Dataset Viewer
Auto-converted to Parquet
video
video
frame
int64
0
2.46k
x_max
float64
0
2.77k
y_max
float64
0
1.3k
x_min
float64
14
3.03k
y_min
float64
39.9
1.46k
behavior_id
int64
0
7
behavior
stringclasses
8 values
bird_id
int64
0
25
species_id
int64
0
12
species
stringclasses
13 values
0
364.62
191.11
574.08
394.75
1
Preening
0
0
White Wagtail
1
364.5
191
573.75
394.5
1
Preening
0
0
White Wagtail
2
364.5
185
573.75
388.5
1
Preening
0
0
White Wagtail
3
363
182.25
572.25
385.75
1
Preening
0
0
White Wagtail
4
362.75
176.25
572
379.75
1
Preening
0
0
White Wagtail
5
363
171.25
572.25
374.75
1
Preening
0
0
White Wagtail
6
363.25
173.25
572.5
376.75
1
Preening
0
0
White Wagtail
7
362
176.75
571.25
380.25
1
Preening
0
0
White Wagtail
8
361
181
570.25
384.5
1
Preening
0
0
White Wagtail
9
361.75
181.25
571
384.75
1
Preening
0
0
White Wagtail
10
361.5
181.5
570.75
385
1
Preening
0
0
White Wagtail
11
361.25
182.5
570.5
386
1
Preening
0
0
White Wagtail
12
361.5
184.5
570.75
388
1
Preening
0
0
White Wagtail
13
362
185.5
571.25
389
1
Preening
0
0
White Wagtail
14
363
187.5
572.25
391
1
Preening
0
0
White Wagtail
15
362.75
189.5
572
393
1
Preening
0
0
White Wagtail
16
363.25
192
572.5
395.5
1
Preening
0
0
White Wagtail
17
363.25
193
572.5
396.5
1
Preening
0
0
White Wagtail
18
363.5
194.25
572.75
397.75
1
Preening
0
0
White Wagtail
19
363.25
194.25
572.5
397.75
1
Preening
0
0
White Wagtail
20
361.75
198.5
571
402
1
Preening
0
0
White Wagtail
21
361.25
200
570.5
403.5
1
Preening
0
0
White Wagtail
22
359.75
200.75
569
404.25
1
Preening
0
0
White Wagtail
23
358
203.5
567.25
407
1
Preening
0
0
White Wagtail
24
359.25
204.75
568.5
408.25
1
Preening
0
0
White Wagtail
25
359.5
200.5
568.75
404
1
Preening
0
0
White Wagtail
26
359.25
200.5
568.5
404
1
Preening
0
0
White Wagtail
27
359
201
568.25
404.5
1
Preening
0
0
White Wagtail
28
359.75
200.75
569
404.25
1
Preening
0
0
White Wagtail
29
359
200.75
568.25
404.25
1
Preening
0
0
White Wagtail
30
358.75
200
568
403.5
1
Preening
0
0
White Wagtail
31
359.5
199.75
568.75
403.25
1
Preening
0
0
White Wagtail
32
359.25
199.75
568.5
403.25
1
Preening
0
0
White Wagtail
33
359
199
568.25
402.5
1
Preening
0
0
White Wagtail
34
358.75
198.75
568
402.25
1
Preening
0
0
White Wagtail
35
359
199.25
568.25
402.75
1
Preening
0
0
White Wagtail
36
358.75
187.62
577.05
402.75
1
Preening
0
0
White Wagtail
37
358.75
185.28
580.27
403
1
Preening
0
0
White Wagtail
38
358.75
183.97
574.48
403
1
Preening
0
0
White Wagtail
39
358.75
183.97
573.17
403
1
Preening
0
0
White Wagtail
40
358.75
183.35
574.48
403
1
Preening
0
0
White Wagtail
41
358.75
185.28
577.7
403
1
Preening
0
0
White Wagtail
42
358.75
182.7
573.17
403
1
Preening
0
0
White Wagtail
43
347.12
182.7
573.83
403
1
Preening
0
0
White Wagtail
44
353.25
181.6
568.33
401.25
1
Preening
0
0
White Wagtail
45
353
178.9
568.73
400.5
1
Preening
0
0
White Wagtail
46
352.5
181.28
568.85
399
1
Preening
0
0
White Wagtail
47
353.5
184.75
571.15
399.25
1
Preening
0
0
White Wagtail
48
355.25
177.3
571.6
398.25
1
Preening
0
0
White Wagtail
49
355
180.43
570.08
397.5
1
Preening
0
0
White Wagtail
50
344.12
176.2
568.88
396.5
1
Preening
0
0
White Wagtail
51
342.62
172.25
567.25
392.5
1
Preening
0
0
White Wagtail
52
343
171.25
564.27
391.5
1
Preening
0
0
White Wagtail
53
342.75
168.5
564
388.75
1
Preening
0
0
White Wagtail
54
342.5
168
563.75
388.25
1
Preening
0
0
White Wagtail
55
341.5
167.5
562.75
387.75
1
Preening
0
0
White Wagtail
56
341.5
167
562.75
387.25
1
Preening
0
0
White Wagtail
57
343.5
166.5
564.75
386.75
1
Preening
0
0
White Wagtail
58
343.75
167
565
387.25
1
Preening
0
0
White Wagtail
59
341.75
168
563
388.25
1
Preening
0
0
White Wagtail
60
341
168
562.25
388.25
1
Preening
0
0
White Wagtail
61
341
166.75
562.25
387
1
Preening
0
0
White Wagtail
62
340.75
165.25
562
385.5
1
Preening
0
0
White Wagtail
63
338.75
176.93
560
384.25
1
Preening
0
0
White Wagtail
64
337.75
177
559
384.25
1
Preening
0
0
White Wagtail
65
337.25
176.75
558.5
384
1
Preening
0
0
White Wagtail
66
338.25
178
559.5
385.25
1
Preening
0
0
White Wagtail
67
338.5
178
553.27
385.25
1
Preening
0
0
White Wagtail
68
340
179.5
554.75
386.75
1
Preening
0
0
White Wagtail
69
358.02
179.75
557.25
387
1
Preening
0
0
White Wagtail
70
359.75
183
558.75
390.25
1
Preening
0
0
White Wagtail
71
360.5
182
559.5
389.25
1
Preening
0
0
White Wagtail
72
359.75
187.5
558.75
394.75
1
Preening
0
0
White Wagtail
73
360
187
559
394.25
1
Preening
0
0
White Wagtail
74
359.75
187.25
558.75
394.5
1
Preening
0
0
White Wagtail
75
360.25
187.5
559.25
394.75
1
Preening
0
0
White Wagtail
76
360
187.25
559
394.5
1
Preening
0
0
White Wagtail
77
358
192.5
557
399.75
1
Preening
0
0
White Wagtail
78
356.75
190.75
555.75
398
1
Preening
0
0
White Wagtail
79
354.75
188.75
553.75
396
1
Preening
0
0
White Wagtail
80
353.75
187.25
552.75
394.5
1
Preening
0
0
White Wagtail
81
352.5
181.25
551.5
388.5
1
Preening
0
0
White Wagtail
82
352.75
177.75
551.75
385
1
Preening
0
0
White Wagtail
83
353
174.5
552
381.75
1
Preening
0
0
White Wagtail
84
354.5
172.25
553.5
379.5
1
Preening
0
0
White Wagtail
85
356.5
169.25
555.5
376.5
1
Preening
0
0
White Wagtail
86
357.5
168
556.5
375.25
1
Preening
0
0
White Wagtail
87
358.25
167.75
557.25
375
1
Preening
0
0
White Wagtail
88
357.75
167.25
556.75
374.5
1
Preening
0
0
White Wagtail
89
358
167.5
557
374.75
1
Preening
0
0
White Wagtail
90
357.75
167.5
556.75
374.75
1
Preening
0
0
White Wagtail
91
359.5
168.5
558.5
375.75
1
Preening
0
0
White Wagtail
92
360.25
167.5
559.25
374.75
1
Preening
0
0
White Wagtail
93
361.25
168.5
560.25
375.75
1
Preening
0
0
White Wagtail
94
361.75
169.75
560.75
377
1
Preening
0
0
White Wagtail
95
361
169
560
376.25
1
Preening
0
0
White Wagtail
96
361
169.25
560
376.5
1
Preening
0
0
White Wagtail
97
360.5
169
559.5
376.25
1
Preening
0
0
White Wagtail
98
360.25
169.75
559.25
377
1
Preening
0
0
White Wagtail
99
360
170.25
559
377.5
1
Preening
0
0
White Wagtail
End of preview. Expand in Data Studio

Dataset Card for Visual WetlandBirds Dataset

The Visual WetlandBirds Dataset is a fine-grained spatio-temporal dataset specifically designed for bird behavior detection and species classification. This version has been converted to work well with the Hugging Face Hub, with the original dataset available at Zenodo.

The dataset was introduced in the paper Visual WetlandBirds Dataset: Bird Species Identification and Behavior Recognition in Videos.

Dataset Details

Dataset Description

The Visual WetlandBirds Dataset contains videos and annotations for bird behavior detection and species classification. The data was collected within Alicante wetlands, specifically within the wetlands of La Mata Natural Park and El Hondo Natural Park (southeastern Spain), as part of the CHAN-TWIN project.

The dataset identifies 13 different bird species, including White Wagtail, Glossy Ibis, Squacco Heron, Black-winged Stilt, Yellow-legged Gull, Common Gallinule, Black-headed Gull, Eurasian Coot, Little Ringed Plover, Eurasian Moorhen, Eurasian Magpie, Gadwall, Mallard, and Northern Shoveler.

  • Curated by: University of Alicante researchers (Rodriguez-Juan, Javier; Ortiz-Perez, David; Benavent-Lledo, Manuel; Mulero-Pérez, David; Ruiz-Ponce, Pablo; Orihuela-Torres, Adrian; Garcia-Rodriguez, Jose; Sebastián-González, Esther)
  • Language(s): English (dataset documentation)
  • License: Creative Commons Attribution 4.0 International

Dataset Sources

Uses

Direct Use

This dataset is designed for:

  • Bird species identification in video content
  • Bird behavior recognition and classification
  • Training and evaluation of computer vision and deep learning models on fine-grained spatio-temporal tasks
  • Research in ecological monitoring and wildlife conservation

Load the dataset

You can load the dataset using the datasets library as follows:

from datasets import load_dataset

ds = load_dataset("academic-datasets/Visual-WetlandBirds-Dataset")

To work with the video data, you must ensure you have torchvision and av installed. For more information, see the docs.

An example row looks like this:

{'video': <torchvision.io.video_reader.VideoReader at 0x7d5648b059d0>,
 'frame': 0,
 'x_max': 364.62,
 'y_max': 191.11,
 'x_min': 574.08,
 'y_min': 394.75,
 'behavior_id': 1,
 'behavior': 'Preening',
 'bird_id': 0,
 'species_id': 0,
 'species': 'White Wagtail'}

Here is an example from the dataset with the bounding box displayed in the image:

Dataset Creation

Curation Rationale

This dataset was collected to contribute to the CHAN-TWIN project, with a focus on bird behavior detection and species classification in wetland environments.

Source Data

Data Collection and Processing

The data was collected in Alicante wetlands, specifically within the wetlands of La Mata Natural Park and El Hondo Natural Park in southeastern Spain. The videos capture various bird species in their natural habitat exhibiting different behaviors.

Who are the source data producers?

The data was collected and processed by researchers from the University of Alicante, including Rodriguez-Juan, Javier; Ortiz-Perez, David; Benavent-Lledo, Manuel; Mulero-Pérez, David; Ruiz-Ponce, Pablo; Orihuela-Torres, Adrian; Garcia-Rodriguez, Jose; and Sebastián-González, Esther.

Annotations

Annotation process

The dataset includes annotations for bird species identification and behavior recognition. Each frame in the videos is annotated with bounding boxes indicating the location of birds, the species ID, and the behavior ID.

Bias, Risks, and Limitations

  • The dataset is limited to 13 bird species found in specific wetland environments in southeastern Spain
  • The behaviors and species distributions may not generalize to other environments or regions
  • Video quality and lighting conditions may vary across the dataset
  • The dataset may contain some annotation errors or inconsistencies

Recommendations

Users should be aware that models trained on this dataset may not generalize well to different geographical regions, environments, or bird species not represented in the dataset. Additional data augmentation or transfer learning may be necessary for broader applications.

Citation

@misc{rodriguez2025wetlandbirds,
title={Visual WetlandBirds Dataset: Bird Species Identification and Behaviour Recognition in Videos},
author={Rodriguez-Juan, Javier and Ortiz-Perez, David and Benavent-Lledo, Manuel and Mulero-Pérez, David and Ruiz-Ponce, Pablo and Orihuela-Torres, Adrian and Garcia-Rodriguez, Jose and Sebastián-González, Esther},
month={dec},
year=2024,
publisher={Zenodo},
doi={10.5281/zenodo.14355257},
url={https://doi.org/10.5281/zenodo.14355257}
}
Downloads last month
188