|
--- |
|
license: mit |
|
dataset_info: |
|
features: |
|
- name: filename |
|
dtype: string |
|
- name: cuda_source |
|
dtype: string |
|
- name: cuda_host |
|
dtype: string |
|
- name: cuda_device |
|
dtype: string |
|
- name: hip_source |
|
dtype: string |
|
- name: hip_host |
|
dtype: string |
|
- name: hip_device |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 18979794237 |
|
num_examples: 70694 |
|
- name: stack |
|
num_bytes: 6087813411 |
|
num_examples: 24170 |
|
- name: synth |
|
num_bytes: 11766271412 |
|
num_examples: 40591 |
|
- name: bench |
|
num_bytes: 3676152 |
|
num_examples: 40 |
|
download_size: 10789629544 |
|
dataset_size: 36837555212 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: stack |
|
path: data/stack-* |
|
- split: synth |
|
path: data/synth-* |
|
- split: bench |
|
path: data/bench-* |
|
--- |
|
# 💻 CASS: CUDA–AMD Assembly and Source Mapping |
|
|
|
[CASS](https://huggingface.co/datasets/MBZUAI/CASS) is the **first large-scale dataset** for cross-architecture GPU transpilation, providing semantically aligned CUDA–HIP source pairs and their corresponding host/device assemblies for **NVIDIA (SASS)** and **AMD (RDNA3)** platforms. It enables research in: |
|
|
|
* 🔁 Source-to-source translation (CUDA ↔ HIP) |
|
* ⚙️ Assembly-level translation (SASS ↔ RDNA3) |
|
* 🧠 LLM-guided GPU code transpilation |
|
|
|
--- |
|
|
|
## 📚 Dataset Structure |
|
|
|
Each sample contains the following fields: |
|
|
|
| Field | Description | |
|
| ------------- | ------------------------------------------ | |
|
| `filename` | Sample ID or file name | |
|
| `cuda_source` | Original CUDA source code | |
|
| `cuda_host` | Compiled x86 host-side assembly from CUDA | |
|
| `cuda_device` | Compiled SASS (Nvidia GPU) device assembly | |
|
| `hip_source` | Transpiled HIP source code (via HIPIFY) | |
|
| `hip_host` | Compiled x86 host-side assembly from HIP | |
|
| `hip_device` | Compiled RDNA3 (AMD GPU) device assembly | |
|
|
|
--- |
|
|
|
## 🔀 Dataset Splits |
|
|
|
| Split | Description | # Examples | |
|
| ------- | ----------------------------------------- | ---------- | |
|
| `train` | Union of `synth`, `stack`, and `opencl` | 70,694 | |
|
| `synth` | LLM-synthesized CUDA programs | 40,591 | |
|
| `stack` | Scraped and filtered CUDA from StackV2 | 24,170 | |
|
| `bench` | 40 curated eval tasks from 16 GPU domains | 40 | |
|
|
|
--- |
|
|
|
## 📦 How to Load |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
# 🧠 Load the full dataset (default config with all splits) |
|
cass = load_dataset("MBZUAI/cass", name="default") |
|
|
|
# Access a specific split |
|
train_data = cass["train"] # train = stack + synth + opencl |
|
stack_data = cass["stack"] |
|
synth_data = cass["synth"] |
|
bench_data = cass["bench"] |
|
``` |
|
|
|
--- |
|
|
|
## 📈 Benchmark and Evaluation |
|
|
|
The `bench` split includes 40 samples across 16 domains like: |
|
|
|
* 🧪 Physics Simulation |
|
* 📊 Data Structures |
|
* 📸 Image Processing |
|
* 🧮 Linear Algebra |
|
|
|
All samples have been manually verified for semantic equivalence across CUDA and HIP and come with executable device/host binaries. |
|
|
|
--- |
|
|
|
## 📄 License |
|
|
|
Released under the **MIT license**. |
|
|
|
--- |
|
|
|
## 🔗 Useful Links |
|
|
|
* 🤗 Hugging Face Collection: [CASS on Hugging Face](https://huggingface.co/collections/MBZUAI/cass-6825b5bf7414503cf16f87b2) |
|
* 📂 Code & Tools: [GitHub Repository](https://github.com/GustavoStahl/CASS) |
|
* Paper: [Arxiv CASS](https://arxiv.org/abs/2505.16968) |
|
|
|
|