filename
stringlengths 32
67
| label
stringclasses 165
values |
---|---|
radiology_ai/US/ovary/usn328022.png
|
US-ovary
|
radiology_ai/MR/mriabd/normal/mri-abd-normal039931.png
|
mriabd-normal
|
radiology_ai/MR/mriabd/normal/mri-abd-normal035197.png
|
mriabd-normal
|
radiology_ai/CT/lung/Airspace_opacity/lung069053.png
|
lung-Airspace_opacity
|
radiology_ai/MR/mriabd/normal/mri-abd-normal022905.png
|
mriabd-normal
|
radiology_ai/MR/af/peroneal_pathology/ankle078805.png
|
af-peroneal pathology
|
radiology_ai/CT/lung/normal/lung-normal007780.png
|
lung-normal
|
radiology_ai/MR/af/soft_tissue_fluid/foot059921.png
|
af-soft tissue fluid
|
radiology_ai/US/liver/usn143131.png
|
US-liver
|
radiology_ai/US/uterus/usn211192.png
|
US-uterus
|
radiology_ai/US/kidney/usn021106.png
|
US-kidney
|
radiology_ai/MR/hip/marrow_inflammation/hip039483.png
|
hip-marrow inflammation
|
radiology_ai/MR/mriabd/prostate_lesion/mrabd022177.png
|
mriabd-prostate lesion
|
radiology_ai/CT/lung/Nodule/lung015181.png
|
lung-Nodule
|
radiology_ai/MR/knee/mcl_pathology/knee124204.png
|
knee-mcl pathology
|
radiology_ai/CT/lung/Airspace_opacity/lung086017.png
|
lung-Airspace_opacity
|
radiology_ai/MR/brain/normal/brain-normal014839.png
|
brain-normal
|
radiology_ai/MR/knee/chondral_abnormality/knee070448.png
|
knee-chondral abnormality
|
radiology_ai/US/kidney/usn166652.png
|
US-kidney
|
radiology_ai/MR/shoulder/soft_tissue_fluid/shoulder055656.png
|
shoulder-soft tissue fluid
|
radiology_ai/MR/knee/soft_tissue_fluid_collection/knee182798.png
|
knee-soft tissue fluid collection
|
radiology_ai/MR/spine/dural_epidural_abn/spine006547.png
|
spine-dural/epidural abn
|
radiology_ai/US/pancreas/usn360739.png
|
US-pancreas
|
radiology_ai/MR/knee/chondral_abnormality/knee047067.png
|
knee-chondral abnormality
|
radiology_ai/MR/af/chondral_abnormality/foot047655.png
|
af-chondral abnormality
|
radiology_ai/MR/spine/disc_pathology/spine036081.png
|
spine-disc pathology
|
radiology_ai/CT/lung/Nodule/lung018539.png
|
lung-Nodule
|
radiology_ai/US/spleen/usn269925.png
|
US-spleen
|
radiology_ai/US/liver/usn083501.png
|
US-liver
|
radiology_ai/MR/knee/acl_pathology/knee187363.png
|
knee-acl pathology
|
radiology_ai/MR/af/soft_tissue_fluid/foot064522.png
|
af-soft tissue fluid
|
radiology_ai/CT/lung/Airspace_opacity/lung070970.png
|
lung-Airspace_opacity
|
radiology_ai/CT/lung/Nodule/lung032409.png
|
lung-Nodule
|
radiology_ai/MR/knee/meniscal_abnormality/knee128992.png
|
knee-meniscal abnormality
|
radiology_ai/MR/shoulder/labral_pathology/shoulder018439.png
|
shoulder-labral pathology
|
radiology_ai/MR/hip/labral_pathology/hip018309.png
|
hip-labral pathology
|
radiology_ai/MR/spine/normal/spine-normal000341.png
|
spine-normal
|
radiology_ai/MR/mriabd/normal/mri-abd-normal071672.png
|
mriabd-normal
|
radiology_ai/MR/mriabd/normal/mri-abd-normal056368.png
|
mriabd-normal
|
radiology_ai/CT/lung/Airspace_opacity/lung055540.png
|
lung-Airspace_opacity
|
radiology_ai/US/liver/usn092855.png
|
US-liver
|
radiology_ai/CT/lung/normal/lung-normal012564.png
|
lung-normal
|
radiology_ai/MR/hip/soft_tissue_fluid/hip013947.png
|
hip-soft tissue fluid
|
radiology_ai/US/thyroid/usn395407.png
|
US-thyroid
|
radiology_ai/MR/knee/chondral_abnormality/knee173393.png
|
knee-chondral abnormality
|
radiology_ai/US/thyroid/usn416448.png
|
US-thyroid
|
radiology_ai/CT/abd/dilated_urinary_tract/abd022545.png
|
abd-dilated urinary tract
|
radiology_ai/MR/af/bone_inflammation/foot016867.png
|
af-bone inflammation
|
radiology_ai/US/thyroid_nodule/thyroid-nodule014634.png
|
thyroid-nodule
|
radiology_ai/MR/af/chondral_abnormality/ankle024699.png
|
af-chondral abnormality
|
radiology_ai/MR/spine/disc_pathology/spine040052.png
|
spine-disc pathology
|
radiology_ai/MR/knee/chondral_abnormality/knee030388.png
|
knee-chondral abnormality
|
radiology_ai/MR/mriabd/normal/mri-abd-normal036606.png
|
mriabd-normal
|
radiology_ai/CT/abd/normal/abd-normal019099.png
|
abd-normal
|
radiology_ai/CT/abd/bowel_inflammation/abd037745.png
|
abd-bowel inflammation
|
radiology_ai/CT/lung/Airspace_opacity/lung055661.png
|
lung-Airspace_opacity
|
radiology_ai/CT/lung/Airspace_opacity/lung049138.png
|
lung-Airspace_opacity
|
radiology_ai/MR/mriabd/normal/mri-abd-normal063937.png
|
mriabd-normal
|
radiology_ai/US/liver/usn295753.png
|
US-liver
|
radiology_ai/MR/hip/labral_pathology/hip023415.png
|
hip-labral pathology
|
radiology_ai/MR/knee/chondral_abnormality/knee071552.png
|
knee-chondral abnormality
|
radiology_ai/MR/af/soft_tissue_fluid/ankle006142.png
|
af-soft tissue fluid
|
radiology_ai/US/ovary/usn200766.png
|
US-ovary
|
radiology_ai/MR/brain/intra/brain007390.png
|
brain-intra-axial mass
|
radiology_ai/CT/lung/normal/lung-normal034758.png
|
lung-normal
|
radiology_ai/CT/abd/bowel_abnormality/abd101558.png
|
abd-bowel abnormality
|
radiology_ai/US/kidney/usn024402.png
|
US-kidney
|
radiology_ai/US/kidney/usn171653.png
|
US-kidney
|
radiology_ai/CT/lung/normal/lung-normal020780.png
|
lung-normal
|
radiology_ai/US/liver/usn143410.png
|
US-liver
|
radiology_ai/US/liver/usn302210.png
|
US-liver
|
radiology_ai/MR/spine/foraminal_pathlogy/spine058142.png
|
spine-foraminal pathlogy
|
radiology_ai/MR/knee/soft_tissue_fluid_collection/knee093191.png
|
knee-soft tissue fluid collection
|
radiology_ai/MR/mriabd/marrow_abn/mrabd011477.png
|
mriabd-marrow abn
|
radiology_ai/MR/spine/disc_pathology/spine036637.png
|
spine-disc pathology
|
radiology_ai/MR/brain/white_matter_changes/brain017827.png
|
brain-white matter changes
|
radiology_ai/US/liver/usn088219.png
|
US-liver
|
radiology_ai/MR/knee/meniscal_abnormality/knee126336.png
|
knee-meniscal abnormality
|
radiology_ai/MR/af/chondral_abnormality/ankle024323.png
|
af-chondral abnormality
|
radiology_ai/CT/lung/normal/lung-normal007360.png
|
lung-normal
|
radiology_ai/MR/brain/extra/brain005940.png
|
brain-extra-axial mass
|
radiology_ai/CT/abd/normal/abd-normal035296.png
|
abd-normal
|
radiology_ai/MR/knee/meniscal_abnormality/knee020603.png
|
knee-meniscal abnormality
|
radiology_ai/MR/af/soft_tissue_fluid/foot058179.png
|
af-soft tissue fluid
|
radiology_ai/CT/lung/interstitial_lung_disease/lung041458.png
|
lung-interstitial_lung_disease
|
radiology_ai/MR/knee/chondral_abnormality/knee052336.png
|
knee-chondral abnormality
|
radiology_ai/US/liver/usn302553.png
|
US-liver
|
radiology_ai/MR/hip/marrow_inflammation/hip012368.png
|
hip-marrow inflammation
|
radiology_ai/MR/af/peroneal_pathology/ankle079980.png
|
af-peroneal pathology
|
radiology_ai/MR/hip/labral_pathology/hip020965.png
|
hip-labral pathology
|
radiology_ai/MR/af/cfl_pathology/ankle081884.png
|
af-cfl pathology
|
radiology_ai/CT/abd/liver_lesion/abd077188.png
|
abd-liver lesion
|
radiology_ai/MR/knee/chondral_abnormality/knee166163.png
|
knee-chondral abnormality
|
radiology_ai/MR/hip/soft_tissue_fluid/hip010406.png
|
hip-soft tissue fluid
|
radiology_ai/US/thyroid_nodule/thyroid-nodule022747.png
|
thyroid-nodule
|
radiology_ai/MR/mriabd/normal/mri-abd-normal017261.png
|
mriabd-normal
|
radiology_ai/CT/abd/liver_lesion/abd090736.png
|
abd-liver lesion
|
radiology_ai/MR/hip/osseous_disruption/hip012822.png
|
hip-osseous disruption
|
radiology_ai/CT/abd/liver_lesion/abd066417.png
|
abd-liver lesion
|
radiology_ai/CT/abd/bowel_abnormality/abd102482.png
|
abd-bowel abnormality
|
Refined RadImageNet - Conversion Tools
The RadImageNet dataset is available upon request at https://www.radimagenet.com/.
This repository provides tools to process the RadImageNet dataset, converting it into a refined and stratified organization suitable for various medical imaging applications.
For detailed information, refer to our preprint paper: Policy Gradient-Driven Noise Mask.
If you use this code in your research, please cite our paper:
@inproceedings{yavuz2025policy,
title={Policy Gradient-Driven Noise Mask},
author={Yavuz, Mehmet Can and Yang, Yang},
booktitle={International Conference on Pattern Recognition},
pages={414--431},
year={2025},
organization={Springer}
}
Performance Comparison of ResNet Models
This table compares the performance of ResNet models pretrained on 2D RadImageNet using regular and Two2Three convolution techniques across various metrics:
Model | Precision (macro) | Recall (macro) | F1 Score (macro) | Balanced Accuracy | Average Accuracy |
---|---|---|---|---|---|
ResNet10t | 0.4720 | 0.3848 | 0.3998 | 0.3848 | 0.7981 |
ResNet18 | 0.5150 | 0.4383 | 0.4545 | 0.4383 | 0.8177 |
ResNet50 | 0.5563 | 0.4934 | 0.5097 | 0.4934 | 0.8352 |
We recommend adapting the code for benchmarking other models, which can be found here: https://github.com/pytorch/vision/tree/main/references/classification.
ResNet Models and Weights
The model codes are shared through https://github.com/convergedmachine/Refined-RadImagenet/.
To create a model using the timm
library:
import timm
model = timm.create_model('resnet10t', num_classes=165)
Replace 'resnet10t'
with 'resnet18'
or 'resnet50'
as needed.
Folder Structure
correction_masks/
data/
weights/
output/
source/
correction_masks.tar.gz
radimagenet.tar.gz
RadiologyAI_test.csv
RadiologyAI_train.csv
RadiologyAI_val.csv
process.py
measure_acc_metrics.py
Files & Directories
- correction_masks/: Contains correction masks for the images.
- data/: Contains the extracted radiology images.
- weights/: Directory for model weights.
- output/: Directory for output files.
- source/: Contains source files and datasets.
- correction_masks.tar.gz: Compressed file containing correction masks.
- radimagenet.tar.gz: Compressed RadImageNet dataset.
- RadiologyAI_test.csv: CSV file for the test dataset.
- RadiologyAI_train.csv: CSV file for the training dataset.
- RadiologyAI_val.csv: CSV file for the validation dataset.
- process.py: Main script to process and organize the RadImageNet files.
- measure_acc_metrics.py: Script to measure accuracy metrics.
Download Processing Files
This repository contains files from the Hugging Face repository convergedmachine/Refined-RadImagenet
. Follow the instructions below to clone the repository using Git.
Prerequisites
Ensure that Git LFS (Large File Storage) is installed:
git lfs install
Cloning the Repository
To clone the entire repository to your local machine:
git clone https://huggingface.co/convergedmachine/Refined-RadImagenet source/
This command clones all files from the repository into a directory named source
.
Notes
- Ensure you have sufficient storage space for large files.
- For more information about this dataset, visit the Github page.
Feel free to contribute or raise issues if you encounter any problems.
Usage
Extract the Dataset:
python process.py
Ensure the dataset tar file is located in the
source/
directory. The script will automatically extract it to thedata/
directory.Process the Images:
The script will read the CSV files, refine the images, and organize them accordingly.
Dependencies
- Python 3.9+
- pandas
- OpenCV
- tarfile
- tqdm
- numpy
Install the required packages using pip:
pip install pandas opencv-python tarfile tqdm numpy
LICENSE
This project is licensed under the MIT License.
- Downloads last month
- 47