|
--- |
|
dataset_info: |
|
features: |
|
- name: index |
|
dtype: int64 |
|
- name: question |
|
dtype: string |
|
- name: A |
|
dtype: string |
|
- name: B |
|
dtype: string |
|
- name: C |
|
dtype: string |
|
- name: D |
|
dtype: string |
|
- name: E |
|
dtype: string |
|
- name: answer |
|
dtype: string |
|
- name: category |
|
dtype: string |
|
- name: clinical VQA task |
|
dtype: string |
|
- name: department |
|
dtype: string |
|
- name: perceptual granularity |
|
dtype: string |
|
- name: modality |
|
dtype: string |
|
- name: original task |
|
dtype: string |
|
- name: image_path |
|
dtype: string |
|
splits: |
|
- name: validation |
|
num_bytes: 72470811 |
|
num_examples: 10 |
|
download_size: 72466952 |
|
dataset_size: 72470811 |
|
task_categories: |
|
- visual-question-answering |
|
language: |
|
- en |
|
tags: |
|
- medical |
|
Modalities: |
|
- image |
|
- text |
|
arxiv: |
|
- https://arxiv.org/abs/2507.17539 |
|
license: creativeml-openrail-m |
|
--- |
|
# Fundus-MMBench |
|
|
|
Benchmark for paper [Constructing Ophthalmic MLLM for Positioning-diagnosis Collaboration Through Clinical Cognitive Chain Reasoning](https://arxiv.org/abs/2507.17539) |
|
|
|
🚨 Important: This benchmark is for **academic research only**. |
|
|
|
## Dataset Viewer Notice |
|
|
|
🚨 The dataset viewer above only shows a **preview of the first 10 rows** from the dataset intending to provide a quick look at the data structure. |
|
The total number of data in the dataset is **620**. |
|
To access the complete dataset, please download the full tsv file. |
|
|
|
## Introduction |
|
|
|
<img src="image1.png" alt="Fundus-MMBench Details" width="1000" /> |
|
|
|
The number of test samples for each task category of Fundus-MMBench is 20. It consists of 31 fine-grained tasks covering three core clinical domains: region-based object recognition (e.g., optic disc identification), disease classification (e.g., glaucoma vs. non-glaucoma diagnosis), and severity grading (e.g., diabetic retinopathy severity assessment). |
|
|
|
## Usage |
|
You can run the evaluation on Fundus-MMBench using [open-compass/VLMEvalKit](https://github.com/open-compass/VLMEvalKit). Note that Fundus-MMBench(tsv version) is not officially supported, but can be regarded as a Custom MCQ dataset. |
|
|
|
## Data Source |
|
| Dataset Name | Data Source URL | |
|
| :--- | :--- | |
|
| Diaretdb1 | https://www.kaggle.com/datasets/nguyenhung1903/diaretdb1-v21 | |
|
| drishtiGS | https://www.kaggle.com/datasets/lokeshsaipureddi/drishtigs-retina-dataset-for-onh-segmentation | |
|
| IDRiD | https://ieee-dataport.org/open-access/indian-diabetic-retinopathy-image-dataset-idrid | |
|
| REFUGE | https://refuge.grand-challenge.org/REFUGE2018/ | |
|
| e-ophtha | https://www.adcis.net/en/third-party/e-ophtha/ | |
|
| Naikai OIA-DDR | https://github.com/nkicsl/DDR-dataset | |
|
| ROC training | https://roc.grand-challenge.org/ | |
|
| BRSET | https://physionet.org/content/brazilian-ophthalmological/1.0.0/ | |
|
| PALM | https://ieee-dataport.org/documents/palm-pathologic-myopia-challenge | |
|
| Glaucoma_fundus | https://drive.google.com/file/d/18vSazOYDsUGdZ64gGkTg3E6jiNtcrUrI/view | |
|
| PAPILA | https://drive.google.com/file/d/1JltYs7WRWEU0yyki1CQw5-10HEbqCMBE/view | |
|
| Retina | https://drive.google.com/file/d/1vdmjMRDoUm9yk83HMArLiPcLDk_dm92Q/view | |
|
| JSIEC | https://drive.google.com/file/d/1q0GFQb-dYwzIx8AwlaFZenUJItix4s8z/view | |
|
| MESSIDOR2 | https://drive.google.com/file/d/1vOLBUK9xdzNV8eVkRjVdNrRwhPfaOmda/view | |
|
| APTOS2019 | https://drive.google.com/file/d/162YPf4OhMVxj9TrQH0GnJv0n7z7gJWpj/view | |
|
| In-house | | |
|
|
|
We would like to thank these contributions. |