your terminal: ```bash pip install -U ultralytics ``` We also recommend reviewing the [Sony IMX500 integration documentation](https://docs.ultralytics.com/integrations/sony-imx500/#usage-examples) to double-check the expected behavior of the example code. It’s possible that some additional steps may be required for handling image preprocessing. ## Resources For troubleshooting tips and to learn more ways of using the library, visit the [Ultralytics Docs](https://docs.ultralytics.com). Additional examples for Python and CLI-based workflows are available to guide you: - [Python](https://docs.ultralytics.com/usage/python/) - [CLI](https://docs.ultralytics.com/usage/cli/) If you’re trying to improve your training results or explore new features, don’t miss our [Tips for Best Training Results](https://docs.ultralytics.com/guides/model-training-tips/). ## Join the Community For real-time discussions with other Ultralytics users, join our [Discord](https://discord.com/invite/ultralytics) server 🎧. We also host conversations on [Discourse](https://community.ultralytics.com) and our [Subreddit](https://reddit.com/r/Ultralytics) for deeper discussions. ## Verified Environments If possible, try running your code in one of our tested environments for a consistent experience: - **Notebooks** with free GPU: <a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"/></a> <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/models/ultralytics/yolo11"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a> - **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial/) - **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial/) - **Docker Image**. Check the [Docker Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/docker_image_quickstart_tutorial/) <a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Docker Pulls"></a> ## Status <a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml?query=event%3Aschedule"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a> If this badge is green, all [Ultralytics CI](https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml?query=event%3Aschedule) tests are currently passing, verifying that core functionalities across different environments are operating correctly. This is an automated response 💡. An Ultralytics engineer will review your report and reach out with further assistance soon. Thank you for helping us improve! 😊 @Magitoneu thank you for reporting this issue. It seems that the input dimensions mismatch is due to the image size not being adjusted automatically during inference with the IMX500 export. While resizing the input image to 640x640 manually resolves the issue, automatic resizing is currently not implemented for IMX500-exported models. As a workaround, ensure your input images are pre-processed to 640x640 before inference. For improvements in this behavior, feel free to provide additional insights, or you can open a feature request. Let us know if you need further assistance!
1,732,862,312,000
null
Bug Report
[ "ultralytics/engine/predictor.py:BasePredictor.pre_transform" ]
[]
ultralytics/ultralytics
ultralytics__ultralytics-17728
426879d80d49d0180b525c4fc2484772f9f6f8cc
diff --git a/ultralytics/data/augment.py b/ultralytics/data/augment.py index d092e3c3703..bd821de28de 100644 --- a/ultralytics/data/augment.py +++ b/ultralytics/data/augment.py @@ -1591,7 +1591,7 @@ def __call__(self, labels=None, image=None): labels["ratio_pad"] = (labels["ratio_pad"], (left, top)) # for evaluation if len(labels): - labels = self._update_labels(labels, ratio, dw, dh) + labels = self._update_labels(labels, ratio, left, top) labels["img"] = img labels["resized_shape"] = new_shape return labels
Significant mAP Drop When Using Bottom-Right Padding Instead of Center Padding in YOLOv8 Training ### Search before asking - [X] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/ultralytics/ultralytics/discussions) and found no similar questions. ### Question Hi, I'm training a YOLOv8 model on the same dataset, but noticed a significant difference in mAP when changing the padding strategy. When using center padding (default), the mAP@50 after the first epoch is around 0.88. When using bottom-right padding instead, the mAP@50 drops to 0.0001. I ensured that: The same data augmentation and other settings were used in both cases. However, the bottom-right padding leads to poor performance. What could be causing such a drastic performance drop? Is it related to padding affecting feature distribution, anchor design, or augmentation strategies? Any suggestions for improving performance in this case would be appreciated! Thanks! I changed "center=True" to "center=False",augment.py line1500 ![2024-11-23 16-09-01 的屏幕截图](https://github.com/user-attachments/assets/b2c6c27d-2518-45cf-819b-40e6e6de87ce) ![2024-11-23 16-09-40 的屏幕截图](https://github.com/user-attachments/assets/fa10d8b8-2a61-4212-b709-2c213133bac4) ![2024-11-23 16-09-29 的屏幕截图](https://github.com/user-attachments/assets/2b2c9fd2-f53d-47ca-977f-7db6cd00f1c8) ### Additional _No response_
👋 Hello @Gebbap, thank you for bringing your findings to the Ultralytics community's attention 🚀! We recommend checking out our [Docs](https://docs.ultralytics.com), where you can find comprehensive information on [Python](https://docs.ultralytics.com/usage/python/) and [CLI](https://docs.ultralytics.com/usage/cli/) usage, which may offer some insights into your padding strategy question. Given this is a deep technical question related to padding strategies, we would appreciate if you could provide a [minimum reproducible example](https://docs.ultralytics.com/help/minimum_reproducible_example/). This will greatly assist our team in diagnosing and addressing the issue more effectively. Meanwhile, please ensure that you're running the most up-to-date version of the `ultralytics` package. You can upgrade using the following command: ```bash pip install -U ultralytics ``` This ensures that any recent fixes or improvements are integrated into your environment. For additional support and insights from both engineers and experienced community members, feel free to join the conversation on our [Discord](https://ultralytics.com/discord) 🎧, or start a discussion on [Discourse](https://community.ultralytics.com) or our [Subreddit](https://reddit.com/r/ultralytics). An Ultralytics engineer will soon review your question to provide further assistance. Thank you for your patience and support 👍! ## Environments YOLO can be executed in various verified environments, which come pre-installed with all dependencies, including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/), and [PyTorch](https://pytorch.org/): - **Notebooks** with free GPU: <a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"/></a> <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/models/ultralytics/yolo11"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a> - **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial/) - **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial/) - **Docker Image**. See [Docker Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/docker_image_quickstart_tutorial/) <a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Docker Pulls"></a> ## Status <a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml?query=event%3Aschedule"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a> A green badge indicates all [Ultralytics CI](https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml?query=event%3Aschedule) tests are passing. CI tests ensure the correct operation of all YOLO [Modes](https://docs.ultralytics.com/modes/) and [Tasks](https://docs.ultralytics.com/tasks/) on macOS, Windows, and Ubuntu every 24 hours and upon each commit. Did you check if the training labels are correct in the plots? yes,it is correct.two results used the same dateset and labels I checked the labels after setting `center=False` and they're wrong. So this modification is incorrect and breaks the training labels which is why you're getting low scores. ![train_batch0.jpg](https://github.com/user-attachments/assets/7ec598d9-8140-4dd7-bd7f-fa2764061ce9) Thank you! Simply modifying the value of "center" only changes the position of the plot but doesn’t adjust the labels correctly. How can I change the padding method? Should I modify the source code, or is there an official way to achieve this?
1,732,360,098,000
null
Performance Issue
[ "ultralytics/data/augment.py:LetterBox.__call__" ]
[]
ultralytics/ultralytics
ultralytics__ultralytics-17544
a132920476b2d38bdd58c7a232888f425f476977
diff --git a/ultralytics/utils/callbacks/wb.py b/ultralytics/utils/callbacks/wb.py index b82b8d85ec3..22bbc347566 100644 --- a/ultralytics/utils/callbacks/wb.py +++ b/ultralytics/utils/callbacks/wb.py @@ -138,7 +138,7 @@ def on_train_end(trainer): art.add_file(trainer.best) wb.run.log_artifact(art, aliases=["best"]) # Check if we actually have plots to save - if trainer.args.plots: + if trainer.args.plots and hasattr(trainer.validator.metrics, "curves_results"): for curve_name, curve_values in zip(trainer.validator.metrics.curves, trainer.validator.metrics.curves_results): x, y, x_title, y_title = curve_values _plot_curve(
wandb callback reporting fails if no positive examples in validator ### Search before asking - [X] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and found no similar bug report. ### Ultralytics YOLO Component Predict ### Bug When using the `wandb` callback, the following error occurs if there are no positive examples: ``` Traceback (most recent call last): File "pipeline.py", line 97, in <module> main() File "pipeline.py", line 84, in main output_path = train_stage(stage_config) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "train_new.py", line 57, in train_stage results = model.train(**train_args) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "site-packages/ultralytics/engine/model.py", line 802, in train self.trainer.train() File "site-packages/ultralytics/engine/trainer.py", line 207, in train self._do_train(world_size) File "site-packages/ultralytics/engine/trainer.py", line 477, in _do_train self.run_callbacks("on_train_end") File "site-packages/ultralytics/engine/trainer.py", line 168, in run_callbacks callback(self) File "site-packages/ultralytics/utils/callbacks/wb.py", line 141, in on_train_end if trainer.args.plots and trainer.validator.metrics.curves and trainer.validator.metrics.curves_results: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "site-packages/ultralytics/utils/__init__.py", line 221, in __getattr__ raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}") AttributeError: 'DetMetrics' object has no attribute 'curves_results'. See valid attributes below. Utility class for computing detection metrics such as precision, recall, and mean average precision (mAP) of an object detection model. Args: save_dir (Path): A path to the directory where the output plots will be saved. Defaults to current directory. plot (bool): A flag that indicates whether to plot precision-recall curves for each class. Defaults to False. on_plot (func): An optional callback to pass plots path and data when they are rendered. Defaults to None. names (dict of str): A dict of strings that represents the names of the classes. Defaults to an empty tuple. Attributes: save_dir (Path): A path to the directory where the output plots will be saved. plot (bool): A flag that indicates whether to plot the precision-recall curves for each class. on_plot (func): An optional callback to pass plots path and data when they are rendered. names (dict of str): A dict of strings that represents the names of the classes. box (Metric): An instance of the Metric class for storing the results of the detection metrics. speed (dict): A dictionary for storing the execution time of different parts of the detection process. Methods: process(tp, conf, pred_cls, target_cls): Updates the metric results with the latest batch of predictions. keys: Returns a list of keys for accessing the computed detection metrics. mean_results: Returns a list of mean values for the computed detection metrics. class_result(i): Returns a list of values for the computed detection metrics for a specific class. maps: Returns a dictionary of mean average precision (mAP) values for different IoU thresholds. fitness: Computes the fitness score based on the computed detection metrics. ap_class_index: Returns a list of class indices sorted by their average precision (AP) values. results_dict: Returns a dictionary that maps detection metric keys to their computed values. curves: TODO curves_results: TODO ``` ### Environment ``` Ultralytics 8.3.30 🚀 Python-3.11.5 torch-2.1.2+cu121 CUDA:0 (NVIDIA GeForce RTX 4090, 24111MiB) Setup complete ✅ (32 CPUs, 251.5 GB RAM, 6725.0/7096.0 GB disk) OS Linux-6.5.0-45-generic-x86_64-with-glibc2.35 Environment Linux Python 3.11.5 Install pip RAM 251.52 GB Disk 6725.0/7096.0 GB CPU AMD Ryzen Threadripper PRO 5955WX 16-Cores CPU count 32 GPU NVIDIA GeForce RTX 4090, 24111MiB GPU count 3 CUDA 12.1 numpy ✅ 1.24.3>=1.23.0 matplotlib ✅ 3.7.2>=3.3.0 opencv-python ✅ 4.8.1.78>=4.6.0 pillow ✅ 10.1.0>=7.1.2 pyyaml ✅ 6.0>=5.3.1 requests ✅ 2.31.0>=2.23.0 scipy ✅ 1.11.1>=1.4.1 torch ✅ 2.1.2>=1.8.0 torchvision ✅ 0.16.2>=0.9.0 tqdm ✅ 4.65.0>=4.64.0 psutil ✅ 5.9.0 py-cpuinfo ✅ 8.0.0 pandas ✅ 2.0.3>=1.1.4 seaborn ✅ 0.12.2>=0.11.0 ultralytics-thop ✅ 2.0.0>=2.0.0 numpy ✅ 1.24.3<2.0.0; sys_platform == "darwin" torch ✅ 2.1.2!=2.4.0,>=1.8.0; sys_platform == "win32" ``` ### Minimal Reproducible Example ``` import wandb from ultralytics import YOLO from wandb.integration.ultralytics import add_wandb_callback def train_yolo(): # Initialize wandb wandb.init( project="yolo-example", name="training-run", job_type="training" ) # Initialize YOLO model model = YOLO('yolov8n.yaml') # or 'yolov8n.pt' for pretrained # Add wandb callback to log metrics add_wandb_callback(model) # Train the model results = model.train( data='coco128_negative.yaml', # path to data config file with negatives epochs=3, batch=16, imgsz=640 ) # Close wandb run wandb.finish() if __name__ == "__main__": train_yolo() ``` ### Additional _No response_ ### Are you willing to submit a PR? - [X] Yes I'd like to help by submitting a PR!
1,731,625,609,000
null
Bug Report
[ "ultralytics/utils/callbacks/wb.py:on_train_end" ]
[]
ultralytics/ultralytics
ultralytics__ultralytics-17499
496e6a3b8680e4ccd4f190e30841748aee2cb89c
diff --git a/ultralytics/engine/results.py b/ultralytics/engine/results.py index 029e4471e04..8de0a2e6a1c 100644 --- a/ultralytics/engine/results.py +++ b/ultralytics/engine/results.py @@ -750,7 +750,7 @@ def save_crop(self, save_dir, file_name=Path("im.jpg")): save_one_box( d.xyxy, self.orig_img.copy(), - file=Path(save_dir) / self.names[int(d.cls)] / f"{Path(file_name)}.jpg", + file=Path(save_dir) / self.names[int(d.cls)] / Path(file_name).with_suffix(".jpg"), BGR=True, )
Save_crop method from Results with default params results in double file extension ### Search before asking - [X] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and found no similar bug report. ### Ultralytics YOLO Component Predict ### Bug Save_crop method in the Results object already adds file extension to the saved image (.jpg) and default value is set as 'im.jpg' so when using default behaviour we get a file named **"im.jpg.jpg"** With this few examples `results[0].save_crop(save_dir='../out')` `results[0].save_crop(save_dir='../out', file_name='img.png')` `results[0].save_crop(save_dir='../out', file_name='img')` Here are the outputs in a File Explorer, only one without double extension is when you add file_name without any extension ![image](https://github.com/user-attachments/assets/873bb127-ca4e-439d-8f74-8aece55fd3fa) ### Environment Setup complete ✅ (8 CPUs, 15.9 GB RAM, 477.1/931.5 GB disk) OS Windows-10-10.0.17763-SP0 Environment Windows Python 3.10.15 Install pip RAM 15.94 GB Disk 477.1/931.5 GB CPU Intel Core(TM) i7-9700 3.00GHz CPU count 8 GPU NVIDIA GeForce GTX 1660, 6144MiB GPU count 1 CUDA 11.8 numpy ✅ 1.26.3>=1.23.0 matplotlib ✅ 3.9.2>=3.3.0 opencv-python ✅ 4.10.0.84>=4.6.0 pillow ✅ 10.2.0>=7.1.2 pyyaml ✅ 6.0.2>=5.3.1 requests ✅ 2.32.3>=2.23.0 scipy ✅ 1.14.1>=1.4.1 torch ✅ 2.5.1+cu118>=1.8.0 torchvision ✅ 0.20.1+cu118>=0.9.0 tqdm ✅ 4.67.0>=4.64.0 psutil ✅ 6.1.0 py-cpuinfo ✅ 9.0.0 pandas ✅ 2.2.3>=1.1.4 seaborn ✅ 0.13.2>=0.11.0 ultralytics-thop ✅ 2.0.11>=2.0.0 numpy ✅ 1.26.3<2.0.0; sys_platform == "darwin" torch ✅ 2.5.1+cu118!=2.4.0,>=1.8.0; sys_platform == "win32" ### Minimal Reproducible Example ``` model = YOLO('../model/yolov8s.pt') results = model.predict(frame, conf=0.5) results[0].save_crop(save_dir='../out') ``` ### Additional _No response_ ### Are you willing to submit a PR? - [X] Yes I'd like to help by submitting a PR!
👋 Hello @M3nxudo, thank you for bringing this to our attention! We're excited to assist you 🚀 and appreciate your proactive approach to contribute with a PR. For anyone facing similar issues, we highly recommend checking out our [Docs](https://docs.ultralytics.com) for guidance on both [Python](https://docs.ultralytics.com/usage/python/) and [CLI](https://docs.ultralytics.com/usage/cli/) usage. Since this seems to be a 🐛 Bug Report, please ensure that the provided [minimal reproducible example](https://docs.ultralytics.com/help/minimum_reproducible_example/) accurately reflects the issue you're facing. This will help us diagnose the problem more efficiently. For real-time help or to engage with our vibrant community, you can join us on [Discord](https://ultralytics.com/discord) 🎧. For more in-depth discussions, consider visiting our [Discourse](https://community.ultralytics.com) or share insights with members on our [Subreddit](https://reddit.com/r/ultralytics). ## Upgrade Make sure you're using the latest version of the `ultralytics` package, along with all its [requirements](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml). Verify this in a [**Python>=3.8**](https://www.python.org/) environment with [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/): ```bash pip install -U ultralytics ``` ## Environments You can run YOLO in various verified environments that include all necessary dependencies, such as [CUDA](https://developer.nvidia.com/cuda), [Python](https://www.python.org/), and [PyTorch](https://pytorch.org/): - **Notebooks** with free GPU: <a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"/></a> <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/models/ultralytics/yolo11"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a> - **Google Cloud** Deep Learning VM: Check the [GCP Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial/) - **Amazon** Deep Learning AMI: See the [AWS Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial/) - **Docker Image**: Refer to the [Docker Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/docker_image_quickstart_tutorial/) <a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Docker Pulls"></a> ## Status <a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml?query=event%3Aschedule"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a> Our [Ultralytics CI](https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml?query=event%3Aschedule) tests run every 24 hours and on all commits to ensure smooth operation across different environments and verify correct functionality for all YOLO [Modes](https://docs.ultralytics.com/modes/) and [Tasks](https://docs.ultralytics.com/tasks/). This is an automated response and an Ultralytics engineer will review your issue shortly. Thank you for your understanding and collaboration! 🌟 Easiest solution would be to change the default value of the file_name param from line 721 of results.py: https://github.com/ultralytics/ultralytics/blob/main/ultralytics/engine/results.py `def save_crop(self, save_dir, file_name=Path("im.jpg")):` to **file_name=Path("im")** since on line 753 we already add the file extension: `file=Path(save_dir) / self.names[int(d.cls)] / f"{Path(file_name)}.jpg",`
1,731,417,643,000
null
Bug Report
[ "ultralytics/engine/results.py:Results.save_crop" ]
[]
huggingface/diffusers
huggingface__diffusers-10269
2739241ad189aef9372394a185b864cbbb9ab5a8
diff --git a/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py b/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py index 6ddd9ac23009..c7474d56c708 100644 --- a/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py +++ b/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py @@ -99,10 +99,19 @@ def __init__( self._step_index = None self._begin_index = None + self._shift = shift + self.sigmas = sigmas.to("cpu") # to avoid too much CPU/GPU communication self.sigma_min = self.sigmas[-1].item() self.sigma_max = self.sigmas[0].item() + @property + def shift(self): + """ + The value used for shifting. + """ + return self._shift + @property def step_index(self): """ @@ -128,6 +137,9 @@ def set_begin_index(self, begin_index: int = 0): """ self._begin_index = begin_index + def set_shift(self, shift: float): + self._shift = shift + def scale_noise( self, sample: torch.FloatTensor, @@ -236,7 +248,7 @@ def set_timesteps( if self.config.use_dynamic_shifting: sigmas = self.time_shift(mu, 1.0, sigmas) else: - sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas) + sigmas = self.shift * sigmas / (1 + (self.shift - 1) * sigmas) if self.config.shift_terminal: sigmas = self.stretch_shift_to_terminal(sigmas)
Allow configuring `shift=` for SD3 dynamically **Is your feature request related to a problem? Please describe.** Allow passing `shift=` per inference call (like timesteps) on the pipeline, for flow matching scheduler, or allow `set_shift()` etc. on the scheduler. This seems to be the key to getting good results with SD3 https://x.com/bfitzgerald242/status/1801018438120341911
Hi, you can do it like this: ```python from diffusers import FlowMatchEulerDiscreteScheduler pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(pipe.scheduler.config, shift=3.0) ``` yep! but the same format is applicable for timesteps and was wondering if we can get around without re-instating the scheduler again and again? Not for the moment, but I can see the potential in adding it as an argument if people change it a lot for each inference. In my experience it didn't fix the anatomy problems and sometimes it made the quality worse but I tested it with the T5, still need to test it without it and do some more generations. Can you share some examples where changing the shift helped with the generation? That would help a lot. This issue has been automatically marked as stale because it has not had recent activity. If you think this still needs to be addressed please comment on this thread. Please note that issues that do not follow the [contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) are likely to be ignored. This issue has been automatically marked as stale because it has not had recent activity. If you think this still needs to be addressed please comment on this thread. Please note that issues that do not follow the [contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) are likely to be ignored. Useful to have, changing `shift` is popular with HunyuanVideo and SD3/Flux. does it really help though? examples requested never were shared. Documented benefit for HunyuanVideo. https://github.com/huggingface/diffusers/blob/1524781b88ac1a082e755a030ba9d73cd6948e84/docs/source/en/api/pipelines/hunyuan_video.md?plain=1#L32 I'll run some tests for SD3/Flux to confirm. but SD3 already has resolution-dependent shift using the `mu` calculations, right? Actually this won't do anything for Flux because of dynamic shifting. We recently added support for dynamic shifting in SD3, it's not used by default though. Either way, it's a simple change that has at least some benefit to HunyuanVideo and it won't do any harm to add a function to change `shift` without creating the scheduler each time for those that want it. well not to be argumentative but the schedulers are stateful, yes? doesn't this mean recreating it has to be done anyway?
1,734,456,767,000
null
Feature Request
[ "src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py:FlowMatchEulerDiscreteScheduler.__init__", "src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py:FlowMatchEulerDiscreteScheduler", "src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py:FlowMatchEulerDiscreteScheduler.set_timesteps" ]
[ "src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py:FlowMatchEulerDiscreteScheduler.shift", "src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py:FlowMatchEulerDiscreteScheduler.set_shift" ]
huggingface/diffusers
huggingface__diffusers-10262
f9d5a9324d77169d486a60f3b4b267c74149b982
diff --git a/src/diffusers/models/unets/unet_2d.py b/src/diffusers/models/unets/unet_2d.py index 5972505f2897..d05af686dede 100644 --- a/src/diffusers/models/unets/unet_2d.py +++ b/src/diffusers/models/unets/unet_2d.py @@ -97,6 +97,7 @@ def __init__( out_channels: int = 3, center_input_sample: bool = False, time_embedding_type: str = "positional", + time_embedding_dim: Optional[int] = None, freq_shift: int = 0, flip_sin_to_cos: bool = True, down_block_types: Tuple[str, ...] = ("DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D"), @@ -122,7 +123,7 @@ def __init__( super().__init__() self.sample_size = sample_size - time_embed_dim = block_out_channels[0] * 4 + time_embed_dim = time_embedding_dim or block_out_channels[0] * 4 # Check inputs if len(down_block_types) != len(up_block_types):
Make `time_embed_dim` of `UNet2DModel` changeable **Is your feature request related to a problem? Please describe.** I want to change the `time_embed_dim` of `UNet2DModel`, but it is hard coded as `time_embed_dim = block_out_channels[0] * 4` in the `__init__` function. **Describe the solution you'd like.** Make `time_embedding_dim` a parameter of the `__init__` function, with the default value of `None`. Use `time_embed_dim = time_embedding_dim or block_out_channels[0] * 4` in the function body. **Describe alternatives you've considered.** N/A. **Additional context.** The same thing in `UNet2DConditionModel` can be changed via the parameter `time_embedding_dim` of its `__init__` function.
1,734,429,874,000
null
Feature Request
[ "src/diffusers/models/unets/unet_2d.py:UNet2DModel.__init__" ]
[]
huggingface/diffusers
huggingface__diffusers-10185
43534a8d1fd405fd0d1e74f991ab97f743bd3e59
diff --git a/src/diffusers/schedulers/scheduling_repaint.py b/src/diffusers/schedulers/scheduling_repaint.py index 97665bb5277b..ae953cfb966b 100644 --- a/src/diffusers/schedulers/scheduling_repaint.py +++ b/src/diffusers/schedulers/scheduling_repaint.py @@ -319,7 +319,7 @@ def step( prev_unknown_part = alpha_prod_t_prev**0.5 * pred_original_sample + pred_sample_direction + variance # 8. Algorithm 1 Line 5 https://arxiv.org/pdf/2201.09865.pdf - prev_known_part = (alpha_prod_t_prev**0.5) * original_image + ((1 - alpha_prod_t_prev) ** 0.5) * noise + prev_known_part = (alpha_prod_t_prev**0.5) * original_image + (1 - alpha_prod_t_prev) * noise # 9. Algorithm 1 Line 8 https://arxiv.org/pdf/2201.09865.pdf pred_prev_sample = mask * prev_known_part + (1.0 - mask) * prev_unknown_part
Potential bug in repaint? https://github.com/huggingface/diffusers/blob/dac623b59f52c58383a39207d5147aa34e0047cd/src/diffusers/schedulers/scheduling_repaint.py#L322 According to line5 of algorithm 1 in the paper, the second part in line 322 should remove the `**0.5`? thanks!
I also think that should be removed as mentioned in algorithm 1 Line 5 from the [paper](https://arxiv.org/pdf/2201.09865) ```math x_{t-1}^{known} \ =\ \sqrt{\overline{\alpha }_{t}} x_0 \ +( 1-\ \overline{\alpha }_{t}) \epsilon ``` Corrected ```python prev_known_part = (alpha_prod_t_prev**0.5) * original_image + ((1 - alpha_prod_t_prev)) * noise ``` I don't think Fixing this might cause any issue in RePaintScheduler @sayakpaul WDYT? Cc: @yiyixuxu This issue has been automatically marked as stale because it has not had recent activity. If you think this still needs to be addressed please comment on this thread. Please note that issues that do not follow the [contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) are likely to be ignored.
1,733,904,201,000
null
Bug Report
[ "src/diffusers/schedulers/scheduling_repaint.py:RePaintScheduler.step" ]
[]
huggingface/diffusers
huggingface__diffusers-10182
43534a8d1fd405fd0d1e74f991ab97f743bd3e59
diff --git a/src/diffusers/loaders/lora_pipeline.py b/src/diffusers/loaders/lora_pipeline.py index eb9b42c5fbb7..1445394b8784 100644 --- a/src/diffusers/loaders/lora_pipeline.py +++ b/src/diffusers/loaders/lora_pipeline.py @@ -2313,7 +2313,7 @@ def _maybe_expand_transformer_param_shape_or_error_( for name, module in transformer.named_modules(): if isinstance(module, torch.nn.Linear): module_weight = module.weight.data - module_bias = module.bias.data if hasattr(module, "bias") else None + module_bias = module.bias.data if module.bias is not None else None bias = module_bias is not None lora_A_weight_name = f"{name}.lora_A.weight"
Can't load multiple loras when using Flux Control LoRA ### Describe the bug I was trying out the FluxControlPipeline with the Control LoRA introduced in #9999 , but had issues loading in multiple loras. For example, if I load the depth lora first and then the 8-step lora, it errors on the 8-step lora, and if I load the 8-step lora first and then the depth lora, it errors when loading the depth lora. ### Reproduction ``` from diffusers import FluxControlPipeline from huggingface_hub import hf_hub_download import torch control_pipe = FluxControlPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to("cuda") control_pipe.load_lora_weights("black-forest-labs/FLUX.1-Depth-dev-lora") control_pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors")) ``` ### Logs ```shell AttributeError Traceback (most recent call last) Cell In[6], line 8 5 control_pipe = FluxControlPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to("cuda") 7 control_pipe.load_lora_weights("black-forest-labs/FLUX.1-Depth-dev-lora") ----> 8 control_pipe.load_lora_weights( 9 hf_hub_download( 10 "ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors" 11 ), 12 adapter_name="HyperFlux", 13 ) File ~/.venv/lib/python3.10/site-packages/diffusers/loaders/lora_pipeline.py:1856, in FluxLoraLoaderMixin.load_lora_weights(self, pretrained_model_name_or_path_or_dict, adapter_name, **kwargs) 1849 transformer_norm_state_dict = { 1850 k: state_dict.pop(k) 1851 for k in list(state_dict.keys()) 1852 if "transformer." in k and any(norm_key in k for norm_key in self._control_lora_supported_norm_keys) 1853 } 1855 transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer -> 1856 has_param_with_expanded_shape = self._maybe_expand_transformer_param_shape_or_error_( 1857 transformer, transformer_lora_state_dict, transformer_norm_state_dict 1858 ) 1860 if has_param_with_expanded_shape: 1861 logger.info( 1862 "The LoRA weights contain parameters that have different shapes that expected by the transformer. " 1863 "As a result, the state_dict of the transformer has been expanded to match the LoRA parameter shapes. " 1864 "To get a comprehensive list of parameter names that were modified, enable debug logging." 1865 ) File ~/.venv/lib/python3.10/site-packages/diffusers/loaders/lora_pipeline.py:2316, in FluxLoraLoaderMixin._maybe_expand_transformer_param_shape_or_error_(cls, transformer, lora_state_dict, norm_state_dict, prefix) 2314 if isinstance(module, torch.nn.Linear): 2315 module_weight = module.weight.data -> 2316 module_bias = module.bias.data if hasattr(module, "bias") else None 2317 bias = module_bias is not None 2319 lora_A_weight_name = f"{name}.lora_A.weight" AttributeError: 'NoneType' object has no attribute 'data' ``` ### System Info - 🤗 Diffusers version: 0.32.0.dev0 - Platform: Linux-5.15.0-124-generic-x86_64-with-glibc2.35 - Running on Google Colab?: No - Python version: 3.10.12 - PyTorch version (GPU?): 2.5.1+cu124 (True) - Flax version (CPU?/GPU?/TPU?): not installed (NA) - Jax version: not installed - JaxLib version: not installed - Huggingface_hub version: 0.26.5 - Transformers version: 4.47.0 - Accelerate version: 1.2.0 - PEFT version: 0.14.0 - Bitsandbytes version: not installed - Safetensors version: 0.4.5 - xFormers version: not installed - Accelerator: NVIDIA H100 80GB HBM3, 81559 MiB - Using GPU in script?: Yes - Using distributed or parallel set-up in script?: No ### Who can help? @a-r-r-o-w @sayakpaul
Oh, we should have anticipated this use case. I think the correct check should be `module_bias = module.bias.data if module.bias is not None else None` instead. Even with the above fix, I don't think the weights would load as expected because the depth control lora would expand the input features of `x_embedder` to 128, but Hyper-SD LoRA will have input features of 64. Will try and respond back shortly cc @yiyixuxu as well It does indeed error out with the corrected if-statement as well due to the explanation above. <details> <summary> trace </summary> ```bash Traceback (most recent call last): File "/home/aryan/work/diffusers/dump4.py", line 9, in <module> pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors")) File "/home/aryan/work/diffusers/src/diffusers/loaders/lora_pipeline.py", line 1868, in load_lora_weights self.load_lora_into_transformer( File "/home/aryan/work/diffusers/src/diffusers/loaders/lora_pipeline.py", line 1932, in load_lora_into_transformer transformer.load_lora_adapter( File "/home/aryan/work/diffusers/src/diffusers/loaders/peft.py", line 320, in load_lora_adapter incompatible_keys = set_peft_model_state_dict(self, state_dict, adapter_name, **peft_kwargs) File "/raid/aryan/nightly-venv/lib/python3.10/site-packages/peft/utils/save_and_load.py", line 445, in set_peft_model_state_dict load_result = model.load_state_dict(peft_model_state_dict, strict=False, assign=True) File "/raid/aryan/nightly-venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 2584, in load_state_dict raise RuntimeError( RuntimeError: Error(s) in loading state_dict for FluxTransformer2DModel: size mismatch for x_embedder.lora_A.default_1.weight: copying a param with shape torch.Size([64, 64]) from checkpoint, the shape in current model is torch.Size([64, 128]). ``` </details> I do believe that this should work as expected allowing for depth-control-lora to work with N-step hyper-sd-loras. This is a unique case that has probably never been investigated before. Not completely sure on how we would handle this either :/ My initial thoughts are to expand the lora shapes as well, and set the weights of the linear layer corresponding to the depth control input to 0. This should effectively remove the control latent from interfering with the effect of hyper-sd and it will operate only on the denoising latent. Will experiment and let the results speak for whether this would be something we should try to prioritize support for (as there are 10000+ available Flux loras that might be compatible), and will let YiYi and Sayak comment on how best to handle this situation if it works as expected Are you facing any errors when trying to run inference with LoRAs, but without control LoRAs? Either way, I think above mentioned condition needs to be updated. I just tried using the normal `FluxPipeline`, which also encounters the same issue. Repro script: ``` from diffusers import FluxPipeline import torch from huggingface_hub import hf_hub_download pipe = FluxPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16 ) pipe.to("cuda") pipe.load_lora_weights( hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), ) pipe.load_lora_weights( "strangerzonehf/Flux-Midjourney-Mix2-LoRA", ) ```
1,733,878,565,000
null
Bug Report
[ "src/diffusers/loaders/lora_pipeline.py:FluxLoraLoaderMixin._maybe_expand_transformer_param_shape_or_error_" ]
[]
huggingface/diffusers
huggingface__diffusers-10176
09675934006cefb1eb3e58c41fca9ec372a7c797
diff --git a/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py b/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py index c6748ad418fe..6c36ec173539 100644 --- a/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +++ b/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py @@ -446,13 +446,14 @@ def prepare_extra_step_kwargs(self, generator, eta): extra_step_kwargs["generator"] = generator return extra_step_kwargs - # Copied from diffusers.pipelines.stable_diffusion_k_diffusion.pipeline_stable_diffusion_k_diffusion.StableDiffusionKDiffusionPipeline.check_inputs def check_inputs( self, prompt, height, width, callback_steps, + gligen_images, + gligen_phrases, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, @@ -499,6 +500,13 @@ def check_inputs( f" {negative_prompt_embeds.shape}." ) + if gligen_images is not None and gligen_phrases is not None: + if len(gligen_images) != len(gligen_phrases): + raise ValueError( + "`gligen_images` and `gligen_phrases` must have the same length when both are provided, but" + f" got: `gligen_images` with length {len(gligen_images)} != `gligen_phrases` with length {len(gligen_phrases)}." + ) + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = ( @@ -814,6 +822,8 @@ def __call__( height, width, callback_steps, + gligen_images, + gligen_phrases, negative_prompt, prompt_embeds, negative_prompt_embeds,
Raise an error when `len(gligen_images )` is not equal to `len(gligen_phrases)` in `StableDiffusionGLIGENTextImagePipeline` To whom it may concern, I found that when using `StableDiffusionGLIGENTextImagePipeline`, there is no error raised when `len(gligen_images )` is not equal to `len(gligen_phrases)`. And when I dig into the source code, it seems that these two features are zipped together in a for loop during the preprocessing. I guess this will cause the longer one to be clipped unintentionally. (If my understanding is wrong, feel free to correct me.) Is there any possibility to raise an error or at least warning? Thanks in advance. Source Code: https://github.com/huggingface/diffusers/blob/v0.31.0/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py#L689
Hi @abcdefg133hi. Thanks for finding this. Your understanding is correct, the longer of `gligen_phrases` and `gligen_images` will be clipped: ```python for phrase, image in zip(["text", "text1", "text2"], ["image", "image1"]): print(phrase, image) text image text1 image1 ``` We should add this to `check_inputs` and raise an error when `len(gligen_images) != len(gligen_phrases)`. Note that `Copied from` will need to be removed. https://github.com/huggingface/diffusers/blob/c9e4fab42ca481fe8e0d2456b54ec900fb57730d/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py#L450 Would you like to submit a PR?
1,733,854,068,000
null
Bug Report
[ "src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py:StableDiffusionGLIGENTextImagePipeline.check_inputs", "src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py:StableDiffusionGLIGENTextImagePipeline.__call__" ]
[]
huggingface/diffusers
huggingface__diffusers-10170
0e50401e34242dbd4b94a8a3cf0ee24afc25ea65
diff --git a/src/diffusers/image_processor.py b/src/diffusers/image_processor.py index 00d8588d5a2a..d6913f045ad2 100644 --- a/src/diffusers/image_processor.py +++ b/src/diffusers/image_processor.py @@ -236,7 +236,7 @@ def denormalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, to `np.ndarray` or `torch.Tensor`: The denormalized image array. """ - return (images / 2 + 0.5).clamp(0, 1) + return (images * 0.5 + 0.5).clamp(0, 1) @staticmethod def convert_to_rgb(image: PIL.Image.Image) -> PIL.Image.Image: @@ -537,6 +537,26 @@ def binarize(self, image: PIL.Image.Image) -> PIL.Image.Image: return image + def _denormalize_conditionally( + self, images: torch.Tensor, do_denormalize: Optional[List[bool]] = None + ) -> torch.Tensor: + r""" + Denormalize a batch of images based on a condition list. + + Args: + images (`torch.Tensor`): + The input image tensor. + do_denormalize (`Optional[List[bool]`, *optional*, defaults to `None`): + A list of booleans indicating whether to denormalize each image in the batch. If `None`, will use the + value of `do_normalize` in the `VaeImageProcessor` config. + """ + if do_denormalize is None: + return self.denormalize(images) if self.config.do_normalize else images + + return torch.stack( + [self.denormalize(images[i]) if do_denormalize[i] else images[i] for i in range(images.shape[0])] + ) + def get_default_height_width( self, image: Union[PIL.Image.Image, np.ndarray, torch.Tensor], @@ -752,12 +772,7 @@ def postprocess( if output_type == "latent": return image - if do_denormalize is None: - do_denormalize = [self.config.do_normalize] * image.shape[0] - - image = torch.stack( - [self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])] - ) + image = self._denormalize_conditionally(image, do_denormalize) if output_type == "pt": return image @@ -966,12 +981,7 @@ def postprocess( deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False) output_type = "np" - if do_denormalize is None: - do_denormalize = [self.config.do_normalize] * image.shape[0] - - image = torch.stack( - [self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])] - ) + image = self._denormalize_conditionally(image, do_denormalize) image = self.pt_to_numpy(image)
Post processing performance can be improved ## Problem Images generated in batches pay a performance penalty in the post-processing step of the diffusion pipeline. A lot of calls to image_processor.denormalize are made instead of batching the computation. ### Suggested Improvements #### Using multiplication instead of division This is a freebie, numerically the same but much cheaper on all compute platforms ```python def denormalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]: return (images * 0.5 + 0.5).clamp(0, 1) ``` #### Adding Fast path in an all-or-nothing denormalization scenario Instead of calling `torch.stack` on a batch where all (or none) of the images require denormalization, apply the operation on the full tensor directly ```python def post_process(...): # ... if do_denormalize is None: return self.denormalize(images) if self.config.do_normalize else images # ... ``` #### Denormalize first, stack later Invoking the `denormalize` call multiple times incurs a lot of overhead on the compute pipeline, more so than "wasting" compute of denormalizing everything and calling `torch.stack` on the results. ```python def post_process(...): # ... denormalized = self.denormalize(image) image = torch.stack([ denormalized[i] if do_denormalize[i] else image[i] for i in range(image.shape[0]) ]) # ... ``` ## Benchmarks https://colab.research.google.com/drive/1H1SKUlyEZduUeU50V8SVEZgmFrdl6Ego?usp=sharing These were ran in a Colab T4 instance on CUDA. The batch is of the shape `[1024,3,512,512]` and dtype `fp16`. Further combinations can be made if requested. ### Baseline <img width="745" alt="image" src="https://github.com/user-attachments/assets/3bd79c84-bce0-47f4-aae9-5ba86b77a2de"> ### Suggested Improvements <img width="729" alt="image" src="https://github.com/user-attachments/assets/3c739ea0-71e6-467d-b36a-e07e42593003">
1,733,826,374,000
null
Performance Issue
[ "src/diffusers/image_processor.py:VaeImageProcessor.denormalize", "src/diffusers/image_processor.py:VaeImageProcessor.postprocess", "src/diffusers/image_processor.py:VaeImageProcessorLDM3D.postprocess" ]
[ "src/diffusers/image_processor.py:VaeImageProcessor._denormalize_conditionally" ]
huggingface/diffusers
huggingface__diffusers-10115
65ab1052b8b38687bcf37afe746a7cf20dedc045
diff --git a/src/diffusers/models/embeddings.py b/src/diffusers/models/embeddings.py index 91451fa9aac2..8f8f1073da74 100644 --- a/src/diffusers/models/embeddings.py +++ b/src/diffusers/models/embeddings.py @@ -959,7 +959,12 @@ def forward(self, ids: torch.Tensor) -> torch.Tensor: freqs_dtype = torch.float32 if is_mps else torch.float64 for i in range(n_axes): cos, sin = get_1d_rotary_pos_embed( - self.axes_dim[i], pos[:, i], repeat_interleave_real=True, use_real=True, freqs_dtype=freqs_dtype + self.axes_dim[i], + pos[:, i], + theta=self.theta, + repeat_interleave_real=True, + use_real=True, + freqs_dtype=freqs_dtype, ) cos_out.append(cos) sin_out.append(sin)
Some bugs in FLUX pipeline ### Describe the bug 1. missing self.theta in get_1d_rotary_pos_embed: https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/embeddings.py#L961-L963 2. if prompt_embeds is None, pooled_prompt_embeds will never be computed: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/flux/pipeline_flux.py#L348-L363 ### Reproduction . ### Logs _No response_ ### System Info . ### Who can help? @yiyixuxu @sayakpaul @DN6 @asomoza
`pooled_prompt_embeds` has to be passed when `prompt_embeds` is used so that's ok https://github.com/huggingface/diffusers/blob/8421c1461bf4ab7801070d04d6ec1e6b28ee5b59/src/diffusers/pipelines/flux/pipeline_flux.py#L422-L425 Would you like to open a PR that passes `self.theta` to `get_1d_rotary_pos_embed`?
1,733,314,229,000
null
Bug Report
[ "src/diffusers/models/embeddings.py:FluxPosEmbed.forward" ]
[]
huggingface/diffusers
huggingface__diffusers-10086
827b6c25f9b78a297345f356a7d152fd6faf27d8
diff --git a/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py b/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py index a77231cdc02d..aee1ad8c75f5 100644 --- a/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +++ b/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py @@ -907,11 +907,7 @@ def __call__( continue # expand the latents if we are doing classifier free guidance - latent_model_input = ( - torch.cat([latents] * 2) - if self.do_classifier_free_guidance and skip_guidance_layers is None - else latents - ) + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timestep = t.expand(latent_model_input.shape[0]) @@ -935,6 +931,8 @@ def __call__( else False ) if skip_guidance_layers is not None and should_skip_layers: + timestep = t.expand(latents.shape[0]) + latent_model_input = latents noise_pred_skip_layers = self.transformer( hidden_states=latent_model_input, timestep=timestep,
RuntimeError with LyCORIS, Batch Inference and skip_guidance_layers ### Describe the bug A `RuntimeError` occurs when using the following combination: * SD3 * Batch inference (`num_images_per_prompt > 1`) * LyCORIS * `skip_guidance_layers` is set The error message is: `"RuntimeError: The size of tensor a (2) must match the size of tensor b (4) at non-singleton dimension 0"` It seems that batch inference (`num_images_per_prompt > 1`) does not work in conjunction with `skip_guidance_layers`. ### Reproduction This code snippet produces the error: ```python self.pipe = StableDiffusion3Pipeline.from_pretrained( "stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.bfloat16 ) self.pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config( self.pipe.scheduler.config, timestep_spacing="trailing", shift=3.0 ) self.pipe.to("cuda") lora_scale = 1.0 wrapper, _ = create_lycoris_from_weights(lora_scale, my_lora, self.pipe.transformer) wrapper.merge_to() image = self.pipe( prompt=request.prompt, num_inference_steps=request.num_inference_steps, num_images_per_prompt=2, # Batch inference output_type="pil", generator=torch.Generator(device="cuda").manual_seed(42), guidance_scale=request.guidance_scale, width=request.width, height=request.height, skip_guidance_layers=[7, 8, 9], # Doesn't seem to work with batching ).images[0] ``` Commenting out `skip_guidance_layers` resolves the error. **Expected behavior** Batch inference should work correctly even when `skip_guidance_layers` is used with LyCORIS. ### Logs _No response_ ### System Info **Environment** * CUDA Version: 12.4 * Python version: 3.12.1 (main, Jan 11 2024, 10:22:40) [GCC 10.2.1 20210110] * Diffusers version: https://github.com/huggingface/diffusers.git@99c0483b67427de467f11aa35d54678fd36a7ea2 * The specific LyCORIS model and inference method used from Bghira: https://huggingface.co/bghira/sd35m-photo-mixedres-cL-sS3-noOverride?not-for-all-audiences=true ### Who can help? @sayakpaul
This is not a fully reproducible snippet. Please provide one. Cc: @asomoza and @yiyixuxu for skip layer guidance. Reproducible with: ```bash pip install lycoris_lora ``` ```python from diffusers import StableDiffusion3Pipeline, FlowMatchEulerDiscreteScheduler import torch from huggingface_hub import hf_hub_download from lycoris import create_lycoris_from_weights pipe = StableDiffusion3Pipeline.from_pretrained( "stabilityai/stable-diffusion-3.5-medium", torch_dtype=torch.bfloat16 ) pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config( pipe.scheduler.config, timestep_spacing="trailing", shift=3.0 ) pipe.to("cuda") weights_path = hf_hub_download( "bghira/sd35m-photo-mixedres-cL-sS3-noOverride", filename="pytorch_lora_weights.safetensors", ) lora_scale = 1.0 wrapper, _ = create_lycoris_from_weights(lora_scale, weights_path, pipe.transformer) wrapper.merge_to() prompt = "A photo-realistic image of a cat" num_inference_steps = 28 guidance_scale = 3.5 width = 1024 height = 1024 image = pipe( prompt=prompt, num_inference_steps=num_inference_steps, num_images_per_prompt=2, # Batch inference output_type="pil", generator=torch.Generator(device="cuda").manual_seed(42), guidance_scale=guidance_scale, width=width, height=height, skip_guidance_layers=[7, 8, 9], # Doesn't seem to work with batching ).images[0] ``` ```python Traceback (most recent call last): File "/workspace/test.py", line 30, in <module> image = pipe( ^^^^^ File "/usr/local/lib/python3.11/dist-packages/torch/utils/_contextlib.py", line 116, in decorate_context return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/workspace/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py", line 918, in __call__ noise_pred = self.transformer( ^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py", line 1562, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/workspace/diffusers/src/diffusers/models/transformers/transformer_sd3.py", line 393, in forward temb = self.time_text_embed(timestep, pooled_projections) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py", line 1562, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/workspace/diffusers/src/diffusers/models/embeddings.py", line 1208, in forward conditioning = timesteps_emb + pooled_projections ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~ RuntimeError: The size of tensor a (2) must match the size of tensor b (4) at non-singleton dimension 0 ``` So, SLG seems to be the culprit here? > So, SLG seems to be the culprit here? Indeed, problem seems to appear since I started using SLG After some testing lycoris is unrelated, minimally reproducible with ```python from diffusers import StableDiffusion3Pipeline, FlowMatchEulerDiscreteScheduler import torch pipe = StableDiffusion3Pipeline.from_pretrained( "stabilityai/stable-diffusion-3.5-medium", torch_dtype=torch.bfloat16 ) pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config( pipe.scheduler.config, timestep_spacing="trailing", shift=3.0 ) pipe.to("cuda") prompt = "A photo-realistic image of a cat" num_inference_steps = 28 guidance_scale = 3.5 width = 1024 height = 1024 image = pipe( prompt=prompt, num_inference_steps=num_inference_steps, num_images_per_prompt=2, output_type="pil", generator=torch.Generator("cuda").manual_seed(42), guidance_scale=guidance_scale, width=width, height=height, skip_guidance_layers=[7, 8, 9], ).images[0] image.save("minimal.png") ``` ``` latent_model_input: torch.Size([2, 16, 128, 128]) timestep: torch.Size([2]) prompt_embeds: torch.Size([4, 333, 4096]) pooled_prompt_embeds: torch.Size([4, 2048]) ``` Batch discrepancy, from https://github.com/huggingface/diffusers/blob/827b6c25f9b78a297345f356a7d152fd6faf27d8/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py#L912 Same discrepancy with num_images_per_prompt=1, I think in this case PyTorch broadcasting takes care of it ``` latent_model_input: torch.Size([1, 16, 128, 128]) timestep: torch.Size([1]) prompt_embeds: torch.Size([2, 333, 4096]) pooled_prompt_embeds: torch.Size([2, 2048]) ``` Ends up with similar issue in the next section. I'll do more testing and put together a PR. https://github.com/huggingface/diffusers/blob/827b6c25f9b78a297345f356a7d152fd6faf27d8/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py#L938-L946
1,733,160,636,000
null
Bug Report
[ "src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py:StableDiffusion3Pipeline.__call__" ]
[]
huggingface/diffusers
huggingface__diffusers-10067
827b6c25f9b78a297345f356a7d152fd6faf27d8
diff --git a/src/diffusers/models/upsampling.py b/src/diffusers/models/upsampling.py index cf07e45b0c5c..af04ae4b93cf 100644 --- a/src/diffusers/models/upsampling.py +++ b/src/diffusers/models/upsampling.py @@ -165,6 +165,14 @@ def forward(self, hidden_states: torch.Tensor, output_size: Optional[int] = None # if `output_size` is passed we force the interpolation output # size and do not make use of `scale_factor=2` if self.interpolate: + # upsample_nearest_nhwc also fails when the number of output elements is large + # https://github.com/pytorch/pytorch/issues/141831 + scale_factor = ( + 2 if output_size is None else max([f / s for f, s in zip(output_size, hidden_states.shape[-2:])]) + ) + if hidden_states.numel() * scale_factor > pow(2, 31): + hidden_states = hidden_states.contiguous() + if output_size is None: hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest") else:
[BUG - STABLE DIFFUSION 3] Grey images generated ### Describe the bug I'm running the SD3 model [stabilityai/stable-diffusion-3-medium](https://huggingface.co/stabilityai/stable-diffusion-3-medium) with the following settings: - Height: 1024 - Width: 1024 - Inference steps: 50 - Guidance scale: 7 - Prompts length: 32 (using the same input prompt: "A men jumps from a high building") The model generates 32 images, but half of them are grey. ### Reproduction Reproduction code: ``` import os os.environ['CUDA_VISIBLE_DEVICES'] = '7' import torch from diffusers import StableDiffusion3Pipeline base_dir = os.path.join(os.path.dirname(__file__), '..', '..') def run(): input_prompts = ["A men jumps from a high building"] * 32 img_save_dir = f'{base_dir}/data/test_generated_img' os.makedirs(f'{img_save_dir}', exist_ok=True) pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16, cache_dir="/data0/tien/cache") pipe.to("cuda") torch.set_grad_enabled(False) images = pipe( prompt=input_prompts, negative_prompt="", height=1024, width=1024, num_inference_steps=50, guidance_scale=7.0 ).images for j in range(len(input_prompts)): images[j].save(os.path.join(f'{img_save_dir}', f'{j}.jpg')) torch.cuda.empty_cache() run() ``` ### Logs _No response_ ### System Info - Device: H100 - Driver Version: 550.127.05 - CUDA Version: 12.4 - Torch: 2.5.1+cu124 - OS: Ubuntu 22.04.3 LTS - Python: 3.10.15 - diffusers: 0.31.0 ### Who can help? _No response_
Does this happen when you switch to torch.bfloat16? Also, was this working ever as expected and suddenly stopped working as expected? @sayakpaul Hi, the error persists when using BF16. Out of the 32 generated images, the first 16 are fine, but the last 16 are all in grayscale. Weird. Does it happen on other prompts? Yes, it appears that this error occurs with any prompt. @asomoza have you heard about this before? no, but SD 3 had some other problems so probably no one else did some extensive tests or generations with it. @hoangvictor is there a reason you're using [stable-diffusion-3-medium](https://huggingface.co/stabilityai/stable-diffusion-3-medium) instead of [stable-diffusion-3.5-medium](https://huggingface.co/stabilityai/stable-diffusion-3.5-medium)? @asomoza SD3.5 has been out since October, but when I started my project, only SD3 was available. I’ve also tried SD3.5, and the issue persists. It appears the problem lies with the VAE during the image decoding process. I did a test with an A100 80GB, I could only do 24 images or I get OOM. I could replicate your error, this is a rare test for me because I would never throw 32 times the same prompt at the model instead of doing it in a loop because I like to see the results and most people just use a batch of 4. Anyway, after the 16th image, the rest are all grey images so I can confirm this issue cc: @sayakpaul Hmm, @DN6 could this be an issue with prompt encoding? What happens when we generate 24 images for a single prompt by specifying `num_images_per_prompt`? Also does it happen with other pipelines too? Very weird that it happens after we request for a certain number of images no? It also happens with `num_images_per_prompt` when it's more than 16. Tested it with SD 1.5 and this issue didn't happen. It happens with any number of images when it's more than 16. This is a PyTorch bug / limitation in the upsample operation. I found a workaround that I'll push tomorrow. Meanwhile, you can retrieve the latents instead of the images using `output_type="latent"` in your pipeline invocation, and then decode them manually like this: ```python with torch.inference_mode(): latents = (latents / pipe.vae.config.scaling_factor) + pipe.vae.config.shift_factor images_1 = pipe.vae.decode(latents[:16], return_dict=False)[0] images_2 = pipe.vae.decode(latents[16:], return_dict=False)[0] images = torch.cat([images_1, images_2]) images = pipe.image_processor.postprocess(images) ```
1,733,055,063,000
null
Bug Report
[ "src/diffusers/models/upsampling.py:Upsample2D.forward" ]
[]
huggingface/diffusers
huggingface__diffusers-9978
64b3e0f5390728f62887be7820a5e2724d0fb419
diff --git a/src/diffusers/loaders/single_file_utils.py b/src/diffusers/loaders/single_file_utils.py index d1bad8b5a7cd..9a460cb5d1ef 100644 --- a/src/diffusers/loaders/single_file_utils.py +++ b/src/diffusers/loaders/single_file_utils.py @@ -62,7 +62,14 @@ "xl_base": "conditioner.embedders.1.model.transformer.resblocks.9.mlp.c_proj.bias", "xl_refiner": "conditioner.embedders.0.model.transformer.resblocks.9.mlp.c_proj.bias", "upscale": "model.diffusion_model.input_blocks.10.0.skip_connection.bias", - "controlnet": "control_model.time_embed.0.weight", + "controlnet": [ + "control_model.time_embed.0.weight", + "controlnet_cond_embedding.conv_in.weight", + ], + # TODO: find non-Diffusers keys for controlnet_xl + "controlnet_xl": "add_embedding.linear_1.weight", + "controlnet_xl_large": "down_blocks.1.attentions.0.transformer_blocks.0.attn1.to_k.weight", + "controlnet_xl_mid": "down_blocks.1.attentions.0.norm.weight", "playground-v2-5": "edm_mean", "inpainting": "model.diffusion_model.input_blocks.0.0.weight", "clip": "cond_stage_model.transformer.text_model.embeddings.position_embedding.weight", @@ -96,6 +103,9 @@ "inpainting": {"pretrained_model_name_or_path": "stable-diffusion-v1-5/stable-diffusion-inpainting"}, "inpainting_v2": {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-2-inpainting"}, "controlnet": {"pretrained_model_name_or_path": "lllyasviel/control_v11p_sd15_canny"}, + "controlnet_xl_large": {"pretrained_model_name_or_path": "diffusers/controlnet-canny-sdxl-1.0"}, + "controlnet_xl_mid": {"pretrained_model_name_or_path": "diffusers/controlnet-canny-sdxl-1.0-mid"}, + "controlnet_xl_small": {"pretrained_model_name_or_path": "diffusers/controlnet-canny-sdxl-1.0-small"}, "v2": {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-2-1"}, "v1": {"pretrained_model_name_or_path": "stable-diffusion-v1-5/stable-diffusion-v1-5"}, "stable_cascade_stage_b": {"pretrained_model_name_or_path": "stabilityai/stable-cascade", "subfolder": "decoder"}, @@ -481,8 +491,16 @@ def infer_diffusers_model_type(checkpoint): elif CHECKPOINT_KEY_NAMES["upscale"] in checkpoint: model_type = "upscale" - elif CHECKPOINT_KEY_NAMES["controlnet"] in checkpoint: - model_type = "controlnet" + elif any(key in checkpoint for key in CHECKPOINT_KEY_NAMES["controlnet"]): + if CHECKPOINT_KEY_NAMES["controlnet_xl"] in checkpoint: + if CHECKPOINT_KEY_NAMES["controlnet_xl_large"] in checkpoint: + model_type = "controlnet_xl_large" + elif CHECKPOINT_KEY_NAMES["controlnet_xl_mid"] in checkpoint: + model_type = "controlnet_xl_mid" + else: + model_type = "controlnet_xl_small" + else: + model_type = "controlnet" elif ( CHECKPOINT_KEY_NAMES["stable_cascade_stage_c"] in checkpoint @@ -1072,6 +1090,9 @@ def convert_controlnet_checkpoint( config, **kwargs, ): + # Return checkpoint if it's already been converted + if "time_embedding.linear_1.weight" in checkpoint: + return checkpoint # Some controlnet ckpt files are distributed independently from the rest of the # model components i.e. https://huggingface.co/thibaud/controlnet-sd21/ if "time_embed.0.weight" in checkpoint:
ControlNet broken from_single_file ### Describe the bug controlnet loader from_single_file was originally added via #4084 and method `ControlNet.from_single_file()` works for non-converted controlnets. but for controlnets in safetensors format that contain already converted state_dict, it errors out. its not reasonable to expect from user to know what is the internal dict structure of the controlnet safetensors file before he can use it. even worse, some of the newer controlnets are distributed as single-file-only and are already in diffusers format which makes them impossible to load in difufsers. for example: <https://huggingface.co/Laxhar/noob_openpose/tree/main> this issue was already mentioned several times, each time closed as "works as designed" when in reality its just a failure that should be addressed as an issue. see #8474 #9208 #8614 as examples of previous issues ### Reproduction scenario-1: works with non-converted controlnet ```python import torch from diffusers import ControlNetModel from huggingface_hub import hf_hub_download local_path = hf_hub_download(repo_id='Aptronym/SDNext', filename='ControlNet11/controlnet11Models_canny.safetensors') cn = ControlNetModel.from_single_file(local_path, torch_dtype=torch.float16) print(cn.__class__) ``` scenario-1: fails for majority of controlnets available on huggingface ```python import torch from diffusers import ControlNetModel from huggingface_hub import hf_hub_download local_path = hf_hub_download(repo_id='lllyasviel/sd_control_collection', filename='diffusers_xl_canny_small.safetensors') cn = ControlNetModel.from_single_file(local_path, torch_dtype=torch.float16) print(cn.__class__) ``` initial failure is nonsense > OSError: stable-diffusion-v1-5/stable-diffusion-v1-5 does not appear to have a file named config.json. whats making this worse is that SD15 and SDXL share the same `ControlNet` class which causes some confusion on the base repo where to lookup config. e.g,, here we're loading SDXL controlnet and error referrs to SD15 repo. anyhow, trying to force correct config: ```py cn = ControlNetModel.from_single_file(local_path, torch_dtype=torch.float16, config='diffusers/controlnet-canny-sdxl-1.0-small') ``` results in even worse nonsense failure during loading of state_dict: > TypeError: is_floating_point(): argument 'input' (position 1) must be Tensor, not NoneType ### System Info diffusers=0.32.0.dev0 python==3.12.3 torch==2.5.1+cu124 ### Who can help? @yiyixuxu @sayakpaul @DN6 @asomoza
> even worse, some of the newer controlnets are distributed as single-file-only and are already in diffusers format which makes them impossible to load in difufsers. for example: https://huggingface.co/Laxhar/noob_openpose/tree/main Isn't this an actual error as it is partially in the diffusers format by not including the `config.json`? @sayakpaul cannot blame users for not knowing internals of `diffusers`. 99% of users will attempt to download that safetensors file and load it - and it will fail. sure, author of that specific repo should add `config.json` (and yes, request to author is already created), but are we going to re-educate every user "don't download controlnet safetensors"? (and there is no way to differentiate from user perspective which ones can and which cannot be downloaded) In that case what looks like a good solution to you? I will let @DN6 to of course comment here but IMO the following could be good candidates: * Detect if this is a `diffusers` checkpoint and if the supplied path doesn't have a `config.json`. If detected, yield a nice error message. * Detect if this is a `diffusers` checkpoint and try to fetch a `config.json` but I am not sure how well this would play out as it involves quite a bit of guess work from what I can see. > Detect if this is a diffusers checkpoint and try to fetch a config.json but I am not sure how well this would play out as it involves quite a bit of guess work from what I can see. which guesswork? is it sd15 or sdxl should be easy to infer from state_dict itself. that's how it works when loading main dffusion model using from_single_file. if i were a user, i would have same expectation here. Hmm could be. I thought too fast. So, fetch the config, load the state dict -- looks like the workflow here. ```py with init_empty_weights(): config = ControlNetModel.load_config("...") controlnet_model = ControlNetModel.from_config(config) controlnet_model.load_state_dict(diffusers_state_dict) ``` > Hmm could be. I thought too fast. So, fetch the config, load the state dict -- looks like the workflow here. btw, as a starting point, we can pass `config=...` arg to `from_single_file` and add autodetect later. but need to make `from_single_file` actually work :) In the first case the model config is being detected as `v1` because the checked keys for `controlnet` are for non-Diffusers type checkpoints. https://github.com/huggingface/diffusers/blob/f6f7afa1d7c6f45f8568c5603b1e6300d4583f04/src/diffusers/loaders/single_file_utils.py#L457 https://github.com/huggingface/diffusers/blob/f6f7afa1d7c6f45f8568c5603b1e6300d4583f04/src/diffusers/loaders/single_file_utils.py#L65 `infer_diffusers_model_type` can also be extended to detect e.g. `v1` vs `xl` ControlNet. In the second case `convert_controlnet_checkpoint` expects non-Diffusers type, the state dict it returns appears to only contain `controlnet_mid_block.weight` and `controlnet_mid_block.bias` as `None` which in turn causes the error when the state dict is loaded to the model. `convert_controlnet_checkpoint` can return the provided checkpoint when Diffusers keys are detected. https://github.com/huggingface/diffusers/blob/f6f7afa1d7c6f45f8568c5603b1e6300d4583f04/src/diffusers/loaders/single_file_utils.py#L1169-L1170 https://github.com/huggingface/diffusers/blob/f6f7afa1d7c6f45f8568c5603b1e6300d4583f04/src/diffusers/loaders/single_file_utils.py#L1070 https://github.com/huggingface/diffusers/blob/f6f7afa1d7c6f45f8568c5603b1e6300d4583f04/src/diffusers/models/model_loading_utils.py#L170
1,732,125,328,000
null
Bug Report
[ "src/diffusers/loaders/single_file_utils.py:infer_diffusers_model_type", "src/diffusers/loaders/single_file_utils.py:convert_controlnet_checkpoint" ]
[]
huggingface/diffusers
huggingface__diffusers-9885
5588725e8e7be497839432e5328c596169385f16
diff --git a/src/diffusers/utils/dynamic_modules_utils.py b/src/diffusers/utils/dynamic_modules_utils.py index f0cf953924ad..50d9bbaac57c 100644 --- a/src/diffusers/utils/dynamic_modules_utils.py +++ b/src/diffusers/utils/dynamic_modules_utils.py @@ -325,7 +325,7 @@ def get_cached_module_file( # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. - shutil.copy(resolved_module_file, submodule_path / module_file) + shutil.copyfile(resolved_module_file, submodule_path / module_file) for module_needed in modules_needed: if len(module_needed.split(".")) == 2: module_needed = "/".join(module_needed.split(".")) @@ -333,7 +333,7 @@ def get_cached_module_file( if not os.path.exists(submodule_path / module_folder): os.makedirs(submodule_path / module_folder) module_needed = f"{module_needed}.py" - shutil.copy(os.path.join(pretrained_model_name_or_path, module_needed), submodule_path / module_needed) + shutil.copyfile(os.path.join(pretrained_model_name_or_path, module_needed), submodule_path / module_needed) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. @@ -350,7 +350,7 @@ def get_cached_module_file( module_folder = module_file.split("/")[0] if not os.path.exists(submodule_path / module_folder): os.makedirs(submodule_path / module_folder) - shutil.copy(resolved_module_file, submodule_path / module_file) + shutil.copyfile(resolved_module_file, submodule_path / module_file) # Make sure we also have every file with relative for module_needed in modules_needed:
Replace shutil.copy with shutil.copyfile shutil.copy copies permission bits which fails when the user who's running the script is trying to use a common cache that was generated by another user, even though the first user has read & write permissions over the cache (through Group permission for example). A real case scenario: submitting jobs on a GPU cluster accessed by multiple users with common cache directory to reduce disk and network usage. https://github.com/huggingface/diffusers/blob/0d1d267b12e47b40b0e8f265339c76e0f45f8c49/src/diffusers/utils/dynamic_modules_utils.py#L328 Suggested solution: replace shutil.copy by shutil.copyfile which doesn't copy ownership.
Maybe related to https://github.com/huggingface/huggingface_hub/pull/1220, https://github.com/huggingface/diffusers/issues/1517, https://github.com/huggingface/huggingface_hub/issues/1141. For info I'm using v0.23.0. @Wauplin WDYT? Agree with using `shutil.copyfile` yes! I didn't thought about permission issues back then. copyfile will only copy the file content but that is what we want here :) @almarouk would you be willing to open a PR to help us?
1,731,005,873,000
null
Bug Report
[ "src/diffusers/utils/dynamic_modules_utils.py:get_cached_module_file" ]
[]
fortra/impacket
fortra__impacket-1860
e9a47ffc2b56755908b4a0e73348c650cf5c723f
diff --git a/impacket/examples/secretsdump.py b/impacket/examples/secretsdump.py index 43b776218..537c45dab 100644 --- a/impacket/examples/secretsdump.py +++ b/impacket/examples/secretsdump.py @@ -1432,7 +1432,7 @@ def dump(self): userName = V[userAccount['NameOffset']:userAccount['NameOffset']+userAccount['NameLength']].decode('utf-16le') if userAccount['NTHashLength'] == 0: - logging.error('SAM hashes extraction for user %s failed. The account doesn\'t have hash information.' % userName) + logging.debug('The account %s doesn\'t have hash information.' % userName) continue encNTHash = b''
SAM Dump for accounts without secrets I realised that some defaults Windows accounts, like for example WDAGUtilityAccount, throw the following error: ![image](https://github.com/user-attachments/assets/cb6a1d68-d50a-4a0b-8689-41bf878a9ca2) However there is no error here. WDAGUtilisatyAccount does not have a NT hash in the SAM database because this is a virtual account used to contain applications in a sandbox (for example browsers) and these featuers are not used on windows servers. Considering I never saw secretsdump failing in dumping SAM database, I believe it is possible to switch the following liens from impacket/impacket/examples/secretsdump.py: ```python if userAccount['NTHashLength'] == 0: logging.error('SAM hashes extraction for user %s failed. The account doesn\'t have hash information.' % userName) continue ``` to ```python if userAccount['NTHashLength'] == 0: logging.debug('SAM hashes extraction for user %s failed. The account doesn\'t have hash information.' % userName) continue ``` That way most of tools using impacket secretsdump won't have a messed up output. Let me know what you think about this :)
Hi @Dfte, Which configuration are you running on? I tried here with a Windows Server 2019 in azure and the account `WDAGUtilityAccount` has a hash that is printed when running secretsdump Also rechecked that the account was disabled (according to #802), and it was ![image](https://github.com/user-attachments/assets/b96bf51c-df29-4881-b031-8927799dd7c6) I'm running a Windows Server 2019 v1809 I have tested this against a domain controller. Now it's ovbious that there are no hashes for such accounts in the SAM database which is disabled anyway for domain controllers. But is there really a reason to display an error for such use cases considering there is no way for a local account not to have at least a default LM/NT hash ? Hey, mm I don't think so. I wanted to better understand / replay that scenario to check if there's some property in those objects that could help us realize it's not an issue not having gathered the hash. But yes, I agree with you that we shouldn't be showing this case as an error Will be playing with it a bit more and can create a PR to change it
1,733,518,382,000
null
Feature Request
[ "impacket/examples/secretsdump.py:SAMHashes.dump" ]
[]
fortra/impacket
fortra__impacket-1858
af51dfd1e0bf4472200b4a2d560cd70df7904f9c
diff --git a/impacket/dhcp.py b/impacket/dhcp.py index aeabb4013..dde0c3909 100644 --- a/impacket/dhcp.py +++ b/impacket/dhcp.py @@ -178,7 +178,7 @@ def unpackOptions(self, options): # size = self.calcUnpackSize(format, options[i+1:]) size = options[i+1] # print i, name, format, size - value = self.unpack(format, options[i+2:i+2+size]) + value = self.unpack(format, bytes(options[i+2:i+2+size])) answer.append((name, value)) i += 2+size
dhcp.py: decode error "object has no attribute 'encode'" ### Configuration impacket version: HEAD Python version: 3.11 Target OS: Linux ### Debug Output With Command String ```` dhcp = DhcpPacket(buffer) print(dhcp) `````` ``` Traceback (most recent call last): File "/home/mdt/Source/emdete/honeypot/snooper/main.py", line 14, in learn_dhcp dhcp = DHCP(buffer) ^^^^^^^^^^^^ File "/home/mdt/Source/oss/python/impacket/impacket/dhcp.py", line 148, in __init__ structure.Structure.__init__(self, data, alignment) File "/home/mdt/Source/oss/python/impacket/impacket/structure.py", line 87, in __init__ self.fromString(data) File "/home/mdt/Source/oss/python/impacket/impacket/structure.py", line 152, in fromString self[field[0]] = self.unpack(field[1], data[:size], dataClassOrCode = dataClassOrCode, field = field[0]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/mdt/Source/oss/python/impacket/impacket/structure.py", line 307, in unpack return eval(dataClassOrCode, {}, fields) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "<string>", line 1, in <module> File "/home/mdt/Source/oss/python/impacket/impacket/dhcp.py", line 179, in unpackOptions value = self.unpack(format, options[i+2:i+2+size]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/mdt/Source/oss/python/impacket/impacket/structure.py", line 382, in unpack return dataClassOrCode(data) ^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3/dist-packages/six.py", line 644, in b return s.encode("latin-1") ^^^^^^^^ AttributeError: ("'bytearray' object has no attribute 'encode'", "When unpacking field 'options | _ | b''[:0]'") ``` ### PCAP ``` b'\x01\x01\x06\x00\xa3Y\xdf\x06\x00\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf84A\xdb2.\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00c\x82Sc5\x01\x032\x04\xc0\xa8\x00\x8c6\x04\xc0\xa8\x00\x019\x02\x02@7\x07\x01\x03\x06\x0c\x0f\x1c*<\x0cudhcp 1.36.1=\x07\x01\xf84A\xdb2.\xff\x00\x00\x00\x00\x00\x00\x00\x00' ``` ### Additional context
it seems the line 381 in `impacket/structure.py` should read: ``` if (isinstance(data, bytes) or isinstance(data, bytearray)) and dataClassOrCode is b: ``` because the buffer is not bytes but bytearray. fixing this leads to the next error: ``` Traceback (most recent call last): File "/home/mdt/Source/emdete/honeypot/snooper/main.py", line 14, in learn_dhcp dhcp = DhcpPacket(buffer) ^^^^^^^^^^^^^^^^^^ File "/home/mdt/Source/oss/python/impacket/impacket/dhcp.py", line 148, in __init__ structure.Structure.__init__(self, data, alignment) File "/home/mdt/Source/oss/python/impacket/impacket/structure.py", line 87, in __init__ self.fromString(data) File "/home/mdt/Source/oss/python/impacket/impacket/structure.py", line 152, in fromString self[field[0]] = self.unpack(field[1], data[:size], dataClassOrCode = dataClassOrCode, field = field[0]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/mdt/Source/oss/python/impacket/impacket/structure.py", line 307, in unpack return eval(dataClassOrCode, {}, fields) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "<string>", line 1, in <module> File "/home/mdt/Source/oss/python/impacket/impacket/dhcp.py", line 179, in unpackOptions value = self.unpack(format, options[i+2:i+2+size]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/mdt/Source/oss/python/impacket/impacket/structure.py", line 386, in unpack return unpack(format, data)[0] ^^^^^^^^^^^^^^^^^^^^ struct.error: ('unpack requires a buffer of 4 bytes', "When unpacking field 'options | _ | b''[:0]'") ``` I also got this error, here is my code: ``` import struct from impacket import ImpactDecoder from impacket import dhcp import socket dhcp_packet = ( b'\x01' # Message type: Boot Request (1 byte) b'\x01' # Hardware type: Ethernet (1 byte) b'\x06' # Hardware address length: 6 (1 byte) b'\x00' # Hops: 0 (1 byte) b'\x39\x03\xF3\x26' # Transaction ID: Random (4 bytes) b'\x00\x00' # Seconds elapsed: 0 (2 bytes) b'\x80\x00' # Flags: 0x8000 (Broadcast) (2 bytes) b'\x00\x00\x00\x00' # Client IP address: 0.0.0.0 (4 bytes) b'\x00\x00\x00\x00' # Your (client) IP address: 0.0.0.0 (4 bytes) b'\x00\x00\x00\x00' # Next server IP address: 0.0.0.0 (4 bytes) b'\x00\x00\x00\x00' # Relay agent IP address: 0.0.0.0 (4 bytes) b'\x00\x26\x9e\x04\x0a\x5b' # Client MAC address (6 bytes) b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' # Client hardware address padding (10 bytes) b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' # Server name padding (64 bytes) b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' # Boot filename padding (128 bytes) b'\x63\x82\x53\x63' # Magic cookie: DHCP (4 bytes) # DHCP Options: b'\x35\x01\x01' b'\x32\x04\xc0\xa8\x01\x64' b'\x33\x04\x01\xa8\x01\x64' # Option: (53) DHCP Message Type (Discover) (3 bytes) # b'\x3d\x07\x01\x00\x26\x9e\x04\x0a\x5b' # Option: (61) Client identifier (7 bytes) b'\x37\x01\x03\x01\x06' # Option: (55) Parameter Request List (5 bytes) # b'\xff' # End Option (1 byte) ) dhcp_decoder = ImpactDecoder.BootpDecoder() dhcp_packet_decoded = dhcp_decoder.decode(dhcp_packet) print(dhcp_packet_decoded) ``` Could anyone take a look at it? As @emdete mentioned, this error can be solved by modifying the following condition to also include `bytearray` objects https://github.com/fortra/impacket/blob/3ce41be452dfe578f7edea16bc816e4f7fabe04d/impacket/structure.py#L384 The fix _may_ cause some unwanted splash damage so further testing is required. Another option would be to fix the method responsible for calling structure.unpack with bytearray as an argument (instead of bytes). It was recently introduced by another PR: https://github.com/fortra/impacket/commit/3f645107bb4db65fd8a328399031a257723c6bfb. We could convert `options[...]` to `bytes` in the following line: https://github.com/fortra/impacket/blob/3ce41be452dfe578f7edea16bc816e4f7fabe04d/impacket/dhcp.py#L181 Both alternatives fix the problem
1,733,378,609,000
null
Bug Report
[ "impacket/dhcp.py:DhcpPacket.unpackOptions" ]
[]
modin-project/modin
modin-project__modin-7400
78674005577efea7aa7c5e3e7c6fb53bd0365fe5
diff --git a/modin/pandas/dataframe.py b/modin/pandas/dataframe.py index de96ea0ab26..2ce83913ebb 100644 --- a/modin/pandas/dataframe.py +++ b/modin/pandas/dataframe.py @@ -2074,12 +2074,12 @@ def squeeze( Squeeze 1 dimensional axis objects into scalars. """ axis = self._get_axis_number(axis) if axis is not None else None - if axis is None and (len(self.columns) == 1 or len(self.index) == 1): + if axis is None and (len(self.columns) == 1 or len(self) == 1): return Series(query_compiler=self._query_compiler).squeeze() if axis == 1 and len(self.columns) == 1: self._query_compiler._shape_hint = "column" return Series(query_compiler=self._query_compiler) - if axis == 0 and len(self.index) == 1: + if axis == 0 and len(self) == 1: qc = self.T._query_compiler qc._shape_hint = "column" return Series(query_compiler=qc)
Avoid unnecessary length checks in `df.squeeze` It is possible that when `axis=1` in squeeze we still check `len(self.index)`, which is never necessary when `axis=1`. Link to code here: https://github.com/modin-project/modin/blob/eac3c77baf456c7bd7e1e5fde81790a4ed3ebb27/modin/pandas/dataframe.py#L2074-L2084 This is an easy fix, also see https://github.com/snowflakedb/snowpark-python/pull/1767
1,726,780,817,000
null
Performance Issue
[ "modin/pandas/dataframe.py:DataFrame.squeeze" ]
[]
ccxt/ccxt
ccxt__ccxt-24388
f6119ba226704f2907e48c94caa13a767510fcd4
diff --git a/python/ccxt/base/exchange.py b/python/ccxt/base/exchange.py index 9b79354f89c5..66f8170154a4 100644 --- a/python/ccxt/base/exchange.py +++ b/python/ccxt/base/exchange.py @@ -382,6 +382,7 @@ def __init__(self, config={}): self.transactions = dict() if self.transactions is None else self.transactions self.ohlcvs = dict() if self.ohlcvs is None else self.ohlcvs self.liquidations = dict() if self.liquidations is None else self.liquidations + self.myLiquidations = dict() if self.myLiquidations is None else self.myLiquidations self.currencies = dict() if self.currencies is None else self.currencies self.options = self.get_default_options() if self.options is None else self.options # Python does not allow to define properties in run-time with setattr self.decimal_to_precision = decimal_to_precision
binance myLiquidations uninitialized before accessed ### Operating System Ubuntu ### Programming Languages Python ### CCXT Version 4.4.27 ### Description Got following error while watching binance websocket. ### Code ``` 2024-11-26 05:56:31,267 - 875 - exchanges.binance - ERROR - 'NoneType' object does not support item assignment Traceback (most recent call last): File "/home/sytd/test/src/exchanges/future_exchange_base.py", line 118, in watch_balances event = await self._exchange.watch_balance() ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/sytd/test/.venv/lib/python3.11/site-packages/ccxt/pro/binance.py", line 2503, in watch_balance return await self.watch(url, messageHash, message, type) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/sytd/test/.venv/lib/python3.11/site-packages/ccxt/async_support/base/ws/fast_client.py", line 27, in handler self.handle_message(message) File "/home/sytd/test/.venv/lib/python3.11/site-packages/ccxt/async_support/base/ws/aiohttp_client.py", line 34, in handle_message self.handle_text_or_binary_message(message.data) File "/home/sytd/test/.venv/lib/python3.11/site-packages/ccxt/async_support/base/ws/aiohttp_client.py", line 29, in handle_text_or_binary_message self.on_message_callback(self, decoded) File "/home/sytd/test/.venv/lib/python3.11/site-packages/ccxt/pro/binance.py", line 3966, in handle_message method(client, message) File "/home/sytd/test/.venv/lib/python3.11/site-packages/ccxt/pro/binance.py", line 3396, in handle_order_update self.handle_my_liquidation(client, message) File "/home/sytd/test/.venv/lib/python3.11/site-packages/ccxt/pro/binance.py", line 518, in handle_my_liquidation self.myLiquidations[symbol] = myLiquidations ~~~~~~~~~~~~~~~~~~~^^^^^^^^ TypeError: 'NoneType' object does not support item assignment ```
Hello @sytranvn, Thanks for reporting it, we will fix it asap @sytranvn Btw, what's the best way of reproducing the issue? I was just listening for balance events only. Maybe place a future position and wait for it to be liquidated.
1,732,671,237,000
null
Bug Report
[ "python/ccxt/base/exchange.py:Exchange.__init__" ]
[]
Qiskit/qiskit
Qiskit__qiskit-13554
b7b26e000cd4baf3dcd28ca2f4607404bf736e2b
diff --git a/qiskit/circuit/parameterexpression.py b/qiskit/circuit/parameterexpression.py index fe786762c09..feaa0b772c7 100644 --- a/qiskit/circuit/parameterexpression.py +++ b/qiskit/circuit/parameterexpression.py @@ -340,7 +340,7 @@ def _apply_operation( either a constant or a second ParameterExpression. Args: - operation: One of operator.{add,sub,mul,truediv}. + operation: An operator, such as add, sub, mul, and truediv. other: The second argument to be used with self in operation. reflected: Optional - The default ordering is "self operator other". If reflected is True, this is switched to "other operator self".
Doc string of `operation` in ParameterExpression._apply_operation It says ``` operation: One of operator.{add,sub,mul,truediv}. ``` But the function is already called also with other operations, for example `pow` in `ParameterExpression.__pow__`.
Good point, and while this is not user facing it would be nice to have the dev-facing docs correct. Would you like to open a small PR to fix it?
1,733,917,262,000
null
Bug Report
[ "qiskit/circuit/parameterexpression.py:ParameterExpression._apply_operation" ]
[]
Qiskit/qiskit
Qiskit__qiskit-13552
17648ebb030c90fa7a595333b61823735275f68f
diff --git a/qiskit/circuit/parameterexpression.py b/qiskit/circuit/parameterexpression.py index fe786762c09..feaa0b772c7 100644 --- a/qiskit/circuit/parameterexpression.py +++ b/qiskit/circuit/parameterexpression.py @@ -340,7 +340,7 @@ def _apply_operation( either a constant or a second ParameterExpression. Args: - operation: One of operator.{add,sub,mul,truediv}. + operation: An operator, such as add, sub, mul, and truediv. other: The second argument to be used with self in operation. reflected: Optional - The default ordering is "self operator other". If reflected is True, this is switched to "other operator self".
Doc string of `operation` in ParameterExpression._apply_operation It says ``` operation: One of operator.{add,sub,mul,truediv}. ``` But the function is already called also with other operations, for example `pow` in `ParameterExpression.__pow__`.
Good point, and while this is not user facing it would be nice to have the dev-facing docs correct. Would you like to open a small PR to fix it?
1,733,909,546,000
null
Bug Report
[ "qiskit/circuit/parameterexpression.py:ParameterExpression._apply_operation" ]
[]
aio-libs/aiohttp
aio-libs__aiohttp-9767
51145aad138d03fc9f462e59b9c9398a75905899
diff --git a/aiohttp/payload.py b/aiohttp/payload.py index 27636977774..151f9dd497b 100644 --- a/aiohttp/payload.py +++ b/aiohttp/payload.py @@ -101,6 +101,7 @@ def __init__(self) -> None: self._first: List[_PayloadRegistryItem] = [] self._normal: List[_PayloadRegistryItem] = [] self._last: List[_PayloadRegistryItem] = [] + self._normal_lookup: Dict[Any, PayloadType] = {} def get( self, @@ -109,12 +110,20 @@ def get( _CHAIN: "Type[chain[_PayloadRegistryItem]]" = chain, **kwargs: Any, ) -> "Payload": + if self._first: + for factory, type_ in self._first: + if isinstance(data, type_): + return factory(data, *args, **kwargs) + # Try the fast lookup first + if lookup_factory := self._normal_lookup.get(type(data)): + return lookup_factory(data, *args, **kwargs) + # Bail early if its already a Payload if isinstance(data, Payload): return data - for factory, type in _CHAIN(self._first, self._normal, self._last): - if isinstance(data, type): + # Fallback to the slower linear search + for factory, type_ in _CHAIN(self._normal, self._last): + if isinstance(data, type_): return factory(data, *args, **kwargs) - raise LookupError() def register( @@ -124,6 +133,11 @@ def register( self._first.append((factory, type)) elif order is Order.normal: self._normal.append((factory, type)) + if isinstance(type, Iterable): + for t in type: + self._normal_lookup[t] = factory + else: + self._normal_lookup[type] = factory elif order is Order.try_last: self._last.append((factory, type)) else: @@ -159,7 +173,8 @@ def __init__( self._headers[hdrs.CONTENT_TYPE] = content_type else: self._headers[hdrs.CONTENT_TYPE] = self._default_content_type - self._headers.update(headers or {}) + if headers: + self._headers.update(headers) @property def size(self) -> Optional[int]: @@ -228,9 +243,6 @@ class BytesPayload(Payload): def __init__( self, value: Union[bytes, bytearray, memoryview], *args: Any, **kwargs: Any ) -> None: - if not isinstance(value, (bytes, bytearray, memoryview)): - raise TypeError(f"value argument must be byte-ish, not {type(value)!r}") - if "content_type" not in kwargs: kwargs["content_type"] = "application/octet-stream" @@ -238,8 +250,10 @@ def __init__( if isinstance(value, memoryview): self._size = value.nbytes - else: + elif isinstance(value, (bytes, bytearray)): self._size = len(value) + else: + raise TypeError(f"value argument must be byte-ish, not {type(value)!r}") if self._size > TOO_LARGE_BYTES_BODY: kwargs = {"source": self}
Payload registry has to do a linear search to find payloads https://github.com/aio-libs/aiohttp/blob/21f5f92a755dc5ac7225b5e76f561553cf86565e/aiohttp/payload.py#L97 There is a note that its inefficent. We might be able to clean it up by giving each payload a key as part of the base class and then doing a dict lookup instead
> We might be able to clean it up by giving each payload a key as part of the base class and then doing a dict lookup instead Doesn't really work, because it works with isinstance checks, which could be a subclass or an abc. I thought about this previously and didn't think of any improvements. Not sure what zope.interface is though, might be worth looking into. Maybe if we have a property that is a key thats the same for the subclassed object.. not sure if that will work. Needs some more thought. Not sure what you mean, the subclasses are e.g. subclass of bytes or (more realistically) a subclass of io.BufferedIO. They are not our classes, just arbitrary types that might be used to store/stream data. I need to dig at it a bit more to come up with a solution. This one will take a bit of thought so I opened the issue so I don't forget to come back to it. Looking at this We can likely store the payload type() and then do a dict lookup on the type() of the incoming and we get no matches because it's subclasses, fallback to the linear search We don't have a benchmark for simple post requests which makes this a bit more difficult to quantify what the performance drag of the linear search is. We should add a benchmark first
1,731,233,876,000
null
Performance Issue
[ "aiohttp/payload.py:PayloadRegistry.__init__", "aiohttp/payload.py:PayloadRegistry.get", "aiohttp/payload.py:PayloadRegistry.register", "aiohttp/payload.py:Payload.__init__", "aiohttp/payload.py:BytesPayload.__init__" ]
[]
aio-libs/aiohttp
aio-libs__aiohttp-9766
cc9a14aa3a29e54e2da3045083cca865654e3ff9
diff --git a/aiohttp/payload.py b/aiohttp/payload.py index 27636977774..151f9dd497b 100644 --- a/aiohttp/payload.py +++ b/aiohttp/payload.py @@ -101,6 +101,7 @@ def __init__(self) -> None: self._first: List[_PayloadRegistryItem] = [] self._normal: List[_PayloadRegistryItem] = [] self._last: List[_PayloadRegistryItem] = [] + self._normal_lookup: Dict[Any, PayloadType] = {} def get( self, @@ -109,12 +110,20 @@ def get( _CHAIN: "Type[chain[_PayloadRegistryItem]]" = chain, **kwargs: Any, ) -> "Payload": + if self._first: + for factory, type_ in self._first: + if isinstance(data, type_): + return factory(data, *args, **kwargs) + # Try the fast lookup first + if lookup_factory := self._normal_lookup.get(type(data)): + return lookup_factory(data, *args, **kwargs) + # Bail early if its already a Payload if isinstance(data, Payload): return data - for factory, type in _CHAIN(self._first, self._normal, self._last): - if isinstance(data, type): + # Fallback to the slower linear search + for factory, type_ in _CHAIN(self._normal, self._last): + if isinstance(data, type_): return factory(data, *args, **kwargs) - raise LookupError() def register( @@ -124,6 +133,11 @@ def register( self._first.append((factory, type)) elif order is Order.normal: self._normal.append((factory, type)) + if isinstance(type, Iterable): + for t in type: + self._normal_lookup[t] = factory + else: + self._normal_lookup[type] = factory elif order is Order.try_last: self._last.append((factory, type)) else: @@ -159,7 +173,8 @@ def __init__( self._headers[hdrs.CONTENT_TYPE] = content_type else: self._headers[hdrs.CONTENT_TYPE] = self._default_content_type - self._headers.update(headers or {}) + if headers: + self._headers.update(headers) @property def size(self) -> Optional[int]: @@ -228,9 +243,6 @@ class BytesPayload(Payload): def __init__( self, value: Union[bytes, bytearray, memoryview], *args: Any, **kwargs: Any ) -> None: - if not isinstance(value, (bytes, bytearray, memoryview)): - raise TypeError(f"value argument must be byte-ish, not {type(value)!r}") - if "content_type" not in kwargs: kwargs["content_type"] = "application/octet-stream" @@ -238,8 +250,10 @@ def __init__( if isinstance(value, memoryview): self._size = value.nbytes - else: + elif isinstance(value, (bytes, bytearray)): self._size = len(value) + else: + raise TypeError(f"value argument must be byte-ish, not {type(value)!r}") if self._size > TOO_LARGE_BYTES_BODY: kwargs = {"source": self}
Payload registry has to do a linear search to find payloads https://github.com/aio-libs/aiohttp/blob/21f5f92a755dc5ac7225b5e76f561553cf86565e/aiohttp/payload.py#L97 There is a note that its inefficent. We might be able to clean it up by giving each payload a key as part of the base class and then doing a dict lookup instead
> We might be able to clean it up by giving each payload a key as part of the base class and then doing a dict lookup instead Doesn't really work, because it works with isinstance checks, which could be a subclass or an abc. I thought about this previously and didn't think of any improvements. Not sure what zope.interface is though, might be worth looking into. Maybe if we have a property that is a key thats the same for the subclassed object.. not sure if that will work. Needs some more thought. Not sure what you mean, the subclasses are e.g. subclass of bytes or (more realistically) a subclass of io.BufferedIO. They are not our classes, just arbitrary types that might be used to store/stream data. I need to dig at it a bit more to come up with a solution. This one will take a bit of thought so I opened the issue so I don't forget to come back to it. Looking at this We can likely store the payload type() and then do a dict lookup on the type() of the incoming and we get no matches because it's subclasses, fallback to the linear search We don't have a benchmark for simple post requests which makes this a bit more difficult to quantify what the performance drag of the linear search is. We should add a benchmark first
1,731,233,868,000
null
Performance Issue
[ "aiohttp/payload.py:PayloadRegistry.__init__", "aiohttp/payload.py:PayloadRegistry.get", "aiohttp/payload.py:PayloadRegistry.register", "aiohttp/payload.py:Payload.__init__", "aiohttp/payload.py:BytesPayload.__init__" ]
[]
aio-libs/aiohttp
aio-libs__aiohttp-9762
50cccb3823e53e187723f5dd713e2f1299405d1e
diff --git a/aiohttp/payload.py b/aiohttp/payload.py index ea50b6a38cb..9979ed269b6 100644 --- a/aiohttp/payload.py +++ b/aiohttp/payload.py @@ -101,6 +101,7 @@ def __init__(self) -> None: self._first: List[_PayloadRegistryItem] = [] self._normal: List[_PayloadRegistryItem] = [] self._last: List[_PayloadRegistryItem] = [] + self._normal_lookup: Dict[Any, PayloadType] = {} def get( self, @@ -109,12 +110,20 @@ def get( _CHAIN: "Type[chain[_PayloadRegistryItem]]" = chain, **kwargs: Any, ) -> "Payload": + if self._first: + for factory, type_ in self._first: + if isinstance(data, type_): + return factory(data, *args, **kwargs) + # Try the fast lookup first + if lookup_factory := self._normal_lookup.get(type(data)): + return lookup_factory(data, *args, **kwargs) + # Bail early if its already a Payload if isinstance(data, Payload): return data - for factory, type in _CHAIN(self._first, self._normal, self._last): - if isinstance(data, type): + # Fallback to the slower linear search + for factory, type_ in _CHAIN(self._normal, self._last): + if isinstance(data, type_): return factory(data, *args, **kwargs) - raise LookupError() def register( @@ -124,6 +133,11 @@ def register( self._first.append((factory, type)) elif order is Order.normal: self._normal.append((factory, type)) + if isinstance(type, Iterable): + for t in type: + self._normal_lookup[t] = factory + else: + self._normal_lookup[type] = factory elif order is Order.try_last: self._last.append((factory, type)) else: @@ -159,7 +173,8 @@ def __init__( self._headers[hdrs.CONTENT_TYPE] = content_type else: self._headers[hdrs.CONTENT_TYPE] = self._default_content_type - self._headers.update(headers or {}) + if headers: + self._headers.update(headers) @property def size(self) -> Optional[int]: @@ -228,9 +243,6 @@ class BytesPayload(Payload): def __init__( self, value: Union[bytes, bytearray, memoryview], *args: Any, **kwargs: Any ) -> None: - if not isinstance(value, (bytes, bytearray, memoryview)): - raise TypeError(f"value argument must be byte-ish, not {type(value)!r}") - if "content_type" not in kwargs: kwargs["content_type"] = "application/octet-stream" @@ -238,8 +250,10 @@ def __init__( if isinstance(value, memoryview): self._size = value.nbytes - else: + elif isinstance(value, (bytes, bytearray)): self._size = len(value) + else: + raise TypeError(f"value argument must be byte-ish, not {type(value)!r}") if self._size > TOO_LARGE_BYTES_BODY: warnings.warn(
Payload registry has to do a linear search to find payloads https://github.com/aio-libs/aiohttp/blob/21f5f92a755dc5ac7225b5e76f561553cf86565e/aiohttp/payload.py#L97 There is a note that its inefficent. We might be able to clean it up by giving each payload a key as part of the base class and then doing a dict lookup instead
> We might be able to clean it up by giving each payload a key as part of the base class and then doing a dict lookup instead Doesn't really work, because it works with isinstance checks, which could be a subclass or an abc. I thought about this previously and didn't think of any improvements. Not sure what zope.interface is though, might be worth looking into. Maybe if we have a property that is a key thats the same for the subclassed object.. not sure if that will work. Needs some more thought. Not sure what you mean, the subclasses are e.g. subclass of bytes or (more realistically) a subclass of io.BufferedIO. They are not our classes, just arbitrary types that might be used to store/stream data. I need to dig at it a bit more to come up with a solution. This one will take a bit of thought so I opened the issue so I don't forget to come back to it. Looking at this We can likely store the payload type() and then do a dict lookup on the type() of the incoming and we get no matches because it's subclasses, fallback to the linear search We don't have a benchmark for simple post requests which makes this a bit more difficult to quantify what the performance drag of the linear search is. We should add a benchmark first
1,731,230,347,000
null
Performance Issue
[ "aiohttp/payload.py:PayloadRegistry.__init__", "aiohttp/payload.py:PayloadRegistry.get", "aiohttp/payload.py:PayloadRegistry.register", "aiohttp/payload.py:Payload.__init__", "aiohttp/payload.py:BytesPayload.__init__" ]
[]
langchain-ai/langgraph
langchain-ai__langgraph-2735
083a14c2c5bc90d597dd162219d1006a723abdf0
diff --git a/libs/checkpoint/langgraph/checkpoint/serde/jsonplus.py b/libs/checkpoint/langgraph/checkpoint/serde/jsonplus.py index f8d280b96..ff5a91f5d 100644 --- a/libs/checkpoint/langgraph/checkpoint/serde/jsonplus.py +++ b/libs/checkpoint/langgraph/checkpoint/serde/jsonplus.py @@ -438,28 +438,36 @@ def _msgpack_default(obj: Any) -> Union[str, msgpack.ExtType]: def _msgpack_ext_hook(code: int, data: bytes) -> Any: if code == EXT_CONSTRUCTOR_SINGLE_ARG: try: - tup = msgpack.unpackb(data, ext_hook=_msgpack_ext_hook) + tup = msgpack.unpackb( + data, ext_hook=_msgpack_ext_hook, strict_map_key=False + ) # module, name, arg return getattr(importlib.import_module(tup[0]), tup[1])(tup[2]) except Exception: return elif code == EXT_CONSTRUCTOR_POS_ARGS: try: - tup = msgpack.unpackb(data, ext_hook=_msgpack_ext_hook) + tup = msgpack.unpackb( + data, ext_hook=_msgpack_ext_hook, strict_map_key=False + ) # module, name, args return getattr(importlib.import_module(tup[0]), tup[1])(*tup[2]) except Exception: return elif code == EXT_CONSTRUCTOR_KW_ARGS: try: - tup = msgpack.unpackb(data, ext_hook=_msgpack_ext_hook) + tup = msgpack.unpackb( + data, ext_hook=_msgpack_ext_hook, strict_map_key=False + ) # module, name, args return getattr(importlib.import_module(tup[0]), tup[1])(**tup[2]) except Exception: return elif code == EXT_METHOD_SINGLE_ARG: try: - tup = msgpack.unpackb(data, ext_hook=_msgpack_ext_hook) + tup = msgpack.unpackb( + data, ext_hook=_msgpack_ext_hook, strict_map_key=False + ) # module, name, arg, method return getattr(getattr(importlib.import_module(tup[0]), tup[1]), tup[3])( tup[2] @@ -468,7 +476,9 @@ def _msgpack_ext_hook(code: int, data: bytes) -> Any: return elif code == EXT_PYDANTIC_V1: try: - tup = msgpack.unpackb(data, ext_hook=_msgpack_ext_hook) + tup = msgpack.unpackb( + data, ext_hook=_msgpack_ext_hook, strict_map_key=False + ) # module, name, kwargs cls = getattr(importlib.import_module(tup[0]), tup[1]) try: @@ -479,7 +489,9 @@ def _msgpack_ext_hook(code: int, data: bytes) -> Any: return elif code == EXT_PYDANTIC_V2: try: - tup = msgpack.unpackb(data, ext_hook=_msgpack_ext_hook) + tup = msgpack.unpackb( + data, ext_hook=_msgpack_ext_hook, strict_map_key=False + ) # module, name, kwargs, method cls = getattr(importlib.import_module(tup[0]), tup[1]) try:
msgpack deserialization with strictmap_key=False ### Checked other resources - [X] This is a bug, not a usage question. For questions, please use GitHub Discussions. - [X] I added a clear and detailed title that summarizes the issue. - [X] I read what a minimal reproducible example is (https://stackoverflow.com/help/minimal-reproducible-example). - [X] I included a self-contained, minimal example that demonstrates the issue INCLUDING all the relevant imports. The code run AS IS to reproduce the issue. ### Example Code ```python import asyncio from typing import Annotated, TypedDict from langgraph.constants import END from langgraph.graph import StateGraph from pydantic import BaseModel from app.config.settings import get_settings from app.utils.redis_checkpointer import AsyncRedisSaver class CitationBroker(BaseModel): map_idx_to_utt: dict[int, int] class AgentState(TypedDict): citation_brokers: list[CitationBroker] def f1(state): cit_b = CitationBroker( map_idx_to_utt={ 1: 1, 2: 2, 3: 3 }) """ With map_idx_to_utt={ '1': 1, '2': 2, '3': 3 }) and class CitationBroker(BaseModel): map_idx_to_utt: dict[str, int] works """ print(str(cit_b)) # not None return { "citation_brokers": state.get('citation_brokers', []) + [cit_b], } def ask_human_node(state): print("get user input") builder = StateGraph(AgentState) builder.add_node("node_1", f1) builder.add_node("ask_human_node", ask_human_node) builder.set_entry_point("node_1") builder.add_edge("ask_human_node", "node_1") builder.add_edge("node_1", "ask_human_node") settings = get_settings() async def main(): async with AsyncRedisSaver.from_url(settings.CACHE_REDIS_ENDPOINT) as memory: graph = builder.compile(checkpointer=memory, interrupt_before=["ask_human_node"]) thread = { "configurable": { "thread_id": "1" } } async for event in graph.astream_events({ "citation_brokers": [], }, config=thread, version="v2"): pass snapshot = await graph.aget_state(thread) print(str(snapshot.values['citation_brokers'][0])) # None asyncio.run(main()) ``` ### Error Message and Stack Trace (if applicable) ```shell File "msgpack\\_unpacker.pyx", line 194, in msgpack._cmsgpack.unpackb ValueError: int is not allowed for map key when strict_map_key=True ``` ### Description I upgraded libraries from **langgraph** 0.2.19 to **0.2.58** and **langgraph-checkpoint** from 1.0.9 to **2.0.8**. I'm using a REDIS checkpointer as detailed in [the official guide](https://langchain-ai.github.io/langgraph/how-tos/persistence_redis/). I'm serializing a TypedDict which contains Pydantic V2 objects as values (keys are strings). Each of this Pydantic V2 objects contains a simple Python dict() (whose keys are _numeric_). When I try to deserialize the Pydantic object I get the following error: > File "msgpack\\_unpacker.pyx", line 194, in msgpack._cmsgpack.unpackb ValueError: int is not allowed for map key when strict_map_key=True Setting `strict_map_key=False` inside _jsonplus.py_ solves the issue, but this implies cloning _jsonplus.py_ just to set `strict_map_key=False`. Indeed at line 210 of _jsonplus.py_ I find: ``` elif type_ == "msgpack": return msgpack.unpackb( data_, ext_hook=_msgpack_ext_hook, strict_map_key=False ) ``` but at line 482 of _jsonplus.py_: ``` elif code == EXT_PYDANTIC_V2: try: tup = msgpack.unpackb(data, ext_hook=_msgpack_ext_hook) # lacks of strict_map_key=False # module, name, kwargs, method cls = getattr(importlib.import_module(tup[0]), tup[1]) try: return cls(**tup[2]) except Exception: return cls.model_construct(**tup[2]) except Exception: return ``` Any advice on how should I fix the problem? In the meantime I reverted to previous version of libraries (which solves the issue). Thanks in advance. ### System Info Python 3.12.7 (tags/v3.12.7:0b05ead, Oct 1 2024, 03:06:41) [MSC v.1941 64 bit (AMD64)] on win32
1,734,019,110,000
null
Bug Report
[ "libs/checkpoint/langgraph/checkpoint/serde/jsonplus.py:_msgpack_ext_hook" ]
[]
langchain-ai/langgraph
langchain-ai__langgraph-2724
ff3bc2f9821d9dffe5d1a8fcf6eb1758f3715da8
diff --git a/libs/langgraph/langgraph/prebuilt/tool_node.py b/libs/langgraph/langgraph/prebuilt/tool_node.py index d3d0751e2..e2ac50b8e 100644 --- a/libs/langgraph/langgraph/prebuilt/tool_node.py +++ b/libs/langgraph/langgraph/prebuilt/tool_node.py @@ -297,7 +297,7 @@ def _run_one( try: input = {**call, **{"type": "tool_call"}} - response = self.tools_by_name[call["name"]].invoke(input) + response = self.tools_by_name[call["name"]].invoke(input, config) # GraphInterrupt is a special exception that will always be raised. # It can be triggered in the following scenarios: @@ -352,7 +352,7 @@ async def _arun_one( try: input = {**call, **{"type": "tool_call"}} - response = await self.tools_by_name[call["name"]].ainvoke(input) + response = await self.tools_by_name[call["name"]].ainvoke(input, config) # GraphInterrupt is a special exception that will always be raised. # It can be triggered in the following scenarios:
Langgraph 0.2.58 resulted in empty config passed to tools in langgraph ### Checked other resources - [X] This is a bug, not a usage question. For questions, please use GitHub Discussions. - [X] I added a clear and detailed title that summarizes the issue. - [X] I read what a minimal reproducible example is (https://stackoverflow.com/help/minimal-reproducible-example). - [X] I included a self-contained, minimal example that demonstrates the issue INCLUDING all the relevant imports. The code run AS IS to reproduce the issue. ### Example Code ```python # Graph setup async with get_checkpoints_pool().connection() as conn: checkpointer = AsyncPostgresSaver(conn=conn) # type: ignore graph.checkpointer = checkpointer runnable_config = RunnableConfig( configurable={ "thread_id": str(conversation_id), ... # other fields }, recursion_limit=80, ) try: events = graph.astream( {"messages": ("user", message_content)}, runnable_config, stream_mode="updates", ) ... # typical tool @tool async def some_tool(input: str, config: RunnableConfig): thread_id = config.get("configurable", {}).get("thread_id") # <--- this returns nothing ``` ### Error Message and Stack Trace (if applicable) _No response_ ### Description Today, a change to our poetry lock file resulted in our CI installing the latest minor version of langgraph, going from 0.2.39 to 0.2.58. Our application passes in the RunnableConfig into each tool, and we use that to get relevant information which is critical for each tool. This worked fine before the upgrade, but after upgrading to 0.2.58 the config passed to our tools was suddenly blank. No configurable, no metadata: `{'tags': [], 'metadata': {}, 'callbacks': None, 'recursion_limit': 25, 'configurable': {}}` When going back to 0.2.39 the issue is not there, and the config contains all data we pass in when initializing the graph. Isolating only installing either 0.2.39 or 0.2.58 toggles the error, and results in the following dependencies also changing (we suspect it might be related to the checkpointer) ``` poetry add langgraph@0.2.58 Updating dependencies Resolving dependencies... (2.0s) Package operations: 0 installs, 4 updates, 1 removal - Removing httpx-sse (0.4.0) - Updating langchain-core (0.3.13 -> 0.3.24) - Updating langgraph-checkpoint (2.0.2 -> 2.0.8) - Updating langgraph-sdk (0.1.35 -> 0.1.43) - Updating langgraph (0.2.39 -> 0.2.58) Writing lock file ``` I know the example is not reproducible, but it was too much work to actually set up an example given db dependencies etc, so I hope the provided example illustrates well enough what the issue is. I still wanted to report this however, as it was a huge breaking change for us, which definitely should not be the case with a minor upgrade. ### System Info System Information (0.2.58) ------------------ > OS: Darwin > OS Version: Darwin Kernel Version 23.6.0: Thu Sep 12 23:35:29 PDT 2024; root:xnu-10063.141.1.701.1~1/RELEASE_ARM64_T6000 > Python Version: 3.10.13 (main, Sep 11 2023, 15:00:52) [Clang 14.0.0 (clang-1400.0.29.202)] Package Information ------------------- > langchain_core: 0.3.24 > langchain: 0.3.4 > langchain_community: 0.3.3 > langsmith: 0.1.137 > langchain_anthropic: 0.1.20 > langchain_openai: 0.2.4 > langchain_text_splitters: 0.3.0 > langchainhub: 0.1.21 > langgraph_sdk: 0.1.43 Optional packages not installed ------------------------------- > langserve Other Dependencies ------------------ > aiohttp: 3.10.10 > anthropic: 0.28.1 > async-timeout: 4.0.3 > dataclasses-json: 0.6.7 > defusedxml: 0.7.1 > httpx: 0.27.2 > jsonpatch: 1.33 > numpy: 1.26.4 > openai: 1.52.2 > orjson: 3.10.10 > packaging: 24.1 > pydantic: 2.9.2 > pydantic-settings: 2.6.0 > PyYAML: 6.0.2 > requests: 2.32.3 > requests-toolbelt: 1.0.0 > SQLAlchemy: 2.0.36 > tenacity: 9.0.0 > tiktoken: 0.7.0 > types-requests: 2.32.0.20241016 > typing-extensions: 4.12.2 ---------------------- System Information (0.2.39) ------------------ > OS: Darwin > OS Version: Darwin Kernel Version 23.6.0: Thu Sep 12 23:35:29 PDT 2024; root:xnu-10063.141.1.701.1~1/RELEASE_ARM64_T6000 > Python Version: 3.10.13 (main, Sep 11 2023, 15:00:52) [Clang 14.0.0 (clang-1400.0.29.202)] Package Information ------------------- > langchain_core: 0.3.13 > langchain: 0.3.4 > langchain_community: 0.3.3 > langsmith: 0.1.137 > langchain_anthropic: 0.1.20 > langchain_openai: 0.2.4 > langchain_text_splitters: 0.3.0 > langchainhub: 0.1.21 > langgraph: 0.2.39 Optional packages not installed ------------------------------- > langserve Other Dependencies ------------------ > aiohttp: 3.10.10 > anthropic: 0.28.1 > async-timeout: 4.0.3 > dataclasses-json: 0.6.7 > defusedxml: 0.7.1 > httpx: 0.27.2 > jsonpatch: 1.33 > langgraph-checkpoint: 2.0.2 > langgraph-sdk: 0.1.35 > numpy: 1.26.4 > openai: 1.52.2 > orjson: 3.10.10 > packaging: 24.1 > pydantic: 2.9.2 > pydantic-settings: 2.6.0 > PyYAML: 6.0.2 > requests: 2.32.3 > requests-toolbelt: 1.0.0 > SQLAlchemy: 2.0.36 > tenacity: 9.0.0 > tiktoken: 0.7.0 > types-requests: 2.32.0.20241016 > typing-extensions: 4.12.2
How are you invoking the tools? We bind the tools to a gpt-4-o agent ```python llm = AzureChatOpenAI( azure_deployment="gpt4o", api_version="2024-06-01", temperature=0, timeout=120, ) self.runnable = prompt | llm.bind_tools(tools) runnable_input = { **state, "company": company, } result: AIMessage = await self.runnable.ainvoke(runnable_input) # type: ignore ``` We're experiencing the same problem. Actually, the breaking change is in `0.2.57` (also released yesterday), `0.2.56` works as expected. ah, it's a `langchain-core` issue, cc @baskaryan . we will investigate!
1,733,952,975,000
null
Bug Report
[ "libs/langgraph/langgraph/prebuilt/tool_node.py:ToolNode._run_one", "libs/langgraph/langgraph/prebuilt/tool_node.py:ToolNode._arun_one" ]
[]
langchain-ai/langgraph
langchain-ai__langgraph-2571
c6fe26510e814e1cf165bc957b42bf4d5adf789b
diff --git a/libs/checkpoint-postgres/langgraph/checkpoint/postgres/aio.py b/libs/checkpoint-postgres/langgraph/checkpoint/postgres/aio.py index 440cb452e..4c0f5295c 100644 --- a/libs/checkpoint-postgres/langgraph/checkpoint/postgres/aio.py +++ b/libs/checkpoint-postgres/langgraph/checkpoint/postgres/aio.py @@ -5,7 +5,6 @@ from langchain_core.runnables import RunnableConfig from psycopg import AsyncConnection, AsyncCursor, AsyncPipeline, Capabilities -from psycopg.errors import UndefinedTable from psycopg.rows import DictRow, dict_row from psycopg.types.json import Jsonb from psycopg_pool import AsyncConnectionPool @@ -81,17 +80,15 @@ async def setup(self) -> None: the first time checkpointer is used. """ async with self._cursor() as cur: - try: - results = await cur.execute( - "SELECT v FROM checkpoint_migrations ORDER BY v DESC LIMIT 1" - ) - row = await results.fetchone() - if row is None: - version = -1 - else: - version = row["v"] - except UndefinedTable: + await cur.execute(self.MIGRATIONS[0]) + results = await cur.execute( + "SELECT v FROM checkpoint_migrations ORDER BY v DESC LIMIT 1" + ) + row = await results.fetchone() + if row is None: version = -1 + else: + version = row["v"] for v, migration in zip( range(version + 1, len(self.MIGRATIONS)), self.MIGRATIONS[version + 1 :],
langgraph-checkpoint-postgres: Calls to postgres async checkpointer setup() fail on new postgres db ### Checked other resources - [X] I added a very descriptive title to this issue. - [X] I searched the [LangGraph](https://langchain-ai.github.io/langgraph/)/LangChain documentation with the integrated search. - [X] I used the GitHub search to find a similar question and didn't find it. - [X] I am sure that this is a bug in LangGraph/LangChain rather than my code. - [X] I am sure this is better as an issue [rather than a GitHub discussion](https://github.com/langchain-ai/langgraph/discussions/new/choose), since this is a LangGraph bug and not a design question. ### Example Code ```python # set POSTGRES_URI=... class CheckpointerManager: """ A manager class to handle checkpointer initialization and lifecycle. """ def __init__(self, conninfo: str, max_pool_size: int = 20): self.conninfo = conninfo self.max_pool_size = max_pool_size self.pool = None self.checkpointer = None async def setup(self): """ Initialize the connection pool and checkpointer. """ self.pool = AsyncConnectionPool(conninfo=self.conninfo, max_size=self.max_pool_size, open=False,timeout=5) await self.pool.open(wait=True, timeout=5) self.checkpointer = AsyncPostgresSaver(conn=self.pool) try: await self.checkpointer.setup() except Exception as e: print(f"Error setting up checkpointer: {e}") await self.close() raise e return self async def close(self): """ Close the connection pool and cleanup resources. """ if self.pool: await self.pool.close() def get_checkpointer(self): """ Get the initialized checkpointer. """ if not self.checkpointer: raise RuntimeError("Checkpointer has not been initialized. Call setup() first.") return self.checkpointer checkpointer_manager = CheckpointerManager(os.getenv(POSTGRES_URI)) checkpointer_manager = asyncio.run(checkpointer_manager.setup()) ``` ``` ### Error Message and Stack Trace (if applicable) ```shell setting up checkpointer: current transaction is aborted, commands ignored until end of transaction block Traceback (most recent call last): File "/home/tai/project/main.py", line 91, in <module> main() File "/home/tai/project/main.py", line 49, in main checkpointer_manager = asyncio.run(checkpointer_manager.setup()) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.12/asyncio/runners.py", line 194, in run return runner.run(main) ^^^^^^^^^^^^^^^^ File "/usr/lib/python3.12/asyncio/runners.py", line 118, in run return self._loop.run_until_complete(task) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.12/asyncio/base_events.py", line 687, in run_until_complete return future.result() ^^^^^^^^^^^^^^^ File "/home/tai/project/checkpointer/__init__.py", line 31, in setup raise e File "/home/tai/project/checkpointer/__init__.py", line 27, in setup await self.checkpointer.setup() File "/home/tai/project/.venv/lib/python3.12/site-packages/langgraph/checkpoint/postgres/aio.py", line 98, in setup await cur.execute(migration) File "/home/tai/project/.venv/lib/python3.12/site-packages/psycopg/cursor_async.py", line 97, in execute raise ex.with_traceback(None) psycopg.errors.InFailedSqlTransaction: current transaction is aborted, commands ignored until end of transaction block ``` ### Description When running the async postgres setup() function, the first execution for SELECT fails, but the cursor is reused in the except block, so postgres ignores it. The CREATE IF NOT EXISTS statement should be hoisted up and out of the main block such that it runs in a separate transaction context, or a least before the SELECT statement runs. For now, I've got it fixed by running this manually: ``` class CheckpointerManager: """ A manager class to handle checkpointer initialization and lifecycle. """ initialization = """CREATE TABLE IF NOT EXISTS checkpoint_migrations ( v INTEGER PRIMARY KEY );""" def __init__(self, conninfo: str, max_pool_size: int = 20): self.conninfo = conninfo self.max_pool_size = max_pool_size self.pool = None self.checkpointer = None async def setup(self): """ Initialize the connection pool and checkpointer. """ self.pool = AsyncConnectionPool(conninfo=self.conninfo, max_size=self.max_pool_size, open=False,timeout=5) await self.pool.open(wait=True, timeout=5) self.checkpointer = AsyncPostgresSaver(conn=self.pool) async with self.pool.connection() as conn: await conn.execute(self.initialization) try: await self.checkpointer.setup() except Exception as e: print(f"Error setting up checkpointer: {e}") await self.close() raise e return self async def close(self): """ Close the connection pool and cleanup resources. """ if self.pool: await self.pool.close() def get_checkpointer(self): """ Get the initialized checkpointer. """ if not self.checkpointer: raise RuntimeError("Checkpointer has not been initialized. Call setup() first.") return self.checkpointer checkpointer_manager = CheckpointerManager(os.getenv(POSTGRES_URI)) checkpointer_manager = asyncio.run(checkpointer_manager.setup()) ``` (note the `async with self.pool.connection() as conn: ; await conn.execute(self.initialization)` before the `.setup()` call. This fixes it. ### System Info pip freeze | grep langgraph langgraph==0.2.53 langgraph-checkpoint==2.0.6 langgraph-checkpoint-postgres==2.0.4 langgraph-checkpoint-sqlite==2.0.1 langgraph-sdk==0.1.36
1,732,788,364,000
null
Bug Report
[ "libs/checkpoint-postgres/langgraph/checkpoint/postgres/aio.py:AsyncPostgresSaver.setup" ]
[]
sktime/sktime
sktime__sktime-7417
d7f582335197b9c1382d33e40c4dbe1dbae14137
diff --git a/sktime/forecasting/base/adapters/_statsmodels.py b/sktime/forecasting/base/adapters/_statsmodels.py index b7efd883810..675d45bb05a 100644 --- a/sktime/forecasting/base/adapters/_statsmodels.py +++ b/sktime/forecasting/base/adapters/_statsmodels.py @@ -53,6 +53,11 @@ def _fit(self, y, X, fh): ------- self : returns an instance of self. """ + # save info needed for _predict: should these be saved to self._y_metdata? + self._y_len = len(y) + self._y_first_index = y.index[0] + self._set_cutoff_from_y(y) + # statsmodels does not support the pd.Int64Index as required, # so we coerce them here to pd.RangeIndex if isinstance(y, pd.Series) and pd.api.types.is_integer_dtype(y.index): @@ -104,8 +109,8 @@ def _predict(self, fh, X): """ # statsmodels requires zero-based indexing starting at the # beginning of the training series when passing integers - start, end = fh.to_absolute_int(self._y.index[0], self.cutoff)[[0, -1]] - fh_int = fh.to_absolute_int(self._y.index[0], self.cutoff) - len(self._y) + start, end = fh.to_absolute_int(self._y_first_index, self.cutoff)[[0, -1]] + fh_int = fh.to_absolute_int(self._y_first_index, self.cutoff) - self._y_len # bug fix for evaluate function as test_plus_train indices are passed # statsmodels exog must contain test indices only. @@ -130,7 +135,7 @@ def _predict(self, fh, X): y_pred = y_pred.iloc[fh_int] # ensure that name is not added nor removed # otherwise this may upset conversion to pd.DataFrame - y_pred.name = self._y.name + y_pred.name = self._get_varnames()[0] return y_pred @staticmethod @@ -195,8 +200,8 @@ def _predict_interval(self, fh, X, coverage): if not implements_interval_adapter and implements_quantiles: return BaseForecaster._predict_interval(self, fh, X=X, coverage=coverage) - start, end = fh.to_absolute_int(self._y.index[0], self.cutoff)[[0, -1]] - fh_int = fh.to_absolute_int(self._y.index[0], self.cutoff) - len(self._y) + start, end = fh.to_absolute_int(self._y_first_index, self.cutoff)[[0, -1]] + fh_int = fh.to_absolute_int(self._y_first_index, self.cutoff) - self._y_len # if fh > 1 steps ahead of cutoff fh_int = fh_int - fh_int[0]
[BUG] Unable to use _StatsModelsAdapter.predict if config remember_data=False **Describe the bug** If the config `remember_data=False` is set then `_StatsModelsAdapter._predict` will throw an error when trying to use `_y` and `_X`. **To Reproduce** ```python import numpy as np from sktime.forecasting.sarimax import SARIMAX forecaster = SARIMAX() forecaster.set_config(remember_data=False) y = np.ones(10) forecaster.fit(y) forecaster.predict(fh=11) ``` **Expected behavior** `_StatsModelsAdapter` forecasters should be able to `predict` with config `remember_data=False`. Related to #6914
1,732,046,055,000
null
Bug Report
[ "sktime/forecasting/base/adapters/_statsmodels.py:_StatsModelsAdapter._fit", "sktime/forecasting/base/adapters/_statsmodels.py:_StatsModelsAdapter._predict", "sktime/forecasting/base/adapters/_statsmodels.py:_StatsModelsAdapter._predict_interval" ]
[]
sktime/sktime
sktime__sktime-7404
193ec0118dc0d062b2eac81511bcb13f6dc08a67
diff --git a/sktime/forecasting/croston.py b/sktime/forecasting/croston.py index 4aee85f8c86..fe7956dc428 100644 --- a/sktime/forecasting/croston.py +++ b/sktime/forecasting/croston.py @@ -77,6 +77,7 @@ class Croston(BaseForecaster): # estimator type # -------------- "requires-fh-in-fit": False, # is forecasting horizon already required in fit? + "ignores-exogeneous-X": True, } def __init__(self, smoothing=0.1):
[BUG] Croston cannot handle exogenous variables. **Describe the bug** Croston cannot handle exogenous variables, but is marked as if it can. **To Reproduce** Example returns the tag "ignores-exogeneous-X". ```python from sktime.forecasting.croston import Croston Croston.get_class_tag("ignores-exogeneous-X") ``` **Expected behavior** The returned tag "ignores-exogeneous-X" should be True and not False. **Versions** 0.30.1
Agreed - very easy fix, would you (or someone else) like to fix it with a PR? @fkiraly I would like to work on this issue Kindly assign this one to me.. Thanks @kdekker-private The issue lies since the parameter `ignores-exogeneous-X` is by default set to **True** Yes, so you need to override the default in the concrete class, by adding it to the dict there.
1,731,945,409,000
null
Bug Report
[ "sktime/forecasting/croston.py:Croston" ]
[]
numpy/numpy
numpy__numpy-27598
a905925ef40a7551d16d78d81c7e6d08b59559e4
diff --git a/numpy/ctypeslib.py b/numpy/ctypeslib.py index 370cdf224cdc..d11b9dcb43d3 100644 --- a/numpy/ctypeslib.py +++ b/numpy/ctypeslib.py @@ -527,6 +527,26 @@ def as_array(obj, shape=None): The shape parameter must be given if converting from a ctypes POINTER. The shape parameter is ignored if converting from a ctypes array + + Examples + -------- + Converting a ctypes integer array: + + >>> import ctypes + >>> ctypes_array = (ctypes.c_int * 5)(0, 1, 2, 3, 4) + >>> np_array = np.ctypeslib.as_array(ctypes_array) + >>> np_array + array([0, 1, 2, 3, 4], dtype=int32) + + Converting a ctypes POINTER: + + >>> import ctypes + >>> buffer = (ctypes.c_int * 5)(0, 1, 2, 3, 4) + >>> pointer = ctypes.cast(buffer, ctypes.POINTER(ctypes.c_int)) + >>> np_array = np.ctypeslib.as_array(pointer, (5,)) + >>> np_array + array([0, 1, 2, 3, 4], dtype=int32) + """ if isinstance(obj, ctypes._Pointer): # convert pointers to an array of the desired shape @@ -541,8 +561,31 @@ def as_array(obj, shape=None): def as_ctypes(obj): - """Create and return a ctypes object from a numpy array. Actually - anything that exposes the __array_interface__ is accepted.""" + """ + Create and return a ctypes object from a numpy array. Actually + anything that exposes the __array_interface__ is accepted. + + Examples + -------- + Create ctypes object from inferred int ``np.array``: + + >>> inferred_int_array = np.array([1, 2, 3]) + >>> c_int_array = np.ctypeslib.as_ctypes(inferred_int_array) + >>> type(c_int_array) + <class 'c_long_Array_3'> + >>> c_int_array[:] + [1, 2, 3] + + Create ctypes object from explicit 8 bit unsigned int ``np.array`` : + + >>> exp_int_array = np.array([1, 2, 3], dtype=np.uint8) + >>> c_int_array = np.ctypeslib.as_ctypes(exp_int_array) + >>> type(c_int_array) + <class 'c_ubyte_Array_3'> + >>> c_int_array[:] + [1, 2, 3] + + """ ai = obj.__array_interface__ if ai["strides"]: raise TypeError("strided arrays not supported")
DOC: Examples in docstrings – tracking issue "Examples, more examples, and more detailed examples" is the recurrent theme in the feedback about the NumPy documentation we received via the 2020 and 2021 NumPy user surveys. If you come across a docstring where a function is missing an example or more/better examples are needed, please add a comment below. **Re: the “sprintable” label** This could be a good activity for a sprint with new contributors as most of them are NumPy users. However, one doesn’t have to be a sprint participant to contribute to this initiative.
how can I help in this issue ? Take a look at the functions you use from NumPy, and see if the docstrings have examples similar to your non-trivial use cases. If not, comment below asking if it seems an example would help newer users figure out how to replicate what you do. This could be a good activity for a sprint with new contributors as most of them are NumPy users. I’ll add the “sprint” label to the issue. However, one doesn’t have to be a sprint participant to contribute to this initiative. Hi everyone! One thing that could also be tracked is whether the existing examples in docstrings are following the standards listed in the documentation. I've found an example in `fromnumeric.py` (lines 171-189) that I'm not entirely sure that are in accordance to the documentation. I'm willing to help on that. Hi, Just wanted to confirm. If the general DOCS (examples for various functions) are in the scope of this Issue or we are currently tracking only the DOC Strings. I do see a lot of additions that can be done to the `numpy.random.generated` page [Link under discussion](https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.integers.html) I was talking to @InessaPawson about that. I do believe that this issue could be, in fact, split into several different ones. Even the docstrings, this could be split in tracking down the ones that are there, the ones that are not, the ones that follow the standards, et cetera. We can use some examples in polynomial.py. What do you think about the following two (one for polymulx, the other for polyval2d): ```python import numpy as np from numpy.polynomial import polynomial as P c=(-2, 0, 1) P.polymulx(c) #array([-0., -2., 0., 1.]) from numpy.polynomial.polynomial import polyval2d a=polyval2d(2, -3j, [(-1j,1.5,2), (1,0.2j,0)]) #This is -1jx⁰y⁰ + 1.5x⁰y¹ + 2x⁰y² + 1x¹y⁰ + 0.2jx¹y¹ + 0x¹y², evaluated at x = 2 and y=-3j #(-14.799999999999997-5.5j) ``` > Just wanted to confirm. If the general DOCS (examples for various functions) are in the scope of this Issue or we are currently tracking only the DOC Strings. @bhavukkalra This issue is only for examples in docstrings. Please file a separate issue for examples in other parts of the NumPy documentation. @dbrs01 this looks good - Would you like to submit a PR? Thank you Melisssa. I appreciate your feedback. I will do it (later) and will continue including more examples. I have not been able to attend meetings recently because I started a new job this past Monday and am in the process of doing paperwork, installing my machine, going to the office (no telework) and trying to get the most from my coworker from whom I inherit tasks and whose last day of work is on May 30. I hope to be back soon. See you! On Sat, May 14, 2022 at 7:13 AM Melissa Weber Mendonça < ***@***.***> wrote: > @dbrs01 <https://github.com/dbrs01> this looks good - Would you like to > submit a PR? > > — > Reply to this email directly, view it on GitHub > <https://github.com/numpy/numpy/issues/21351#issuecomment-1126714170>, or > unsubscribe > <https://github.com/notifications/unsubscribe-auth/ABXBEHY2CZLX6V47USVDDZLVJ6RJJANCNFSM5TTIU3GA> > . > You are receiving this because you were mentioned.Message ID: > ***@***.***> > -- Dilia B. Rueda S. I can help with the PRs if you feel this is something that could help. Feel free to post the examples here and I can submit the PRs. Some time ago I wrote a script to find SciPy functions whose docstrings are missing the "Examples" section; there is a copy of that script in https://github.com/scipy/scipy/issues/7168. (*Edit*: the script for SciPy, [`find_functions_missing_examples.py`](https://github.com/WarrenWeckesser/analyze-scipy-code/blob/main/find_functions_missing_examples.py) is now maintained in my [`analyze-scipy-code`](https://github.com/WarrenWeckesser/analyze-scipy-code) repository on github.) I just created a gist with a variation of that script that has been modified for NumPy: https://gist.github.com/WarrenWeckesser/c33d0236279cc5d73843f0497e14ed0e. (There is a lot that could be done with such a script; hack away on your own copy if you feel inspired.) Here's the output when I run that script with the development version (main branch) of NumPy. Note that some of these functions have very short docstrings that say something like "See $SOMEOTHERFUNC for details." This is probably intentional, and these are not good candidates for new contributors or for use in a sprint. Also, it looks like some of these might be "namespace pollution": names from the main numpy namespace that also ended up in a submodule. When in doubt, ask the NumPy devs to confirm that a function should get an "Examples" section before you spend time working on it. ``` NumPy version 1.24.0.dev0+427.gf9bed20bf np (22) add_docstring add_newdoc add_newdoc_ufunc alltrue copyto cumproduct deprecate_with_doc diag_indices_from fastCopyAndTranspose get_array_wrap get_include get_printoptions getbufsize msort product recfromcsv recfromtxt round_ setbufsize sometrue tril_indices_from triu_indices_from np.char (40) add array asarray center encode equal expandtabs find greater greater_equal index isalnum isalpha isdecimal isdigit islower isnumeric isspace istitle isupper join less less_equal ljust mod multiply not_equal partition replace rfind rindex rjust rpartition rsplit split splitlines startswith str_len translate zfill np.ctypeslib (4) as_array as_ctypes as_ctypes_type load_library np.ma (26) compress_cols compress_nd compress_rows compressed convolve correlate cov diag ediff1d in1d isin left_shift max min power put putmask reshape right_shift round round_ setxor1d sort take union1d unique np.random.Generator (2) beta exponential Found 94 functions ``` FWIW this check is also now built-in to the numpydoc docstring validator, which can be run during a doc build. For example, when building the docs locally you can add `numpydoc_validation_checks = {"EX01"}` to `conf.py` to automatically report this info during the sphinx-build process. @WarrenWeckesser Thank you so much for sharing this information! I’ll file a separate issue for each function after consulting with our core developers. We should rerun the script The old script was missing some functions, which I think is because of the issues related to _ArrayFunctionDispatcher from last year. For example https://github.com/numpy/numpy/issues/23032 and https://github.com/numpy/numpy/issues/23307. I added the following lines to the script. EDIT: Found better way, using `inspect.isroutine`. ``` import inspect ``` Then I replaced `funcs` with ``` funcs = [item for item in objects if inspect.isroutine(item[1])] ``` Here is the new list: ``` np (12) amax amin around getbufsize matrix_transpose setbufsize show_config show_runtime unique_all unique_counts unique_inverse unique_values np.char (7) array isalpha isspace mod rfind splitlines startswith np.ctypeslib (4) as_array as_ctypes as_ctypes_type load_library np.lib (2) add_docstring add_newdoc np.linalg (10) cross diagonal matmul matrix_norm matrix_transpose outer svdvals trace vecdot vector_norm np.ma (6) convolve correlate left_shift put reshape take np.rec (1) find_duplicate Found 42 functions ``` Prior to the change, there were only 24. I noticed the script was missing `svdvals`, which is why I started working on it. My hope is to have the POSSEE team fill in all of these (that need it) by next week. ~~Unfortunately, the type `<class 'numpy._ArrayFunctionDispatcher'>` also captures a few classes that don't need examples. I spent a couple hours reading about the issues last year and changes made related to `_ArrayFunctionDispatcher`. Maybe someone has an idea of a more elegant fix to the script than what I provided above.~~ Found a better way. I tried adding `numpydoc_validation_checks = {"EX01"}` to `conf.py`, but was unable to see where/how this generated the needed report. I'd love advice on that. > I tried adding numpydoc_validation_checks = {"EX01"} to conf.py, but was unable to see where/how this generated the needed report. I'd love advice on that. When you add `numpydoc_validation_checks = {"EX01"}` to conf.py the validation warnings appear in the sphinx build log. To capture the build log in a file, you can do something like: `make html 2>&1 | tee buildlog.txt` If you want to filter the log so that only the warnings associated with the validation checks are stored, try: `make html 2>&1 | tee >(grep -B1 -A1 "EX01" >> buildlog.txt )` I'll share the output as a file [buildlog.log](https://github.com/numpy/numpy/files/15408328/buildlog.log), rather than copy/paste the output here. There are 1808 items. I modified the script above to use `inspect.isroutine` The results are slightly different than capturing `numpy._ArrayFunctionDispatcher` and then using `isinstance`. [Here I the updated scripts](https://github.com/bmwoodruff/numpy-ideas/blob/main/find_numpy_functions_missing_examples.ipynb), along with the output in a Jupyter notebook. While working on this, I noticed that there were several functions on this list that had docstrings that were not published on the web version of the docs. [This script](https://github.com/bmwoodruff/numpy-ideas/blob/main/locate-missing-docs.ipynb) uses the `object.inv` file from a doc build and compares each routine against that list. I'll be including a PR in a bit with the missing `ma` links (they don't show on the attached link, because I added them). There are 5 functions from the new `strings` module that need to be added as well. I can tackle unless someone else was working on that already (I know `strings` is new in 2.0). Created [gist of the script](https://gist.github.com/luxedo/c7ad85b8848136671d126cd7baa07990) to run directly into a python shell. # Missing Docstrings ### np (12) - [x] amax - Alias of max. Are examples needed? - [x] amin - Alias of min - [x] around - Alias of round - [x] getbufsize - [x] matrix_transpose - [x] setbufsize - [ ] show_config - [ ] show_runtime - [x] unique_all - [x] unique_counts - [x] unique_inverse - [x] unique_values ### np.char (7) - [x] array - [ ] isalpha - [ ] isspace - [ ] mod - [ ] rfind - [ ] splitlines - [ ] startswith ### np.ctypeslib (4) - [ ] as_array - [ ] as_ctypes - [ ] as_ctypes_type - [ ] load_library ### np.lib (2) - [ ] add_docstring - [ ] add_newdoc ### np.linalg (10) - [x] cross - [x] diagonal - [x] matmul - [x] matrix_norm - [x] matrix_transpose - [x] outer - [x] svdvals - [x] trace - [x] vecdot - [x] vector_norm ### np.ma (6) - [ ] convolve - [ ] correlate - [ ] left_shift - [ ] put - [ ] reshape - [x] take ### np.rec (1) - [ ] find_duplicate I sent too many PRs already. I'll wait for review to add more. @luxedo If you put `[skip actions][skip azp][skip cirrus]` in your [commit message](https://numpy.org/devdocs/dev/development_workflow.html#writing-the-commit-message), then proper GitHub actions will be skipped and your tests should pass. Thank you! My bad. I should not use `[skip circle]` right? The doctests run there? Correct. They have to be in the commit message as well. Putting them in the comments of the PR is not sufficient (learned that myself a few weeks ago). Any time you add more changes in another commit, you have to add these tags to the commit message to make sure the correct CI jobs are run. Also please try to combine small example additions together into one PR I did like to add examples for the numpy.char.array, currently working on it. Adding example code snippets to np.char.isspace function, currently in the process of adding it adding example code snippets to np.ma.convolve function currently in the process of adding it
1,729,353,573,000
null
Feature Request
[ "numpy/ctypeslib.py:as_array", "numpy/ctypeslib.py:as_ctypes" ]
[]
numpy/numpy
numpy__numpy-27595
a905925ef40a7551d16d78d81c7e6d08b59559e4
diff --git a/numpy/lib/_function_base_impl.py b/numpy/lib/_function_base_impl.py index 477c6a4f39a8..7a2c69bad0e6 100644 --- a/numpy/lib/_function_base_impl.py +++ b/numpy/lib/_function_base_impl.py @@ -5198,7 +5198,7 @@ def delete(arr, obj, axis=None): ---------- arr : array_like Input array. - obj : slice, int or array of ints + obj : slice, int, array-like of ints or bools Indicate indices of sub-arrays to remove along the specified axis. .. versionchanged:: 1.19.0
DOC: types for numpy.delete's obj argument don't cover all possibilities ### Issue with current documentation: The docstring for `numpy.delete` specifues the type of the `obj` parameter as: > **obj : _slice, int or array of ints_** It seem it can also be anything that can be cast as an array of ints, including e.g. an iterator like `range(0,4,2)` or list of ints like `[0,2,3]`. I confirmed this by looking in the source and I think this line is where anything that isn't a slice, int or bool is cast as a `numpy.array`: https://github.com/numpy/numpy/blob/83bf22579b6eaa8113f6cff67b10fd9524965f23/numpy/lib/_function_base_impl.py#L5317 This type specification also doesn't mention that `obj` can be an array of booleans. ### Idea or request for content: I'd open a PR but am not sure the best wording. I'm looking for something like > **obj : _slice, int, array of bools or anything that can be cast as an array of ints_** but that seems a bit verbose. Perhaps there's some NumPy jargon that's more succinct?
1,729,307,703,000
null
Feature Request
[ "numpy/lib/_function_base_impl.py:delete" ]
[]
vllm-project/vllm
vllm-project__vllm-11275
60508ffda91c22e4cde3b18f149d222211db8886
diff --git a/vllm/executor/ray_gpu_executor.py b/vllm/executor/ray_gpu_executor.py index 4bf5cbbd18ffe..e2c549cbd5331 100644 --- a/vllm/executor/ray_gpu_executor.py +++ b/vllm/executor/ray_gpu_executor.py @@ -123,6 +123,7 @@ def _init_workers_ray(self, placement_group: "PlacementGroup", # Create the workers. driver_ip = get_ip() + workers = [] for bundle_id, bundle in enumerate(placement_group.bundle_specs): if not bundle.get("GPU", 0): continue @@ -138,20 +139,30 @@ def _init_workers_ray(self, placement_group: "PlacementGroup", scheduling_strategy=scheduling_strategy, **ray_remote_kwargs, )(RayWorkerWrapper).remote(vllm_config=self.vllm_config) + workers.append(worker) - if self.use_ray_spmd_worker: - self.workers.append(worker) - else: - worker_ip = ray.get(worker.get_node_ip.remote()) - if worker_ip == driver_ip and self.driver_dummy_worker is None: + worker_ip_refs = [ + worker.get_node_ip.remote() # type: ignore[attr-defined] + for worker in workers + ] + worker_ips = ray.get(worker_ip_refs) + + if not self.use_ray_spmd_worker: + for i in range(len(workers)): + worker = workers[i] + worker_ip = worker_ips[i] + if self.driver_dummy_worker is None and worker_ip == driver_ip: # If the worker is on the same node as the driver, we use it # as the resource holder for the driver process. self.driver_dummy_worker = worker self.driver_worker = RayWorkerWrapper( vllm_config=self.vllm_config) - else: - # Else, added to the list of workers. - self.workers.append(worker) + workers.pop(i) + worker_ips.pop(i) + self.workers = workers + break + else: + self.workers = workers logger.debug("workers: %s", self.workers) logger.debug("driver_dummy_worker: %s", self.driver_dummy_worker) @@ -161,14 +172,12 @@ def _init_workers_ray(self, placement_group: "PlacementGroup", "adjusting the Ray placement group or running the driver on a " "GPU node.") - worker_ips = [ - ray.get(worker.get_node_ip.remote()) # type: ignore[attr-defined] - for worker in self.workers - ] ip_counts: Dict[str, int] = {} for ip in worker_ips: ip_counts[ip] = ip_counts.get(ip, 0) + 1 + worker_to_ip = dict(zip(self.workers, worker_ips)) + def sort_by_driver_then_worker_ip(worker): """ Sort the workers based on 3 properties: @@ -179,7 +188,7 @@ def sort_by_driver_then_worker_ip(worker): 3. Finally, if the work is on a node with smaller IP address, it should be placed first. """ - ip = ray.get(worker.get_node_ip.remote()) + ip = worker_to_ip[worker] return (ip != driver_ip, ip_counts[ip], ip) # After sorting, the workers on the same node will be
[Bug]: LLM initialization time increases significantly with larger tensor parallel size and Ray ### Your current environment vllm 0.5.2 <details> <summary>The output of `python collect_env.py`</summary> ```text Collecting environment information... PyTorch version: 2.3.1+cu121 Is debug build: False CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.5 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0 Clang version: Could not collect CMake version: version 3.24.1 Libc version: glibc-2.31 Python version: 3.8.10 (default, Mar 13 2023, 10:26:41) [GCC 9.4.0] (64-bit runtime) Python platform: Linux-5.10.134-008.7.kangaroo.al8.x86_64-x86_64-with-glibc2.29 Is CUDA available: True CUDA runtime version: 12.1.66 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA L20Z GPU 1: NVIDIA L20Z GPU 2: NVIDIA L20Z GPU 3: NVIDIA L20Z GPU 4: NVIDIA L20Z GPU 5: NVIDIA L20Z GPU 6: NVIDIA L20Z GPU 7: NVIDIA L20Z Nvidia driver version: 535.161.08 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 52 bits physical, 57 bits virtual CPU(s): 100 On-line CPU(s) list: 0-99 Thread(s) per core: 1 Core(s) per socket: 100 Socket(s): 1 NUMA node(s): 1 Vendor ID: GenuineIntel CPU family: 6 Model: 143 Model name: Intel(R) Xeon(R) Processor Stepping: 8 CPU MHz: 2000.000 BogoMIPS: 4000.00 Hypervisor vendor: KVM Virtualization type: full L1d cache: 4.7 MiB L1i cache: 3.1 MiB L2 cache: 200 MiB L3 cache: 105 MiB NUMA node0 CPU(s): 0-99 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers Vulnerability Spectre v2: Vulnerable, IBPB: disabled, STIBP: disabled, PBRSB-eIBRS: Vulnerable Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx_vnni avx512_bf16 wbnoinvd avx512vbmi umip pku waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid cldemote movdiri movdir64b fsrm md_clear serialize tsxldtrk avx512_fp16 arch_capabilities Versions of relevant libraries: [pip3] flake8==6.1.0 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.22.2 [pip3] onnx==1.13.1 [pip3] pytorch-quantization==2.1.2 [pip3] torch==2.3.1 [pip3] torch-tensorrt==1.4.0.dev0 [pip3] torchaudio==2.3.1 [pip3] torchtext==0.13.0a0+fae8e8c [pip3] torchtyping==0.1.4 [pip3] torchvision==0.18.1 [pip3] triton==2.3.1 [conda] Could not collect ``` </details> ### Model Input Dumps just test the vllm init time ### 🐛 Describe the bug ### Issue Description We observed significant and unexpected increases in VLLM initialization time when scaling tensor parallelism (TP), especially with Ray enabled. ### Observed Behavior - TP=1: ~7 seconds initialization time - TP=4: ~14 seconds initialization time - TP=4 with Ray: ~24 seconds initialization time ### Expected Behavior Initialization time should remain relatively constant or have minimal increase when scaling tensor parallelism and use ray. ### Environment - VLLM version: 0.5.2 - Model: Qwen2-7B - GPU: NVIDIA L20Z - Number of GPUs: 8 ### Additional Context The initialization time increase appears disproportionate to the tensor parallel size, suggesting a potential bottleneck in the initialization process, particularly when Ray is involved. ### Reproducible Steps 1. Run VLLM with TP=1 2. Run VLLM with TP=4 3. Run VLLM with TP=4 and Ray enabled 4. Compare initialization times ### vllm start time ```python def run_vllm( requests: List[Tuple[str, int, int]], model: str, tokenizer: str, quantization: Optional[str], tensor_parallel_size: int, seed: int, n: int, use_beam_search: bool, trust_remote_code: bool, dtype: str, max_model_len: Optional[int], enforce_eager: bool, kv_cache_dtype: str, quantization_param_path: Optional[str], device: str, enable_prefix_caching: bool, enable_chunked_prefill: bool, max_num_batched_tokens: int, distributed_executor_backend: Optional[str], gpu_memory_utilization: float = 0.9, num_scheduler_steps: int = 1, use_v2_block_manager: bool = False, download_dir: Optional[str] = None, load_format: str = EngineArgs.load_format, disable_async_output_proc: bool = False, ) -> float: # 导入必要的库 from vllm import LLM, SamplingParams print(f"Start initializing LLM at {time.strftime('%Y-%m-%d %H:%M:%S')}") start = time.perf_counter() llm = LLM( model=model, tokenizer=tokenizer, quantization=quantization, tensor_parallel_size=tensor_parallel_size, seed=seed, trust_remote_code=trust_remote_code, dtype=dtype, max_model_len=max_model_len, gpu_memory_utilization=gpu_memory_utilization, enforce_eager=enforce_eager, kv_cache_dtype=kv_cache_dtype, quantization_param_path=quantization_param_path, device=device, enable_prefix_caching=enable_prefix_caching, download_dir=download_dir, enable_chunked_prefill=enable_chunked_prefill, max_num_batched_tokens=max_num_batched_tokens, distributed_executor_backend=distributed_executor_backend, load_format=load_format, # num_scheduler_steps=num_scheduler_steps, # use_v2_block_manager=use_v2_block_manager, # disable_async_output_proc=disable_async_output_proc, ) end = time.perf_counter() print(f"Finish initializing LLM at {time.strftime('%Y-%m-%d %H:%M:%S')}") print(f"vllm init time: {end - start}") ``` ### vllm ray start time ```python def run_ray_vllm( requests: List[Tuple[str, int, int]], model: str, tokenizer: str, quantization: Optional[str], tensor_parallel_size: int, seed: int, n: int, use_beam_search: bool, trust_remote_code: bool, dtype: str, max_model_len: Optional[int], enforce_eager: bool, kv_cache_dtype: str, quantization_param_path: Optional[str], device: str, enable_prefix_caching: bool, enable_chunked_prefill: bool, max_num_batched_tokens: int, distributed_executor_backend: Optional[str], gpu_memory_utilization: float = 0.9, num_scheduler_steps: int = 1, use_v2_block_manager: bool = False, download_dir: Optional[str] = None, load_format: str = EngineArgs.load_format, disable_async_output_proc: bool = False, ) -> float: # 导入必要的库 from vllm import LLM, SamplingParams import ray @ray.remote class LLMWorker: def __init__(self, model, tokenizer, quantization, tensor_parallel_size, seed, trust_remote_code, dtype, max_model_len, gpu_memory_utilization, enforce_eager, kv_cache_dtype, quantization_param_path, device, enable_prefix_caching, download_dir, enable_chunked_prefill, max_num_batched_tokens, distributed_executor_backend, load_format, num_scheduler_steps, use_v2_block_manager, disable_async_output_proc): from vllm import LLM start = time.perf_counter() self.llm = LLM( model=model, tokenizer=tokenizer, quantization=quantization, tensor_parallel_size=tensor_parallel_size, seed=seed, trust_remote_code=trust_remote_code, dtype=dtype, max_model_len=max_model_len, gpu_memory_utilization=gpu_memory_utilization, enforce_eager=enforce_eager, kv_cache_dtype=kv_cache_dtype, quantization_param_path=quantization_param_path, device=device, enable_prefix_caching=enable_prefix_caching, download_dir=download_dir, enable_chunked_prefill=enable_chunked_prefill, max_num_batched_tokens=max_num_batched_tokens, distributed_executor_backend=distributed_executor_backend, load_format=load_format, # num_scheduler_steps=num_scheduler_steps, # use_v2_block_manager=use_v2_block_manager, # disable_async_output_proc=disable_async_output_proc, ) end = time.perf_counter() print(f"Finish initializing LLM at {time.strftime('%Y-%m-%d %H:%M:%S')}") print(f"vllm init time: {end - start}") def generate(self, prompts, sampling_params): return self.llm.generate(prompts, sampling_params, use_tqdm=True) # Create LLM worker worker = LLMWorker.remote( model=model, tokenizer=tokenizer, quantization=quantization, tensor_parallel_size=tensor_parallel_size, seed=seed, trust_remote_code=trust_remote_code, dtype=dtype, max_model_len=max_model_len, gpu_memory_utilization=gpu_memory_utilization, enforce_eager=enforce_eager, kv_cache_dtype=kv_cache_dtype, quantization_param_path=quantization_param_path, device=device, enable_prefix_caching=enable_prefix_caching, download_dir=download_dir, enable_chunked_prefill=enable_chunked_prefill, max_num_batched_tokens=max_num_batched_tokens, distributed_executor_backend=distributed_executor_backend, load_format=load_format, num_scheduler_steps=num_scheduler_steps, use_v2_block_manager=use_v2_block_manager, disable_async_output_proc=disable_async_output_proc, ) # Add the requests to the engine. prompts: List[str] = [] sampling_params: List[SamplingParams] = [] for prompt, _, output_len in requests: prompts.append(prompt) sampling_params.append( SamplingParams( n=n, temperature=0.0 if use_beam_search else 1.0, top_p=1.0, use_beam_search=use_beam_search, ignore_eos=True, max_tokens=output_len, ) ) start = time.perf_counter() ray.get(worker.generate.remote(prompts, sampling_params)) end = time.perf_counter() return end - start ```
someone correct me if im wrong but the way the workers are initialized are done sequentially on the main process. which can be seen in the function I linked below https://github.com/vllm-project/vllm/blob/bbd3e86926f15e59e4c62246b4b3185e71fe7ff2/vllm/executor/ray_gpu_executor.py#L109 ray add additional overhead because you have to send the whole worker configs through Ray which is a slower process > someone correct me if im wrong but the way the workers are initialized are done sequentially on the main process. which can be seen in the function I linked below > > https://github.com/vllm-project/vllm/blob/bbd3e86926f15e59e4c62246b4b3185e71fe7ff2/vllm/executor/ray_gpu_executor.py#L109 > > ray add additional overhead because you have to send the whole worker configs through Ray which is a slower process Thank you for your answer! However, I still have some concerns about the initialization overhead: For a 7B model: - TP=1: 7s initialization time (baseline) - TP=4: 14s initialization time (+7s overhead) - TP=4 with Ray: 24s initialization time (+10s additional overhead) The overhead seems disproportionately large considering: 1. The baseline initialization is only 7 seconds 2. Moving from TP=1 to TP=4 doubles the initialization time 3. Adding Ray introduces an additional 10s overhead, which is even larger than the TP scaling overhead Is this level of overhead expected? It seems excessive for a 7B model, especially since: - The TP=1 to TP=4 transition adds 100% overhead - Ray integration adds another ~71% overhead on top of TP=4 Could there be potential optimization opportunities to reduce these initialization costs? I don't find that overhead too strange, and there definitely is room for optimizations (parallelizing the process) but engine startup time is not really an important metric that people worry about. (model reloading would probably be the solution more people are interested in that is currently not implemented?) is there a reason you're looking for faster initialization? > I don't find that overhead too strange, and there definitely is room for optimizations (parallelizing the process) but engine startup time is not really an important metric that people worry about. (model reloading would probably be the solution more people are interested in that is currently not implemented?) is there a reason you're looking for faster initialization? Great thanks for you relpy! we want to improve the startup speed, IMHO, 34s is also too long to wait, especially when we are developing new features and what to run some tests to verify it. I did some benchmarking on Ray executor initialization: Code: https://github.com/vllm-project/vllm/pull/11272 Command: ``` python3 benchmarks/benchmark_latency.py --model meta-llama/Llama-3.1-8B-Instruct --tensor-parallel-size 4 --num-iters-warmup 1 --num-iters 2 --batch-size 8 --input-len 128 --output-len 256 --max-model-len 2048 --no-enable-prefix-caching --distributed-executor-backend ray ``` TP = 2 INFO 12-17 22:57:58 llm_engine.py:507] time for initialize_ray_cluster: 2.265391 INFO 12-17 22:58:05 ray_gpu_executor.py:160] time for creating workers: 6.369353 INFO 12-17 22:58:05 ray_gpu_executor.py:252] time for _run_workers update_environment_variables: 0.002733 INFO 12-17 22:58:08 ray_gpu_executor.py:283] time for _run_workers init_device: 1.320933 INFO 12-17 22:58:12 ray_gpu_executor.py:290] time for _run_workers load_model: 3.812319 INFO 12-17 22:58:12 ray_gpu_executor.py:67] time for _init_workers_ray: 12.652736 TP = 4 INFO 12-17 23:00:31 llm_engine.py:507] time for initialize_ray_cluster: 2.435579 INFO 12-17 23:00:44 ray_gpu_executor.py:160] time for creating workers: 12.788581 INFO 12-17 23:00:44 ray_gpu_executor.py:252] time for _run_workers update_environment_variables: 0.003613 INFO 12-17 23:00:46 ray_gpu_executor.py:278] time for _run_workers init_worker: 1.149088 INFO 12-17 23:00:47 ray_gpu_executor.py:283] time for _run_workers init_device: 1.840026 INFO 12-17 23:00:50 ray_gpu_executor.py:290] time for _run_workers load_model: 2.787669 INFO 12-17 23:00:50 ray_gpu_executor.py:67] time for _init_workers_ray: 18.580796 The time to create workers increase proportionally to the number of workers, others are quite constant. I will look into potential ways to optimize.
1,734,483,554,000
null
Performance Issue
[ "vllm/executor/ray_gpu_executor.py:RayGPUExecutor._init_workers_ray" ]
[]
vllm-project/vllm
vllm-project__vllm-9617
e7116c017c86cb547f4d1888edaf13a9be2a4562
diff --git a/vllm/engine/llm_engine.py b/vllm/engine/llm_engine.py index 3a29e6a9ae094..51a0d10db8f38 100644 --- a/vllm/engine/llm_engine.py +++ b/vllm/engine/llm_engine.py @@ -1612,7 +1612,7 @@ def _get_stats(self, # KV Cache Usage in % num_total_gpu = self.cache_config.num_gpu_blocks gpu_cache_usage_sys = 0. - if num_total_gpu is not None: + if num_total_gpu: # Guard against both None and 0 num_free_gpu = sum( scheduler.block_manager.get_num_free_gpu_blocks() for scheduler in self.scheduler) @@ -1620,7 +1620,7 @@ def _get_stats(self, num_total_cpu = self.cache_config.num_cpu_blocks cpu_cache_usage_sys = 0. - if num_total_cpu is not None and num_total_cpu > 0: + if num_total_cpu: # Guard against both None and 0 num_free_cpu = sum( scheduler.block_manager.get_num_free_cpu_blocks() for scheduler in self.scheduler)
[Bug]: Support Falcon Mamba ### Your current environment Does VLLM support Falcon Mamba models? if not, when it will be supported ### 🐛 Describe the bug Does VLLM support Falcon Mamba models? if not, when it will be supported
cc @tlrmchlsmth Unsubscribe On Wed, 14 Aug, 2024, 1:37 am Robert Shaw, ***@***.***> wrote: > cc @tlrmchlsmth <https://github.com/tlrmchlsmth> > > — > Reply to this email directly, view it on GitHub > <https://github.com/vllm-project/vllm/issues/7478#issuecomment-2287037438>, > or unsubscribe > <https://github.com/notifications/unsubscribe-auth/BCU643RS6ZZAY5MXB4JRVXLZRJRR3AVCNFSM6AAAAABMO6JHLOVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDEOBXGAZTONBTHA> > . > You are receiving this because you are subscribed to this thread.Message > ID: ***@***.***> > Hey @hahmad2008, No, vLLM doesn't support Falcon Mamba yet. I have a work-in-progress PR (https://github.com/vllm-project/vllm/pull/6484) to add support for Mamba. I'll look into supporting FalconMamba as well. Thank @tlrmchlsmth. Do you have any idea when this PR will be merged? @tlrmchlsmth Do you have any idea when this PR will be merged? Hi @hahmad2008, I’ve been prioritizing that PR over the last couple of days and I think will land it later this week. Do note that I’m not planning to add FalconMamba to #6484, but if it’s similar enough to Mamba or Mamba2, there will be a fast follow PR for support Thank you @tlrmchlsmth. I can only load and apply inference from it using transformers version `4.45.0.dev0` which is still not released. I installed it using: ``` pip install -U git+https://github.com/huggingface/transformers.git ``` So do you think your PR handle this? @hahmad2008 sorry, haven't gotten a chance to look at FalconMamba yet -- If transformers 4.45 is needed, then I'll likely I'll wait for that release. @tlrmchlsmth Thanks! seems it will be released next week. https://github.com/huggingface/transformers/issues/33236#issuecomment-2324529754 i think now it is released. @tlrmchlsmth please update on this. I'll be landing Mamba soon, possibly today. Sorry for the delay on that one. FalconMamba looks to be quite close to Mamba, so should be fairly easy to support. I'll try to get to it when I have some spare cycles but can't promise that I'll prioritize it. If somebody else wants to work on FalconMamba before I get to it, I would be happy to shepherd it Hey Guys, i managed to add support for FalconMamba inside vllm , here is the link: #9325 Please feel free to check that out. Thank you. I will try deploying it. I am getting error when i try to deploy. Below are the steps followed: - I followed https://docs.vllm.ai/en/stable/getting_started/installation.html#full-build-with-compilation to build fully - I run the server using `vllm serve tiiuae/falcon-mamba-7b-instruct --dtype auto` command. I tried both with `-tp 4` and without `-tp 4` **Hardware:** AWS machine: g5.x24large (4xA10g) I am getting below error: ``` INFO: Uvicorn running on socket ('0.0.0.0', 8000) (Press CTRL+C to quit) ERROR 10-16 12:19:35 engine.py:160] ZeroDivisionError('division by zero') ERROR 10-16 12:19:35 engine.py:160] Traceback (most recent call last): ERROR 10-16 12:19:35 engine.py:160] File "/workspace/vllm/vllm/engine/multiprocessing/engine.py", line 158, in start ERROR 10-16 12:19:35 engine.py:160] self.run_engine_loop() ERROR 10-16 12:19:35 engine.py:160] File "/workspace/vllm/vllm/engine/multiprocessing/engine.py", line 214, in run_engine_loop ERROR 10-16 12:19:35 engine.py:160] self.engine.do_log_stats() ERROR 10-16 12:19:35 engine.py:160] File "/workspace/vllm/vllm/engine/llm_engine.py", line 1543, in do_log_stats ERROR 10-16 12:19:35 engine.py:160] stats = self._get_stats(scheduler_outputs, model_output, ERROR 10-16 12:19:35 engine.py:160] File "/workspace/vllm/vllm/engine/llm_engine.py", line 1583, in _get_stats ERROR 10-16 12:19:35 engine.py:160] gpu_cache_usage_sys = 1.0 - (num_free_gpu / num_total_gpu) ERROR 10-16 12:19:35 engine.py:160] ZeroDivisionError: division by zero INFO 10-16 12:19:35 multiproc_worker_utils.py:134] Terminating local vLLM worker processes (VllmWorkerProcess pid=8683) INFO 10-16 12:19:35 multiproc_worker_utils.py:242] Worker exiting (VllmWorkerProcess pid=8684) INFO 10-16 12:19:35 multiproc_worker_utils.py:242] Worker exiting (VllmWorkerProcess pid=8685) INFO 10-16 12:19:35 multiproc_worker_utils.py:242] Worker exiting ERROR 10-16 12:19:45 client.py:250] TimeoutError('No heartbeat received from MQLLMEngine') ERROR 10-16 12:19:45 client.py:250] NoneType: None ``` @dhiaEddineRhaiem What could be the issue? Hello @hassanraha , I got the same error even with mamba and not only with FalconMamba. So it is independant on the PR implementation. As a workaround , i hardcoded it to the total number of gpus i have locally in my ec2 instance. @dhiaEddineRhaiem thanks. I changed `num_total_gpu` to number of GPU available. It worked. @tlrmchlsmth is the below issue also fixed? ``` INFO: Uvicorn running on socket ('0.0.0.0', 8000) (Press CTRL+C to quit) ERROR 10-16 12:19:35 engine.py:160] ZeroDivisionError('division by zero') ERROR 10-16 12:19:35 engine.py:160] Traceback (most recent call last): ERROR 10-16 12:19:35 engine.py:160] File "/workspace/vllm/vllm/engine/multiprocessing/engine.py", line 158, in start ERROR 10-16 12:19:35 engine.py:160] self.run_engine_loop() ERROR 10-16 12:19:35 engine.py:160] File "/workspace/vllm/vllm/engine/multiprocessing/engine.py", line 214, in run_engine_loop ERROR 10-16 12:19:35 engine.py:160] self.engine.do_log_stats() ERROR 10-16 12:19:35 engine.py:160] File "/workspace/vllm/vllm/engine/llm_engine.py", line 1543, in do_log_stats ERROR 10-16 12:19:35 engine.py:160] stats = self._get_stats(scheduler_outputs, model_output, ERROR 10-16 12:19:35 engine.py:160] File "/workspace/vllm/vllm/engine/llm_engine.py", line 1583, in _get_stats ERROR 10-16 12:19:35 engine.py:160] gpu_cache_usage_sys = 1.0 - (num_free_gpu / num_total_gpu) ERROR 10-16 12:19:35 engine.py:160] ZeroDivisionError: division by zero INFO 10-16 12:19:35 multiproc_worker_utils.py:134] Terminating local vLLM worker processes (VllmWorkerProcess pid=8683) INFO 10-16 12:19:35 multiproc_worker_utils.py:242] Worker exiting (VllmWorkerProcess pid=8684) INFO 10-16 12:19:35 multiproc_worker_utils.py:242] Worker exiting (VllmWorkerProcess pid=8685) INFO 10-16 12:19:35 multiproc_worker_utils.py:242] Worker exiting ERROR 10-16 12:19:45 client.py:250] TimeoutError('No heartbeat received from MQLLMEngine') ERROR 10-16 12:19:45 client.py:250] NoneType: None ```
1,729,693,073,000
null
Feature Request
[ "vllm/engine/llm_engine.py:LLMEngine._get_stats" ]
[]
joke2k/faker
joke2k__faker-2113
b605d2118b2e5879795678d4e234bd3552fee0a9
diff --git a/faker/factory.py b/faker/factory.py index 074f1a05e3..6849570578 100644 --- a/faker/factory.py +++ b/faker/factory.py @@ -65,7 +65,7 @@ def create( return faker @classmethod - @functools.cache + @functools.lru_cache(maxsize=None) def _find_provider_class( cls, provider_path: str,
Cache Factory._find_provider_class module look-ups, make Faker construction 20✕ ### What does this change This caches the look-ups of the provider class based on the provider name and locale (and specific subclass of Factory, if any), making construction of multiple Faker instances ~20✕ faster. This shouldn't change external behaviour unless someone is doing things that seem surprising: - using the same `provider_path` to refer to different modules, via some sort of dynamic module magic - a provider that is highly dynamic somehow, e.g. its `default_locale` attribute changes ### What was wrong Doing the provider class look-up can be quite seemingly because of the `list_module` traversals, resulting in this appearing very high in the profiles of some test suites in my work repo (which create many independent faker instances, separately seeded). For instance, running profiling in IPython with Faker v30.1.0 via: ```python %prun -l 10 -s cumtime [faker.Faker() for _ in range(100)] ``` Takes 1.86 seconds and has this as the top 10 (cumulatively) slowest calls: ``` ncalls tottime percall cumtime percall filename:lineno(function) 1 0.000 0.000 1.862 1.862 {built-in method builtins.exec} 1 0.000 0.000 1.862 1.862 <string>:1(<module>) 1 0.000 0.000 1.862 1.862 <string>:1(<listcomp>) 100 0.001 0.000 1.861 0.019 proxy.py:31(__init__) 100 0.005 0.000 1.860 0.019 factory.py:23(create) 2500 0.006 0.000 1.726 0.001 factory.py:66(_find_provider_class) 1900 0.002 0.000 1.650 0.001 loading.py:31(list_module) 1900 0.013 0.000 1.616 0.001 loading.py:38(<listcomp>) 61700 0.032 0.000 1.603 0.000 pkgutil.py:110(iter_modules) 61700 0.106 0.000 1.551 0.000 pkgutil.py:144(_iter_file_finder_modules) ``` ### How this fixes it By putting `@functools.cache` on `Factory._find_provider_class`, that function only runs once for each combination of provider_path, locale and cls (Factory subclass). This potentially increases memory usage slightly, but in all but extreme cases, each of those args should only be used with a limited number of values. Benchmarks: - Running `%timeit faker.Faker()` in IPython: - Before: `12.2 ms ± 355 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)` - After: `555 µs ± 32.1 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)` - Faker's test suite: running Faker's own test suite (specifically the number reported in pytest's footer after running the 'main' test suite, not tests/pytest/session_overides, and not including any of the other commands tox runs) show approximately this behaviour: ~90s -> ~60s. - With a similar change hacked into my real work repo, time to run a particular test suite that creates a lot of Fakers goes from ~35s -> ~15s. (NB. the second two "macro" benchmarks are very noisy.) Running the same profiling command now takes 0.135s and shows these top 10 calls: ``` ncalls tottime percall cumtime percall filename:lineno(function) 1 0.000 0.000 0.135 0.135 {built-in method builtins.exec} 1 0.000 0.000 0.135 0.135 <string>:1(<module>) 1 0.000 0.000 0.135 0.135 <string>:1(<listcomp>) 100 0.000 0.000 0.135 0.001 proxy.py:31(__init__) 100 0.002 0.000 0.134 0.001 factory.py:24(create) 2500 0.052 0.000 0.131 0.000 generator.py:32(add_provider) 2500 0.032 0.000 0.032 0.000 {built-in method builtins.dir} 176400 0.016 0.000 0.016 0.000 {method 'startswith' of 'str' objects} 80400 0.009 0.000 0.016 0.000 generator.py:100(set_formatter) 98500 0.011 0.000 0.011 0.000 {built-in method builtins.getattr} ``` ### Checklist - [x] I have read the documentation about [CONTRIBUTING](https://github.com/joke2k/faker/blob/master/CONTRIBUTING.rst) - [x] I have run `make lint`
Thank you for merging so quickly!
1,728,113,346,000
null
Performance Issue
[ "faker/factory.py:Factory" ]
[ "faker/factory.py:Factory" ]
mlflow/mlflow
mlflow__mlflow-13390
49e038235f64cee0d6985293b9e5a24d2718abab
diff --git a/mlflow/openai/_openai_autolog.py b/mlflow/openai/_openai_autolog.py index d67da788da443..5ddbf87dc4379 100644 --- a/mlflow/openai/_openai_autolog.py +++ b/mlflow/openai/_openai_autolog.py @@ -159,7 +159,6 @@ def _stream_output_logging_hook(stream: Iterator) -> Iterator: yield chunk try: - chunk_dicts = [] chunk_dicts = [chunk.to_dict() for chunk in chunks] if config.log_traces and request_id: mlflow_client.end_trace(
Remove useless `chunk_dicts` ### Summary ```diff diff --git a/mlflow/openai/_openai_autolog.py b/mlflow/openai/_openai_autolog.py index 149e92793..45e486808 100644 --- a/mlflow/openai/_openai_autolog.py +++ b/mlflow/openai/_openai_autolog.py @@ -158,7 +158,6 @@ def patched_call(original, self, *args, **kwargs): yield chunk try: - chunk_dicts = [] chunk_dicts = [chunk.to_dict() for chunk in chunks] if config.log_traces and request_id: mlflow_client.end_trace( ``` ### Notes - Make sure to open a PR from a **non-master** branch. - Sign off the commit using the `-s` flag when making a commit: ```sh git commit -s -m "..." # ^^ make sure to use this ``` - Include `#{issue_number}` (e.g. `#123`) in the PR description when opening a PR.
@harupy ill work on this issue
1,728,658,506,000
null
Performance Issue
[ "mlflow/openai/_openai_autolog.py:patched_call" ]
[]
huggingface/transformers
huggingface__transformers-34507
dadb286f061f156d01b80e12594321e890b53088
diff --git a/src/transformers/trainer.py b/src/transformers/trainer.py index 1603a4ec215557..80f8a60a34b622 100755 --- a/src/transformers/trainer.py +++ b/src/transformers/trainer.py @@ -1671,21 +1671,21 @@ def num_examples(self, dataloader: DataLoader) -> int: except (NameError, AttributeError, TypeError): # no dataset or length, estimate by length of dataloader return len(dataloader) * self.args.per_device_train_batch_size - def num_tokens(self, train_dl: DataLoader, max_steps: Optional[int] = None) -> int: + @staticmethod + def num_tokens(train_dl: DataLoader, max_steps: Optional[int] = None) -> int: """ Helper to get number of tokens in a [`~torch.utils.data.DataLoader`] by enumerating dataloader. """ train_tokens = 0 try: - for step, batch in enumerate(train_dl): + for batch in train_dl: tokens = batch["input_ids"].numel() if max_steps is not None: return tokens * max_steps train_tokens += tokens - return train_tokens except KeyError: logger.warning("Cannot get num_tokens from dataloader") - return train_tokens + return train_tokens def _hp_search_setup(self, trial: Union["optuna.Trial", Dict[str, Any]]): """HP search setup code""" @@ -2439,7 +2439,6 @@ def _inner_training_loop( epoch_iterator = iter(epoch_dataloader) # We chunkify the epoch iterator into gradient accumulation steps `n` batches remainder = num_examples % args.gradient_accumulation_steps - num_items_in_batch = None if remainder == 0: remainder = args.gradient_accumulation_steps update_step = -1 @@ -2562,7 +2561,9 @@ def _inner_training_loop( self.state.global_step += 1 self.state.epoch = epoch + (step + 1 + steps_skipped) / steps_in_epoch self.control = self.callback_handler.on_step_end(args, self.state, self.control) - self._maybe_log_save_evaluate(tr_loss, grad_norm, model, trial, epoch, ignore_keys_for_eval) + self._maybe_log_save_evaluate( + tr_loss, grad_norm, model, trial, epoch, ignore_keys_for_eval, start_time + ) else: self.control = self.callback_handler.on_substep_end(args, self.state, self.control) @@ -2587,7 +2588,7 @@ def _inner_training_loop( self.control.should_training_stop = True self.control = self.callback_handler.on_epoch_end(args, self.state, self.control) - self._maybe_log_save_evaluate(tr_loss, grad_norm, model, trial, epoch, ignore_keys_for_eval) + self._maybe_log_save_evaluate(tr_loss, grad_norm, model, trial, epoch, ignore_keys_for_eval, start_time) if DebugOption.TPU_METRICS_DEBUG in self.args.debug: if is_torch_xla_available(): @@ -2992,7 +2993,7 @@ def _evaluate(self, trial, ignore_keys_for_eval, skip_scheduler=False): ) from exc return metrics - def _maybe_log_save_evaluate(self, tr_loss, grad_norm, model, trial, epoch, ignore_keys_for_eval): + def _maybe_log_save_evaluate(self, tr_loss, grad_norm, model, trial, epoch, ignore_keys_for_eval, start_time): if self.control.should_log and self.state.global_step > self._globalstep_last_logged: if is_torch_xla_available(): xm.mark_step() @@ -3014,7 +3015,7 @@ def _maybe_log_save_evaluate(self, tr_loss, grad_norm, model, trial, epoch, igno self._globalstep_last_logged = self.state.global_step self.store_flos() - self.log(logs) + self.log(logs, start_time) metrics = None if self.control.should_evaluate: @@ -3512,7 +3513,7 @@ def hyperparameter_search( self.hp_search_backend = None return best_run - def log(self, logs: Dict[str, float]) -> None: + def log(self, logs: Dict[str, float], start_time: Optional[float] = None) -> None: """ Log `logs` on the various objects watching training. @@ -3521,11 +3522,15 @@ def log(self, logs: Dict[str, float]) -> None: Args: logs (`Dict[str, float]`): The values to log. + start_time (`Optional[float]`): + The start of training. """ if self.state.epoch is not None: logs["epoch"] = self.state.epoch if self.args.include_num_input_tokens_seen: logs["num_input_tokens_seen"] = self.state.num_input_tokens_seen + if start_time is not None: + speed_metrics("train", start_time, num_tokens=self.state.num_input_tokens_seen) output = {**logs, **{"step": self.state.global_step}} self.state.log_history.append(output)
Move Trainer's tokens per second metric into the inner training loop ### Feature request Right now `include_tokens_per_second=True` in `Trainer` only reports the tokens per second metric at [the end of training](https://github.com/huggingface/transformers/blob/c1753436dbb8bcbcee183cdd6eba9f08a90d602a/src/transformers/trainer.py#L2610). It would be very useful to have this metric reported continuously inside the training loop so we can monitor it during training. ### Motivation The current behavior is counter-intuitive, doesn't align with other convenient trainers (like torchtune), and it's undocumented, so I had to RTFC to figure out why the metric wasn't showing up. ### Your contribution I probably don't have time to contribute it myself.
cc @muellerzr @SunMarc
1,730,291,622,000
null
Feature Request
[ "src/transformers/trainer.py:Trainer.num_tokens", "src/transformers/trainer.py:Trainer", "src/transformers/trainer.py:Trainer._inner_training_loop", "src/transformers/trainer.py:Trainer._maybe_log_save_evaluate", "src/transformers/trainer.py:Trainer.log" ]
[]
huggingface/transformers
huggingface__transformers-34279
93352e81f5019abaa52f7bdc2e3284779e864367
diff --git a/src/transformers/integrations/integration_utils.py b/src/transformers/integrations/integration_utils.py index 4f7cf3632fe549..a09116552c8e34 100755 --- a/src/transformers/integrations/integration_utils.py +++ b/src/transformers/integrations/integration_utils.py @@ -1218,6 +1218,8 @@ def setup(self, args, state, model): and other parameters are ignored. - **MLFLOW_FLATTEN_PARAMS** (`str`, *optional*, defaults to `False`): Whether to flatten the parameters dictionary before logging. + - **MLFLOW_MAX_LOG_PARAMS** (`int`, *optional*): + Set the maximum number of parameters to log in the run. """ self._log_artifacts = os.getenv("HF_MLFLOW_LOG_ARTIFACTS", "FALSE").upper() in ENV_VARS_TRUE_VALUES self._nested_run = os.getenv("MLFLOW_NESTED_RUN", "FALSE").upper() in ENV_VARS_TRUE_VALUES @@ -1225,6 +1227,7 @@ def setup(self, args, state, model): self._experiment_name = os.getenv("MLFLOW_EXPERIMENT_NAME", None) self._flatten_params = os.getenv("MLFLOW_FLATTEN_PARAMS", "FALSE").upper() in ENV_VARS_TRUE_VALUES self._run_id = os.getenv("MLFLOW_RUN_ID", None) + self._max_log_params = os.getenv("MLFLOW_MAX_LOG_PARAMS", None) # "synchronous" flag is only available with mlflow version >= 2.8.0 # https://github.com/mlflow/mlflow/pull/9705 @@ -1273,6 +1276,13 @@ def setup(self, args, state, model): del combined_dict[name] # MLflow cannot log more than 100 values in one go, so we have to split it combined_dict_items = list(combined_dict.items()) + if self._max_log_params and self._max_log_params.isdigit(): + max_log_params = int(self._max_log_params) + if max_log_params < len(combined_dict_items): + logger.debug( + f"Reducing the number of parameters to log from {len(combined_dict_items)} to {max_log_params}." + ) + combined_dict_items = combined_dict_items[:max_log_params] for i in range(0, len(combined_dict_items), self._MAX_PARAMS_TAGS_PER_BATCH): if self._async_log: self._ml_flow.log_params(
Limit number of parametes logged with `MLflowCallback` ### Feature request Add a new environment variable, such as `MLFLOW_MAX_LOG_PARAMS`, which can limit the number of parameters logged by the `MLflowCallback`. ### Motivation When using mlflow in Azure ML, there is a limit of 200 parameters that can be logged in a single run, meaning that when attempting to run a training job, the callback needs to be disabled entirely, or the module needs to be "monkeypatched" to limit the number of params logged. ### Your contribution I will submit a PR
1,729,505,760,000
null
Feature Request
[ "src/transformers/integrations/integration_utils.py:MLflowCallback.setup" ]
[]
huggingface/transformers
huggingface__transformers-34208
343c8cb86f2ab6a51e7363ee11f69afb1c9e839e
diff --git a/src/transformers/agents/tools.py b/src/transformers/agents/tools.py index cfb1e4cf95ced9..a425ffc8f106b2 100644 --- a/src/transformers/agents/tools.py +++ b/src/transformers/agents/tools.py @@ -138,7 +138,7 @@ def validate_arguments(self): "inputs": Dict, "output_type": str, } - authorized_types = ["string", "integer", "number", "image", "audio", "any"] + authorized_types = ["string", "integer", "number", "image", "audio", "any", "boolean"] for attr, expected_type in required_attributes.items(): attr_value = getattr(self, attr, None)
Boolean as tool input ### Feature request It would be great if `boolean` was authorized as input to a `Tool` ### Motivation I am willing to use my own tools with transformers CodeAgent ; using the method `tool` I have a proper function `func` with typing and doc-strings as required. One of the input of the function is a `bool`. When I try to run `tool(func)` I get: `Exception: Input 'perte_de_salaire': type 'boolean' is not an authorized value, should be one of ['string', 'integer', 'number', 'image', 'audio', 'any']`. The Exception is rather clear, but why wouldn't a type as basic as `boolean` not be allowed? Especially since any is authorized. This is clearly a limitation to using the library. ### Your contribution I seems like a few lines of code to change in tools.py (https://github.com/huggingface/transformers/blob/main/src/transformers/agents/tools.py)
cc @aymeric-roucher Please assign this to me
1,729,135,245,000
null
Feature Request
[ "src/transformers/agents/tools.py:Tool.validate_arguments" ]
[]
django/django
django__django-18654
c334c1a8ff4579cdb1dd77cce8da747070ac9fc4
diff --git a/django/urls/base.py b/django/urls/base.py index 753779c75b46..bb40ba222436 100644 --- a/django/urls/base.py +++ b/django/urls/base.py @@ -127,8 +127,9 @@ def clear_script_prefix(): def set_urlconf(urlconf_name): """ - Set the URLconf for the current thread (overriding the default one in - settings). If urlconf_name is None, revert back to the default. + Set the URLconf for the current thread or asyncio task (overriding the + default one in settings). If urlconf_name is None, revert back to the + default. """ if urlconf_name: _urlconfs.value = urlconf_name @@ -139,8 +140,8 @@ def set_urlconf(urlconf_name): def get_urlconf(default=None): """ - Return the root URLconf to use for the current thread if it has been - changed from the default one. + Return the root URLconf to use for the current thread or asyncio task if it + has been changed from the default one. """ return getattr(_urlconfs, "value", default)
Clarify django.urls.set_urlconf scoping behaviour Description django.urls.set_urlconf ​docstring mentions setting the urlconf for the current thread. However, this is backed by asgiref.local.Local, which is supposed to provide scoping features related to asyncio tasks as well. This becomes relevant, for example, when doing multi-tenancy with more than one urlconf and trying to call django.urls.reverse in an ASGI application. I have been trying to infer what is the expected behaviour in async Django code by following the current implementation, and I found that asgiref.local.Local behaviour has changed over time (see ​https://github.com/django/asgiref/issues/473). I assume that using asgiref.local.Local instead of threading.local hints at an intention is to give set_urlconf/get_urlconf meaningful semantics for Channels consumers or ASGI applications. Whether the intention is to isolate set_urlconf/get_urlconf across different asyncio tasks or to only support isolation between threads, I suppose it would be useful if their behaviour was documented also for the case of asyncio code, especially given they back django.urls.reverse.
["I'm struggling to follow what this is asking for - can you share an example of the behavior you're seeing? From what I can see, both async and sync requests handle the urlconf the same - it is the ROOT_URLCONF unless set by a middleware \u200bas documented.", 1728267595.0] ["Firstly, just for Django, set_urlconf is not public API so you shouldn't use it. Rather prefer the documented HttpRequest.urlconf attribute (\u200bdocs) to set per-tenant URLs in a middleware, if that's your strategy. Secondly, the \u200blinked asgiref issue (#473) is in progress, and should be resolved shortly. (Setting locals has been leaking out of asyncio tasks since the recent v3.8, which is a regression. You can pin to v3.7.2 pending the next release.) It's not a Django issue. If you need further advice please see TicketClosingReasons/UseSupportChannels.", 1728268240.0] ['From what I could see, "Set the URLconf for the current thread" in set_urlconf\'s docstring looks like a leftover from the pre-async times and could become "Set the URLconf for the current thread or asyncio task". I understand it\'s not a public API and indeed I only set request.urlconf in my code. We spotted the docstring while trying to double check the validity of what we were designing on the async case, and had some extra digging to do to reassure ourselves we were still doing the right thing, hence this issue. I\'m surprised the ticket got closed, but fair enough.', 1728269648.0] ['Yes, OK, just changing the docstring would be fine.', 1728270267.0] ['\u200bPR', 1728270548.0] ['In d876be79: Fixed #35807 -- Mentioned async case for internal get/set urlconf helpers.', 1728274635.0]
1,728,288,525,000
null
Feature Request
[ "django/urls/base.py:set_urlconf", "django/urls/base.py:get_urlconf" ]
[]
huggingface/diffusers
huggingface__diffusers-9815
13e8fdecda91e27e40b15fa8a8f456ade773e6eb
diff --git a/src/diffusers/training_utils.py b/src/diffusers/training_utils.py index d2bf3fe07185..2474ed5c2114 100644 --- a/src/diffusers/training_utils.py +++ b/src/diffusers/training_utils.py @@ -43,6 +43,9 @@ def set_seed(seed: int): Args: seed (`int`): The seed to set. + + Returns: + `None` """ random.seed(seed) np.random.seed(seed) @@ -58,6 +61,17 @@ def compute_snr(noise_scheduler, timesteps): """ Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849 + for the given timesteps using the provided noise scheduler. + + Args: + noise_scheduler (`NoiseScheduler`): + An object containing the noise schedule parameters, specifically `alphas_cumprod`, which is used to compute + the SNR values. + timesteps (`torch.Tensor`): + A tensor of timesteps for which the SNR is computed. + + Returns: + `torch.Tensor`: A tensor containing the computed SNR values for each timestep. """ alphas_cumprod = noise_scheduler.alphas_cumprod sqrt_alphas_cumprod = alphas_cumprod**0.5
[community] Improving docstrings and type hints There are many instances in the codebase where our docstring/typing convention is not followed. We'd like to work on improving this with your help! Our convention looks like: ```python3 def function_name(parameter_1: Union[str, List[str]], parameter_2: Optional[int] = None, parameter_3: float = 42.0) -> Civilization: r""" Function that creates a simulation. Args: parameter_1 (`str` or `List[str]`): Description of game level. parameter_2 (`int`, *optional*): Kardashev scale of civilization. parameter_3 (`float`, defaults to `42.0`): Difficulty scale. Returns: [`~simulations.objects.Civilization`] A civilization simulation with provided initialization parameters. """ ``` Some examples that don't follow the docstring convention are: - [this](https://github.com/huggingface/diffusers/blob/c4a8979f3018fbffee33304c1940561f7a5cf613/src/diffusers/models/embeddings.py#L89): missing explanations - [this](https://github.com/huggingface/diffusers/blob/33fafe3d143ca8380a9e405e7acfa69091d863fb/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py#L132): does not contain mixin-related documentation whereas as [this](https://github.com/huggingface/diffusers/blob/33fafe3d143ca8380a9e405e7acfa69091d863fb/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py#L154) does - [this](https://github.com/huggingface/diffusers/blob/c4a8979f3018fbffee33304c1940561f7a5cf613/src/diffusers/utils/import_utils.py#L672): function explanation after "Args", but should be before - [this](https://github.com/huggingface/diffusers/blob/c4a8979f3018fbffee33304c1940561f7a5cf613/src/diffusers/pipelines/deepfloyd_if/pipeline_output.py#L14): same reason as above - [this](https://github.com/huggingface/diffusers/blob/c4a8979f3018fbffee33304c1940561f7a5cf613/src/diffusers/models/embeddings.py#L518): incorrect indentation There are also many places where docstrings are completely missing or inadequately explained. If you feel something needs an improvement, you can open a PR with your suggestions too! Additionally, type hints are not appropriate/correctly used at many occurrences and mismatch the accompanying docstrings - these could use an improvement too! Please limit your PRs to changes to a single file in each PR. Changes must be only related to docstrings/type hints. Feel free to ping either @yiyixuxu, @stevhliu or me for reviews.
Hi @a-r-r-o-w I'd like to take this up, please let me know if there are any other prerequisites I should be aware of before submitting a PR against this issue 🙂 Not prerequisites I can think of off the top of my head. Just that the PRs should be limited in scope as mentioned. You can maybe look at the Diffusers contribution guide (and philosophy, if you're interested) I'll take up some of these. I’m also interested in this work. Could you let me know about the current progress? @SubhasmitaSw @charchit7 Hey @yijun-lee, I've been caught up with some work, unfortunately, but I’ll work on this over the weekend or later today. If you want to get started on any of these tasks, feel free to go ahead and let us know, so we can pick up whatever is left. Oh, actually, I think I’ll be starting this weekend as well. If we proceed separately, it would be good to inform each other through comments or other means. Have a good day :) @charchit7 Sure, @yijun-lee, that works! you too :) Hello there guys, I'd also like to contribute in this issue. I'm sorry I didn't really drop in a message here yet but I hope this PR helps push things forward! A g'day to all. Feel free to take up as many files as you want (one file per PR however)! The ones mentioned in the issue description are just a few examples, but there are probably hundreds of files that could use improvements. Please keep them coming, thanks Hello! I'm also following this issue with interest. I’ve submitted my first PR, so please let me know if there are any mistakes! Have a great day! Hello! Thanks for holding interesting issue! I'm fully circled for this new work ! 🙆🏻‍♀️ 🙆🏻‍♀️ I also have opened my PR, please let me know if I missed something ! + Q. which should I prioritize modern python docstring conventions or unity of that file (e.g. expression) ? @a-r-r-o-w hi, i wank to work on it Hello colleagues, I'm also interested into this issues. I made a first PR related to this issue. Since there are lots of docstrings to update, I'm also interested into list up missing docstring files if I have time :) Thank you in advance for your time and guidance! Hello everyone! 😊 I'm also interested in this issue and have made some updates to the docstrings in `src/diffusers/training_utils.py`. I would love to get your feedback on my changes! I’m excited to contribute and be part of this discussion. Thank you in advance for your time and guidance 🤗 Hi I would love to be of help here. I have made some additions to the docstrings in src/diffusers/training_utils.py. Would love to get your feedback on the PR :)
1,730,319,460,000
null
Feature Request
[ "src/diffusers/training_utils.py:set_seed", "src/diffusers/training_utils.py:compute_snr" ]
[]
huggingface/diffusers
huggingface__diffusers-9606
92d2baf643b6198c2df08d9e908637ea235d84d1
diff --git a/src/diffusers/training_utils.py b/src/diffusers/training_utils.py index 57bd9074870c..11a4e1cc8069 100644 --- a/src/diffusers/training_utils.py +++ b/src/diffusers/training_utils.py @@ -36,8 +36,9 @@ def set_seed(seed: int): """ - Args: Helper function for reproducible behavior to set the seed in `random`, `numpy`, `torch`. + + Args: seed (`int`): The seed to set. """ random.seed(seed) @@ -194,6 +195,13 @@ def unet_lora_state_dict(unet: UNet2DConditionModel) -> Dict[str, torch.Tensor]: def cast_training_params(model: Union[torch.nn.Module, List[torch.nn.Module]], dtype=torch.float32): + """ + Casts the training parameters of the model to the specified data type. + + Args: + model: The PyTorch model whose parameters will be cast. + dtype: The data type to which the model parameters will be cast. + """ if not isinstance(model, list): model = [model] for m in model: @@ -225,7 +233,8 @@ def _set_state_dict_into_text_encoder( def compute_density_for_timestep_sampling( weighting_scheme: str, batch_size: int, logit_mean: float = None, logit_std: float = None, mode_scale: float = None ): - """Compute the density for sampling the timesteps when doing SD3 training. + """ + Compute the density for sampling the timesteps when doing SD3 training. Courtesy: This was contributed by Rafie Walker in https://github.com/huggingface/diffusers/pull/8528. @@ -244,7 +253,8 @@ def compute_density_for_timestep_sampling( def compute_loss_weighting_for_sd3(weighting_scheme: str, sigmas=None): - """Computes loss weighting scheme for SD3 training. + """ + Computes loss weighting scheme for SD3 training. Courtesy: This was contributed by Rafie Walker in https://github.com/huggingface/diffusers/pull/8528. @@ -261,7 +271,9 @@ def compute_loss_weighting_for_sd3(weighting_scheme: str, sigmas=None): def free_memory(): - """Runs garbage collection. Then clears the cache of the available accelerator.""" + """ + Runs garbage collection. Then clears the cache of the available accelerator. + """ gc.collect() if torch.cuda.is_available(): @@ -494,7 +506,8 @@ def pin_memory(self) -> None: self.shadow_params = [p.pin_memory() for p in self.shadow_params] def to(self, device=None, dtype=None, non_blocking=False) -> None: - r"""Move internal buffers of the ExponentialMovingAverage to `device`. + r""" + Move internal buffers of the ExponentialMovingAverage to `device`. Args: device: like `device` argument to `torch.Tensor.to` @@ -528,23 +541,25 @@ def state_dict(self) -> dict: def store(self, parameters: Iterable[torch.nn.Parameter]) -> None: r""" + Saves the current parameters for restoring later. + Args: - Save the current parameters for restoring later. - parameters: Iterable of `torch.nn.Parameter`; the parameters to be - temporarily stored. + parameters: Iterable of `torch.nn.Parameter`. The parameters to be temporarily stored. """ self.temp_stored_params = [param.detach().cpu().clone() for param in parameters] def restore(self, parameters: Iterable[torch.nn.Parameter]) -> None: r""" - Args: - Restore the parameters stored with the `store` method. Useful to validate the model with EMA parameters without: - affecting the original optimization process. Store the parameters before the `copy_to()` method. After + Restore the parameters stored with the `store` method. Useful to validate the model with EMA parameters + without: affecting the original optimization process. Store the parameters before the `copy_to()` method. After validation (or model saving), use this to restore the former parameters. + + Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be updated with the stored parameters. If `None`, the parameters with which this `ExponentialMovingAverage` was initialized will be used. """ + if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`") if self.foreach: @@ -560,9 +575,10 @@ def restore(self, parameters: Iterable[torch.nn.Parameter]) -> None: def load_state_dict(self, state_dict: dict) -> None: r""" - Args: Loads the ExponentialMovingAverage state. This method is used by accelerate during checkpointing to save the ema state dict. + + Args: state_dict (dict): EMA state. Should be an object returned from a call to :meth:`state_dict`. """
[community] Improving docstrings and type hints There are many instances in the codebase where our docstring/typing convention is not followed. We'd like to work on improving this with your help! Our convention looks like: ```python3 def function_name(parameter_1: Union[str, List[str]], parameter_2: Optional[int] = None, parameter_3: float = 42.0) -> Civilization: r""" Function that creates a simulation. Args: parameter_1 (`str` or `List[str]`): Description of game level. parameter_2 (`int`, *optional*): Kardashev scale of civilization. parameter_3 (`float`, defaults to `42.0`): Difficulty scale. Returns: [`~simulations.objects.Civilization`] A civilization simulation with provided initialization parameters. """ ``` Some examples that don't follow the docstring convention are: - [this](https://github.com/huggingface/diffusers/blob/c4a8979f3018fbffee33304c1940561f7a5cf613/src/diffusers/models/embeddings.py#L89): missing explanations - [this](https://github.com/huggingface/diffusers/blob/33fafe3d143ca8380a9e405e7acfa69091d863fb/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py#L132): does not contain mixin-related documentation whereas as [this](https://github.com/huggingface/diffusers/blob/33fafe3d143ca8380a9e405e7acfa69091d863fb/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py#L154) does - [this](https://github.com/huggingface/diffusers/blob/c4a8979f3018fbffee33304c1940561f7a5cf613/src/diffusers/utils/import_utils.py#L672): function explanation after "Args", but should be before - [this](https://github.com/huggingface/diffusers/blob/c4a8979f3018fbffee33304c1940561f7a5cf613/src/diffusers/pipelines/deepfloyd_if/pipeline_output.py#L14): same reason as above - [this](https://github.com/huggingface/diffusers/blob/c4a8979f3018fbffee33304c1940561f7a5cf613/src/diffusers/models/embeddings.py#L518): incorrect indentation There are also many places where docstrings are completely missing or inadequately explained. If you feel something needs an improvement, you can open a PR with your suggestions too! Additionally, type hints are not appropriate/correctly used at many occurrences and mismatch the accompanying docstrings - these could use an improvement too! Please limit your PRs to changes to a single file in each PR. Changes must be only related to docstrings/type hints. Feel free to ping either @yiyixuxu, @stevhliu or me for reviews.
Hi @a-r-r-o-w I'd like to take this up, please let me know if there are any other prerequisites I should be aware of before submitting a PR against this issue 🙂 Not prerequisites I can think of off the top of my head. Just that the PRs should be limited in scope as mentioned. You can maybe look at the Diffusers contribution guide (and philosophy, if you're interested) I'll take up some of these. I’m also interested in this work. Could you let me know about the current progress? @SubhasmitaSw @charchit7 Hey @yijun-lee, I've been caught up with some work, unfortunately, but I’ll work on this over the weekend or later today. If you want to get started on any of these tasks, feel free to go ahead and let us know, so we can pick up whatever is left. Oh, actually, I think I’ll be starting this weekend as well. If we proceed separately, it would be good to inform each other through comments or other means. Have a good day :) @charchit7 Sure, @yijun-lee, that works! you too :) Hello there guys, I'd also like to contribute in this issue. I'm sorry I didn't really drop in a message here yet but I hope this PR helps push things forward! A g'day to all. Feel free to take up as many files as you want (one file per PR however)! The ones mentioned in the issue description are just a few examples, but there are probably hundreds of files that could use improvements. Please keep them coming, thanks Hello! I'm also following this issue with interest. I’ve submitted my first PR, so please let me know if there are any mistakes! Have a great day! Hello! Thanks for holding interesting issue! I'm fully circled for this new work ! 🙆🏻‍♀️ 🙆🏻‍♀️ I also have opened my PR, please let me know if I missed something ! + Q. which should I prioritize modern python docstring conventions or unity of that file (e.g. expression) ? @a-r-r-o-w hi, i wank to work on it Hello colleagues, I'm also interested into this issues. I made a first PR related to this issue. Since there are lots of docstrings to update, I'm also interested into list up missing docstring files if I have time :) Thank you in advance for your time and guidance!
1,728,390,456,000
null
Feature Request
[ "src/diffusers/training_utils.py:set_seed", "src/diffusers/training_utils.py:cast_training_params", "src/diffusers/training_utils.py:compute_density_for_timestep_sampling", "src/diffusers/training_utils.py:compute_loss_weighting_for_sd3", "src/diffusers/training_utils.py:free_memory", "src/diffusers/training_utils.py:EMAModel.to", "src/diffusers/training_utils.py:EMAModel.store", "src/diffusers/training_utils.py:EMAModel.restore", "src/diffusers/training_utils.py:EMAModel.load_state_dict" ]
[]
huggingface/diffusers
huggingface__diffusers-9583
99f608218caa069a2f16dcf9efab46959b15aec0
diff --git a/src/diffusers/utils/import_utils.py b/src/diffusers/utils/import_utils.py index 34cc5fcc8605..daecec4aa258 100644 --- a/src/diffusers/utils/import_utils.py +++ b/src/diffusers/utils/import_utils.py @@ -668,8 +668,9 @@ def __getattr__(cls, key): # This function was copied from: https://github.com/huggingface/accelerate/blob/874c4967d94badd24f893064cc3bef45f57cadf7/src/accelerate/utils/versions.py#L319 def compare_versions(library_or_version: Union[str, Version], operation: str, requirement_version: str): """ - Args: Compares a library version to some requirement using a given operation. + + Args: library_or_version (`str` or `packaging.version.Version`): A library name or a version to check. operation (`str`): @@ -688,8 +689,9 @@ def compare_versions(library_or_version: Union[str, Version], operation: str, re # This function was copied from: https://github.com/huggingface/accelerate/blob/874c4967d94badd24f893064cc3bef45f57cadf7/src/accelerate/utils/versions.py#L338 def is_torch_version(operation: str, version: str): """ - Args: Compares the current PyTorch version to a given reference with an operation. + + Args: operation (`str`): A string representation of an operator, such as `">"` or `"<="` version (`str`): @@ -700,8 +702,9 @@ def is_torch_version(operation: str, version: str): def is_transformers_version(operation: str, version: str): """ - Args: Compares the current Transformers version to a given reference with an operation. + + Args: operation (`str`): A string representation of an operator, such as `">"` or `"<="` version (`str`): @@ -714,8 +717,9 @@ def is_transformers_version(operation: str, version: str): def is_accelerate_version(operation: str, version: str): """ - Args: Compares the current Accelerate version to a given reference with an operation. + + Args: operation (`str`): A string representation of an operator, such as `">"` or `"<="` version (`str`): @@ -728,8 +732,9 @@ def is_accelerate_version(operation: str, version: str): def is_peft_version(operation: str, version: str): """ - Args: Compares the current PEFT version to a given reference with an operation. + + Args: operation (`str`): A string representation of an operator, such as `">"` or `"<="` version (`str`): @@ -742,8 +747,9 @@ def is_peft_version(operation: str, version: str): def is_k_diffusion_version(operation: str, version: str): """ - Args: Compares the current k-diffusion version to a given reference with an operation. + + Args: operation (`str`): A string representation of an operator, such as `">"` or `"<="` version (`str`): @@ -756,8 +762,9 @@ def is_k_diffusion_version(operation: str, version: str): def get_objects_from_module(module): """ - Args: Returns a dict of object names and values in a module, while skipping private/internal objects + + Args: module (ModuleType): Module to extract the objects from. @@ -775,7 +782,9 @@ def get_objects_from_module(module): class OptionalDependencyNotAvailable(BaseException): - """An error indicating that an optional dependency of Diffusers was not found in the environment.""" + """ + An error indicating that an optional dependency of Diffusers was not found in the environment. + """ class _LazyModule(ModuleType):
[community] Improving docstrings and type hints There are many instances in the codebase where our docstring/typing convention is not followed. We'd like to work on improving this with your help! Our convention looks like: ```python3 def function_name(parameter_1: Union[str, List[str]], parameter_2: Optional[int] = None, parameter_3: float = 42.0) -> Civilization: r""" Function that creates a simulation. Args: parameter_1 (`str` or `List[str]`): Description of game level. parameter_2 (`int`, *optional*): Kardashev scale of civilization. parameter_3 (`float`, defaults to `42.0`): Difficulty scale. Returns: [`~simulations.objects.Civilization`] A civilization simulation with provided initialization parameters. """ ``` Some examples that don't follow the docstring convention are: - [this](https://github.com/huggingface/diffusers/blob/c4a8979f3018fbffee33304c1940561f7a5cf613/src/diffusers/models/embeddings.py#L89): missing explanations - [this](https://github.com/huggingface/diffusers/blob/33fafe3d143ca8380a9e405e7acfa69091d863fb/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py#L132): does not contain mixin-related documentation whereas as [this](https://github.com/huggingface/diffusers/blob/33fafe3d143ca8380a9e405e7acfa69091d863fb/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py#L154) does - [this](https://github.com/huggingface/diffusers/blob/c4a8979f3018fbffee33304c1940561f7a5cf613/src/diffusers/utils/import_utils.py#L672): function explanation after "Args", but should be before - [this](https://github.com/huggingface/diffusers/blob/c4a8979f3018fbffee33304c1940561f7a5cf613/src/diffusers/pipelines/deepfloyd_if/pipeline_output.py#L14): same reason as above - [this](https://github.com/huggingface/diffusers/blob/c4a8979f3018fbffee33304c1940561f7a5cf613/src/diffusers/models/embeddings.py#L518): incorrect indentation There are also many places where docstrings are completely missing or inadequately explained. If you feel something needs an improvement, you can open a PR with your suggestions too! Additionally, type hints are not appropriate/correctly used at many occurrences and mismatch the accompanying docstrings - these could use an improvement too! Please limit your PRs to changes to a single file in each PR. Changes must be only related to docstrings/type hints. Feel free to ping either @yiyixuxu, @stevhliu or me for reviews.
Hi @a-r-r-o-w I'd like to take this up, please let me know if there are any other prerequisites I should be aware of before submitting a PR against this issue 🙂 Not prerequisites I can think of off the top of my head. Just that the PRs should be limited in scope as mentioned. You can maybe look at the Diffusers contribution guide (and philosophy, if you're interested) I'll take up some of these. I’m also interested in this work. Could you let me know about the current progress? @SubhasmitaSw @charchit7 Hey @yijun-lee, I've been caught up with some work, unfortunately, but I’ll work on this over the weekend or later today. If you want to get started on any of these tasks, feel free to go ahead and let us know, so we can pick up whatever is left. Oh, actually, I think I’ll be starting this weekend as well. If we proceed separately, it would be good to inform each other through comments or other means. Have a good day :) @charchit7 Sure, @yijun-lee, that works! you too :) Hello there guys, I'd also like to contribute in this issue. I'm sorry I didn't really drop in a message here yet but I hope this PR helps push things forward! A g'day to all. Feel free to take up as many files as you want (one file per PR however)! The ones mentioned in the issue description are just a few examples, but there are probably hundreds of files that could use improvements. Please keep them coming, thanks
1,728,062,817,000
null
Feature Request
[ "src/diffusers/utils/import_utils.py:compare_versions", "src/diffusers/utils/import_utils.py:is_torch_version", "src/diffusers/utils/import_utils.py:is_transformers_version", "src/diffusers/utils/import_utils.py:is_accelerate_version", "src/diffusers/utils/import_utils.py:is_peft_version", "src/diffusers/utils/import_utils.py:is_k_diffusion_version", "src/diffusers/utils/import_utils.py:get_objects_from_module", "src/diffusers/utils/import_utils.py:OptionalDependencyNotAvailable" ]
[]
huggingface/diffusers
huggingface__diffusers-9579
0763a7edf4e9f2992f5ec8fb0c9dca8ab3e29f07
diff --git a/src/diffusers/models/embeddings.py b/src/diffusers/models/embeddings.py index 80775d477c0d..91451fa9aac2 100644 --- a/src/diffusers/models/embeddings.py +++ b/src/diffusers/models/embeddings.py @@ -86,12 +86,25 @@ def get_3d_sincos_pos_embed( temporal_interpolation_scale: float = 1.0, ) -> np.ndarray: r""" + Creates 3D sinusoidal positional embeddings. + Args: embed_dim (`int`): + The embedding dimension of inputs. It must be divisible by 16. spatial_size (`int` or `Tuple[int, int]`): + The spatial dimension of positional embeddings. If an integer is provided, the same size is applied to both + spatial dimensions (height and width). temporal_size (`int`): + The temporal dimension of postional embeddings (number of frames). spatial_interpolation_scale (`float`, defaults to 1.0): + Scale factor for spatial grid interpolation. temporal_interpolation_scale (`float`, defaults to 1.0): + Scale factor for temporal grid interpolation. + + Returns: + `np.ndarray`: + The 3D sinusoidal positional embeddings of shape `[temporal_size, spatial_size[0] * spatial_size[1], + embed_dim]`. """ if embed_dim % 4 != 0: raise ValueError("`embed_dim` must be divisible by 4") @@ -129,8 +142,24 @@ def get_2d_sincos_pos_embed( embed_dim, grid_size, cls_token=False, extra_tokens=0, interpolation_scale=1.0, base_size=16 ): """ - grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or - [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) + Creates 2D sinusoidal positional embeddings. + + Args: + embed_dim (`int`): + The embedding dimension. + grid_size (`int`): + The size of the grid height and width. + cls_token (`bool`, defaults to `False`): + Whether or not to add a classification token. + extra_tokens (`int`, defaults to `0`): + The number of extra tokens to add. + interpolation_scale (`float`, defaults to `1.0`): + The scale of the interpolation. + + Returns: + pos_embed (`np.ndarray`): + Shape is either `[grid_size * grid_size, embed_dim]` if not using cls_token, or `[1 + grid_size*grid_size, + embed_dim]` if using cls_token """ if isinstance(grid_size, int): grid_size = (grid_size, grid_size) @@ -148,6 +177,16 @@ def get_2d_sincos_pos_embed( def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): + r""" + This function generates 2D sinusoidal positional embeddings from a grid. + + Args: + embed_dim (`int`): The embedding dimension. + grid (`np.ndarray`): Grid of positions with shape `(H * W,)`. + + Returns: + `np.ndarray`: The 2D sinusoidal positional embeddings with shape `(H * W, embed_dim)` + """ if embed_dim % 2 != 0: raise ValueError("embed_dim must be divisible by 2") @@ -161,7 +200,14 @@ def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): """ - embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) + This function generates 1D positional embeddings from a grid. + + Args: + embed_dim (`int`): The embedding dimension `D` + pos (`numpy.ndarray`): 1D tensor of positions with shape `(M,)` + + Returns: + `numpy.ndarray`: Sinusoidal positional embeddings of shape `(M, D)`. """ if embed_dim % 2 != 0: raise ValueError("embed_dim must be divisible by 2") @@ -181,7 +227,22 @@ def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): class PatchEmbed(nn.Module): - """2D Image to Patch Embedding with support for SD3 cropping.""" + """ + 2D Image to Patch Embedding with support for SD3 cropping. + + Args: + height (`int`, defaults to `224`): The height of the image. + width (`int`, defaults to `224`): The width of the image. + patch_size (`int`, defaults to `16`): The size of the patches. + in_channels (`int`, defaults to `3`): The number of input channels. + embed_dim (`int`, defaults to `768`): The output dimension of the embedding. + layer_norm (`bool`, defaults to `False`): Whether or not to use layer normalization. + flatten (`bool`, defaults to `True`): Whether or not to flatten the output. + bias (`bool`, defaults to `True`): Whether or not to use bias. + interpolation_scale (`float`, defaults to `1`): The scale of the interpolation. + pos_embed_type (`str`, defaults to `"sincos"`): The type of positional embedding. + pos_embed_max_size (`int`, defaults to `None`): The maximum size of the positional embedding. + """ def __init__( self, @@ -289,7 +350,15 @@ def forward(self, latent): class LuminaPatchEmbed(nn.Module): - """2D Image to Patch Embedding with support for Lumina-T2X""" + """ + 2D Image to Patch Embedding with support for Lumina-T2X + + Args: + patch_size (`int`, defaults to `2`): The size of the patches. + in_channels (`int`, defaults to `4`): The number of input channels. + embed_dim (`int`, defaults to `768`): The output dimension of the embedding. + bias (`bool`, defaults to `True`): Whether or not to use bias. + """ def __init__(self, patch_size=2, in_channels=4, embed_dim=768, bias=True): super().__init__() @@ -675,6 +744,20 @@ def get_2d_rotary_pos_embed(embed_dim, crops_coords, grid_size, use_real=True): def get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=False): + """ + Get 2D RoPE from grid. + + Args: + embed_dim: (`int`): + The embedding dimension size, corresponding to hidden_size_head. + grid (`np.ndarray`): + The grid of the positional embedding. + use_real (`bool`): + If True, return real part and imaginary part separately. Otherwise, return complex numbers. + + Returns: + `torch.Tensor`: positional embedding with shape `( grid_size * grid_size, embed_dim/2)`. + """ assert embed_dim % 4 == 0 # use half of dimensions to encode grid_h @@ -695,6 +778,23 @@ def get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=False): def get_2d_rotary_pos_embed_lumina(embed_dim, len_h, len_w, linear_factor=1.0, ntk_factor=1.0): + """ + Get 2D RoPE from grid. + + Args: + embed_dim: (`int`): + The embedding dimension size, corresponding to hidden_size_head. + grid (`np.ndarray`): + The grid of the positional embedding. + linear_factor (`float`): + The linear factor of the positional embedding, which is used to scale the positional embedding in the linear + layer. + ntk_factor (`float`): + The ntk factor of the positional embedding, which is used to scale the positional embedding in the ntk layer. + + Returns: + `torch.Tensor`: positional embedding with shape `( grid_size * grid_size, embed_dim/2)`. + """ assert embed_dim % 4 == 0 emb_h = get_1d_rotary_pos_embed(
[community] Improving docstrings and type hints There are many instances in the codebase where our docstring/typing convention is not followed. We'd like to work on improving this with your help! Our convention looks like: ```python3 def function_name(parameter_1: Union[str, List[str]], parameter_2: Optional[int] = None, parameter_3: float = 42.0) -> Civilization: r""" Function that creates a simulation. Args: parameter_1 (`str` or `List[str]`): Description of game level. parameter_2 (`int`, *optional*): Kardashev scale of civilization. parameter_3 (`float`, defaults to `42.0`): Difficulty scale. Returns: [`~simulations.objects.Civilization`] A civilization simulation with provided initialization parameters. """ ``` Some examples that don't follow the docstring convention are: - [this](https://github.com/huggingface/diffusers/blob/c4a8979f3018fbffee33304c1940561f7a5cf613/src/diffusers/models/embeddings.py#L89): missing explanations - [this](https://github.com/huggingface/diffusers/blob/33fafe3d143ca8380a9e405e7acfa69091d863fb/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py#L132): does not contain mixin-related documentation whereas as [this](https://github.com/huggingface/diffusers/blob/33fafe3d143ca8380a9e405e7acfa69091d863fb/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py#L154) does - [this](https://github.com/huggingface/diffusers/blob/c4a8979f3018fbffee33304c1940561f7a5cf613/src/diffusers/utils/import_utils.py#L672): function explanation after "Args", but should be before - [this](https://github.com/huggingface/diffusers/blob/c4a8979f3018fbffee33304c1940561f7a5cf613/src/diffusers/pipelines/deepfloyd_if/pipeline_output.py#L14): same reason as above - [this](https://github.com/huggingface/diffusers/blob/c4a8979f3018fbffee33304c1940561f7a5cf613/src/diffusers/models/embeddings.py#L518): incorrect indentation There are also many places where docstrings are completely missing or inadequately explained. If you feel something needs an improvement, you can open a PR with your suggestions too! Additionally, type hints are not appropriate/correctly used at many occurrences and mismatch the accompanying docstrings - these could use an improvement too! Please limit your PRs to changes to a single file in each PR. Changes must be only related to docstrings/type hints. Feel free to ping either @yiyixuxu, @stevhliu or me for reviews.
Hi @a-r-r-o-w I'd like to take this up, please let me know if there are any other prerequisites I should be aware of before submitting a PR against this issue 🙂 Not prerequisites I can think of off the top of my head. Just that the PRs should be limited in scope as mentioned. You can maybe look at the Diffusers contribution guide (and philosophy, if you're interested) I'll take up some of these. I’m also interested in this work. Could you let me know about the current progress? @SubhasmitaSw @charchit7 Hey @yijun-lee, I've been caught up with some work, unfortunately, but I’ll work on this over the weekend or later today. If you want to get started on any of these tasks, feel free to go ahead and let us know, so we can pick up whatever is left. Oh, actually, I think I’ll be starting this weekend as well. If we proceed separately, it would be good to inform each other through comments or other means. Have a good day :) @charchit7 Sure, @yijun-lee, that works! you too :)
1,728,042,903,000
null
Feature Request
[ "src/diffusers/models/embeddings.py:get_3d_sincos_pos_embed", "src/diffusers/models/embeddings.py:get_2d_sincos_pos_embed", "src/diffusers/models/embeddings.py:get_2d_sincos_pos_embed_from_grid", "src/diffusers/models/embeddings.py:get_1d_sincos_pos_embed_from_grid", "src/diffusers/models/embeddings.py:PatchEmbed", "src/diffusers/models/embeddings.py:LuminaPatchEmbed", "src/diffusers/models/embeddings.py:get_2d_rotary_pos_embed_from_grid", "src/diffusers/models/embeddings.py:get_2d_rotary_pos_embed_lumina" ]
[ "src/diffusers/models/embeddings.py:PatchEmbed", "src/diffusers/models/embeddings.py:LuminaPatchEmbed" ]
sktime/sktime
sktime__sktime-7221
0f75b7ad0dce8b722c81fe49bb9624de20cc4923
diff --git a/sktime/datatypes/_adapter/polars.py b/sktime/datatypes/_adapter/polars.py index e1fdd5f3ab7..e8138e4faa9 100644 --- a/sktime/datatypes/_adapter/polars.py +++ b/sktime/datatypes/_adapter/polars.py @@ -226,22 +226,31 @@ def check_polars_frame( # columns in polars are unique, no check required + if lazy: + width = obj.collect_schema().len() + columns = obj.collect_schema().names() + dtypes = obj.collect_schema().dtypes() + else: + width = obj.width + columns = obj.columns + dtypes = obj.dtypes + if _req("is_empty", return_metadata): - metadata["is_empty"] = obj.width < 1 + metadata["is_empty"] = width < 1 if _req("is_univariate", return_metadata): - metadata["is_univariate"] = obj.width - len(index_cols) == 1 + metadata["is_univariate"] = width - len(index_cols) == 1 if _req("n_features", return_metadata): - metadata["n_features"] = obj.width - len(index_cols) + metadata["n_features"] = width - len(index_cols) if _req("feature_names", return_metadata): - feature_columns = [x for x in obj.columns if x not in index_cols] + feature_columns = [x for x in columns if x not in index_cols] metadata["feature_names"] = feature_columns if _req("dtypekind_dfip", return_metadata): index_cols_count = len(index_cols) - dtype_list = obj.dtypes[index_cols_count:] + dtype_list = dtypes[index_cols_count:] metadata["dtypekind_dfip"] = _polars_dtype_to_kind(dtype_list) if _req("feature_kind", return_metadata): index_cols_count = len(index_cols) - dtype_list = obj.dtypes[index_cols_count:] + dtype_list = dtypes[index_cols_count:] dtype_kind = _polars_dtype_to_kind(dtype_list) metadata["feature_kind"] = _get_feature_kind(dtype_kind)
[ENH] `polars` schema checks - address performance warnings The current schema checks for lazy `polars` based data types raise performance warnings, e.g., ``` sktime/datatypes/tests/test_check.py::test_check_metadata_inference[Table-polars_lazy_table-fixture:1] /home/runner/work/sktime/sktime/sktime/datatypes/_adapter/polars.py:234: PerformanceWarning: Determining the width of a LazyFrame requires resolving its schema, which is a potentially expensive operation. Use `LazyFrame.collect_schema().len()` to get the width without this warning. metadata["n_features"] = obj.width - len(index_cols) ``` These should be addressed. The tests to execute to check whether these warnings persist are those in the `datatypes` module - these are automatically executed for a change in the impacted file, on remote CI.
1,727,991,899,000
null
Performance Issue
[ "sktime/datatypes/_adapter/polars.py:check_polars_frame" ]
[]