|
--- |
|
license: cc-by-4.0 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: train/data.jsonl |
|
- split: test |
|
path: test/test.jsonl |
|
task_categories: |
|
- text-classification |
|
language: |
|
- he |
|
size_categories: |
|
- 10K<n<100K |
|
--- |
|
|
|
# HebrewSentiment - A Sentiment-Analysis Dataset in Hebrew |
|
|
|
## Summary |
|
HebrewSentiment is a Hebrew dataset for the sentiment analysis task. |
|
|
|
## Introduction |
|
|
|
This dataset was constructed via [To Fill In]. |
|
|
|
## Dataset Statistics |
|
|
|
The table below shows the number of examples from each category in each of the splits: |
|
|
|
| split | total | positive | negative | neutral | |
|
|-------|----------|----------|----------|---------| |
|
| train | 39,135 | 8,968 | 7,669 | 22,498 | |
|
| test | 2,170 | 503 | 433 | 1,234 | |
|
|
|
## Dataset Description |
|
|
|
Each row in the dataset contains the following fields: |
|
|
|
- **id**: A unique identifier for that training examples |
|
- **text**: The textual content of the input sentence |
|
- **tag_ids**: The label of the example (`Neutral`/`Positive`/`Negative`) |
|
- **task_name**: [To fill in] |
|
- **campaign_id**: [To fill in] |
|
- **annotator_agreement_strength**: [To fill in] |
|
- **survey_name**: [To fill in] |
|
- **industry**: [To fill in] |
|
- **type**: [To fill in] |
|
|
|
## Models and Comparisons |
|
|
|
In collaboration with [DICTA](https://dicta.org.il/) we trained a model on this dataset and are happy to release it to the public: [DictaBERT-Sentiment](https://huggingface.co/dicta-il/dictabert-sentiment). |
|
|
|
In addition, we compared the performance of the model to the previous existing sentiment dataset - [Hebrew-Sentiment-Data from OnlpLab](https://github.com/OnlpLab/Hebrew-Sentiment-Data). |
|
We fine-tuned [dictabert](https://huggingface.co/dicta-il/dictabert) 3 times - once on the OnlpLab dataset, once on this dataset, and once on both datasets together and the results can be seen in the table below: |
|
|
|
| Training Corpus: | OnlpLab | | | | | HebrewSentiment| | | | | |
|
|------------------|------|----------------|------|------|--------|--------------|------|------|---|---| |
|
| | Accuracy | Macro F1 | F1 Positive | F1 Negative | F1 Neutral | Accuracy | Macro F1 | F1 Positive | F1 Negative | F1 Neutral | |
|
| OnlpLab+HebrewSentiment | 87 | 61.7 | 93.2 | 74.6 | 17.4 | 83.9 | 82.7 | 79.8 | 81.8 | 86.4 | |
|
| OnlpLab | 88.2 | 63.3 | 93.8 | 72.1 | 24 | 41.3 | 42.2 | 48.1 | 56.3 | 22.2 | |
|
| HebrewSentiment | 69.9 | 51.7 | 82.2 | 62.9 | 10.2 | 84.4 | 83.2 | 81 | 82.1 | 86.6 | |
|
|
|
## Contributors |
|
|
|
[To fill in] |
|
|
|
Contributors: [To fill in] |
|
|
|
## Acknowledgments |
|
We would like to express our gratitude to [To fill in] |