Upload main.py
#2
by
kevinhyc
- opened
main.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import Dataset
|
2 |
+
import json
|
3 |
+
from datasets import concatenate_datasets, Dataset
|
4 |
+
|
5 |
+
arrow_files = ['data/data-00000-of-00003.arrow','data/data-00001-of-00003.arrow','data/data-00002-of-00003.arrow']
|
6 |
+
ds = concatenate_datasets([Dataset.from_file(arrow_file) for arrow_file in arrow_files])
|
7 |
+
|
8 |
+
threshold = 6000
|
9 |
+
df = ds.to_pandas()
|
10 |
+
df['question_id'] = df['METADATA'].apply(lambda x: int(json.loads(x)['question_id']))
|
11 |
+
df = df.drop('SOURCE', axis=1)
|
12 |
+
df = df.drop('METADATA', axis=1)
|
13 |
+
df = df[df['upvotes'] > threshold]
|
14 |
+
|
15 |
+
import pandas as pd
|
16 |
+
pd.set_option('display.max_columns', None) # Show all columns
|
17 |
+
pd.set_option('display.max_rows', None)
|
18 |
+
pd.set_option('display.max_colwidth', 200)
|
19 |
+
|
20 |
+
# Set display options
|
21 |
+
|
22 |
+
filtered_df = df[df['INSTRUCTION'].str.contains('吃饭')]
|
23 |
+
|
24 |
+
class1 = ['船','高中历史', '陈情令','流浪地球', '厦门','鞋','购买','高中化学','考研政治','高中政治','英语','数学','语文','解题','高二','高三','演员','周星驰','王宝强','口吻','编程','免费下载',
|
25 |
+
'iphone','壁纸','购买的游戏','有什么好玩的手机游戏','诗歌','图片','视频是什么','买什么书','饮品','推荐','做饭','手机','APP',
|
26 |
+
'考研', '5G', '成都', '旅游', '深度学习','如何入门','足球', '篮球','周杰伦', '演唱会','高考','歌','法律','中医','LeetCode',
|
27 |
+
'面试','iPad','工具']
|
28 |
+
|
29 |
+
mask = df['INSTRUCTION'].str.contains('|'.join(class1))
|
30 |
+
class1_df = df[mask]
|
31 |
+
|
32 |
+
result = df[~df.isin(class1_df).all(axis=1)]
|
33 |
+
|
34 |
+
threshold = 10000
|
35 |
+
df = ds.to_pandas()
|
36 |
+
df['question_id'] = df['METADATA'].apply(lambda x: int(json.loads(x)['question_id']))
|
37 |
+
df = df.drop('SOURCE', axis=1)
|
38 |
+
df = df.drop('METADATA', axis=1)
|
39 |
+
df = df[df['upvotes'] > threshold]
|
40 |
+
filtered_df = df[df['INSTRUCTION'].str.contains('历史')]
|
41 |
+
|
42 |
+
class1 = ['魔戒','奥运','梅西','船','高中历史', '陈情令','流浪地球', '厦门','鞋','购买','高中化学','考研政治','高中政治','英语','数学','语文','解题','高二','高三','演员','周星驰','王宝强','口吻','编程','免费下载',
|
43 |
+
'iphone','壁纸','购买的游戏','有什么好玩的手机游戏','诗歌','图片','视频是什么','买什么书','饮品','做饭','手机','APP',
|
44 |
+
'考研', '5G', '成都', '旅游', '深度学习','如何入门','足球', '篮球','周杰伦', '演唱会','高考','歌','法律','中医','LeetCode',
|
45 |
+
'面试','iPad','大罗小罗','破门绝平创历','大气二氧化碳浓度','大雁塔」','帕克太阳探测器','CPU','NBA','霍比特人','冯绍峰','历史中考',
|
46 |
+
'曼联','奥会单板','冬奥会','射手王', '浏览器的历史记录','2020赛季的F2','TES正在开创自己', 'x86','极地涡旋','百度百科',
|
47 |
+
'马刺','chrome']
|
48 |
+
|
49 |
+
mask = filtered_df['INSTRUCTION'].str.contains('|'.join(class1))
|
50 |
+
removedf = filtered_df[mask]
|
51 |
+
resultdf = filtered_df[~filtered_df.isin(removedf).all(axis=1)]
|
52 |
+
grouped_sorted_df = resultdf.sort_values(['question_id','upvotes'], ascending=[False, False])
|
53 |
+
# grouped_sorted_df['INSTRUCTION'].unique()
|
54 |
+
# grouped_sorted_df
|
55 |
+
|
56 |
+
idx = -1
|
57 |
+
with open('history.md', 'w', encoding='utf-8') as f:
|
58 |
+
for index, row in grouped_sorted_df.iterrows():
|
59 |
+
# Write the question with markdown formatting
|
60 |
+
if idx != row['question_id']:
|
61 |
+
f.write("#### " + row['INSTRUCTION'] +"\n")
|
62 |
+
idx = row['question_id']
|
63 |
+
|
64 |
+
f.write("- " +'['+str(row['upvotes'])+'] ' + row['RESPONSE']+"\n")
|
65 |
+
|
66 |
+
f.write("\n\n")
|