|
--- |
|
annotations_creators: |
|
- no-annotation |
|
language: |
|
- en |
|
language_creators: |
|
- found |
|
license: mit |
|
multilinguality: |
|
- monolingual |
|
pretty_name: Medium Articles Dataset |
|
size_categories: |
|
- n>1K |
|
source_datasets: |
|
- original |
|
tags: |
|
- medium |
|
- articles |
|
- blog-posts |
|
task_categories: |
|
- text-classification |
|
- text-generation |
|
task_ids: |
|
- topic-classification |
|
- language-modeling |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
dataset_info: |
|
features: |
|
- name: audioVersionDurationSec |
|
dtype: float64 |
|
- name: codeBlock |
|
dtype: string |
|
- name: codeBlockCount |
|
dtype: float64 |
|
- name: collectionId |
|
dtype: string |
|
- name: createdDate |
|
dtype: string |
|
- name: createdDatetime |
|
dtype: string |
|
- name: firstPublishedDate |
|
dtype: string |
|
- name: firstPublishedDatetime |
|
dtype: string |
|
- name: imageCount |
|
dtype: float64 |
|
- name: isSubscriptionLocked |
|
dtype: bool |
|
- name: language |
|
dtype: string |
|
- name: latestPublishedDate |
|
dtype: string |
|
- name: latestPublishedDatetime |
|
dtype: string |
|
- name: linksCount |
|
dtype: float64 |
|
- name: postId |
|
dtype: string |
|
- name: readingTime |
|
dtype: float64 |
|
- name: recommends |
|
dtype: float64 |
|
- name: responsesCreatedCount |
|
dtype: float64 |
|
- name: socialRecommendsCount |
|
dtype: float64 |
|
- name: subTitle |
|
dtype: string |
|
- name: tagsCount |
|
dtype: float64 |
|
- name: text |
|
dtype: string |
|
- name: title |
|
dtype: string |
|
- name: totalClapCount |
|
dtype: float64 |
|
- name: uniqueSlug |
|
dtype: string |
|
- name: updatedDate |
|
dtype: string |
|
- name: updatedDatetime |
|
dtype: string |
|
- name: url |
|
dtype: string |
|
- name: vote |
|
dtype: bool |
|
- name: wordCount |
|
dtype: float64 |
|
- name: publicationdescription |
|
dtype: string |
|
- name: publicationdomain |
|
dtype: string |
|
- name: publicationfacebookPageName |
|
dtype: string |
|
- name: publicationfollowerCount |
|
dtype: float64 |
|
- name: publicationname |
|
dtype: string |
|
- name: publicationpublicEmail |
|
dtype: string |
|
- name: publicationslug |
|
dtype: string |
|
- name: publicationtags |
|
dtype: string |
|
- name: publicationtwitterUsername |
|
dtype: string |
|
- name: tag_name |
|
dtype: string |
|
- name: slug |
|
dtype: string |
|
- name: name |
|
dtype: string |
|
- name: postCount |
|
dtype: float64 |
|
- name: author |
|
dtype: string |
|
- name: bio |
|
dtype: string |
|
- name: userId |
|
dtype: string |
|
- name: userName |
|
dtype: string |
|
- name: usersFollowedByCount |
|
dtype: float64 |
|
- name: usersFollowedCount |
|
dtype: float64 |
|
- name: scrappedDate |
|
dtype: float64 |
|
- name: claps |
|
dtype: string |
|
- name: reading_time |
|
dtype: float64 |
|
- name: link |
|
dtype: string |
|
- name: authors |
|
dtype: string |
|
- name: timestamp |
|
dtype: string |
|
- name: tags |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 2654611084 |
|
num_examples: 444593 |
|
download_size: 1482558340 |
|
dataset_size: 2654611084 |
|
--- |
|
|
|
# Medium Articles Dataset Generator |
|
|
|
This project combines multiple datasets from Kaggle and Hugging Face to create a comprehensive collection of Medium articles. The combined dataset is available on [Hugging Face Hub](https://huggingface.co/datasets/Alaamer/medium-articles-posts-with-content). |
|
|
|
## Dataset Description |
|
|
|
This dataset is a unique compilation that not only combines multiple sources but also ensures data quality through normalization and deduplication. A key feature is that all entries in the `text` column are unique - there are no duplicate articles in the final dataset. |
|
|
|
### Data Sources: |
|
#### Kaggle Sources: |
|
- aiswaryaramachandran/medium-articles-with-content |
|
- hsankesara/medium-articles |
|
- meruvulikith/1300-towards-datascience-medium-articles-dataset |
|
|
|
#### Hugging Face Sources: |
|
- fabiochiu/medium-articles |
|
- Falah/medium_articles_posts |
|
|
|
## Features |
|
|
|
- Combines multiple data sources into a single, unified dataset |
|
- **Ensures uniqueness**: Each article appears only once in the dataset |
|
- **Quality control**: |
|
- Removes duplicate entries based on article text |
|
- Handles missing values |
|
- Normalizes data format |
|
- Saves the final dataset in efficient Parquet format |
|
- Publishes the dataset to Hugging Face Hub |
|
|
|
## Requirements |
|
|
|
```bash |
|
pip install datasets |
|
pip install kagglehub huggingface_hub tqdm |
|
``` |
|
|
|
## Usage |
|
|
|
1. Set up your Hugging Face authentication token |
|
2. Run the script: |
|
```bash |
|
python combined_medium_ds_generator.py |
|
``` |
|
|
|
## Data Processing Steps |
|
|
|
1. Downloads datasets from Kaggle and Hugging Face |
|
2. Normalizes each dataset by: |
|
- Removing null values |
|
- Eliminating duplicates |
|
- Standardizing column names |
|
3. Combines all datasets into a single DataFrame |
|
4. Saves the result as a Parquet file |
|
5. Uploads the final dataset to Hugging Face Hub |
|
|
|
## Contributing |
|
|
|
Contributions are welcome! Please feel free to submit a Pull Request. |
|
|
|
## License |
|
|
|
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. |
|
|
|
## Author |
|
|
|
- [@Alaamer](https://huggingface.co/Alaamer) |
|
|
|
## Acknowledgments |
|
|
|
Special thanks to the original dataset creators: |
|
- aiswaryaramachandran |
|
- hsankesara |
|
- meruvulikith |
|
- fabiochiu |
|
- Falah |
|
|