DanhTran2Mind's LLMs
Collection
DanhTran2Mind's fine-tuned LLMs use LoRA for efficiency or full fine-tuning for top performance, customized to each model hub and task.
•
8 items
•
Updated
This model is a fine-tuned version of unsloth/gemma-3-4b-it-unsloth-bnb-4bit. It has been trained using TRL.
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="None", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
This model was trained with SFT.
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from peft import PeftModel
device = "cuda" if torch.cuda.is_available() else "cpu"
# Define model and LoRA adapter paths
base_model_name = "google/gemma-3-1b-it"
lora_adapter_name = "danhtran2mind/Gemma-3-1B-Instruct-Vi-Medical-LoRA"
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
# Load base model with optimized settings
model = AutoModelForCausalLM.from_pretrained(
base_model_name,
torch_dtype=torch.float16, # Use FP16 for efficiency
device_map=device,
trust_remote_code=True
)
# Apply LoRA adapter
model = PeftModel.from_pretrained(model, lora_adapter_name)
# Set model to evaluation mode
model.eval()
# Define the question
question = ("Khi nghi ngờ bị loét dạ dày tá tràng nên đến khoa nào "
"tại bệnh viện để thăm khám?")
seed = 42
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# Create text generation pipeline
generator = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.float16,
device_map=device,
max_new_tokens=2048,
num_return_sequences=1,
do_sample=True,
temperature=0.7,
top_p=0.9,
top_k=64,
)
# Format input for the pipeline
input_prompt = [{"role": "user", "content": question}]
# Generate response
output = generator(input_prompt, return_full_text=False)[0]
# Print the generated text
print(output["generated_text"])
Cite TRL as:
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
Base model
google/gemma-3-4b-pt