DanhTran2Mind's Text2Image
Collection
6 items
•
Updated
pip install -q "optimum-intel[openvino,diffusers]" torch transformers diffusers openvino nncf optimum-quanto
from diffusers import StableDiffusionPipeline, AutoencoderKL, UNet2DConditionModel, PNDMScheduler
from transformers import AutoTokenizer, CLIPTextModel, CLIPTokenizer
from optimum.intel import OVStableDiffusionPipeline
from optimum.intel import OVQuantizer, OVConfig, OVWeightQuantizationConfig
from transformers import QuantoConfig
from optimum.quanto import quantize, qfloat8
from diffusers import StableDiffusionPipeline
import torch
from nncf import CompressWeightsMode
import os
model_id = "danhtran2mind/Ghibli-Stable-Diffusion-2.1-Base-finetuning"
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# Load PyTorch pipeline for FP8 quantization
pipeline_fp8 = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=dtype).to(device)
# Define FP8 quantization configuration
quant_config = QuantoConfig(weights="float8", activations=None)
# Quantize components
quantize(pipeline_fp8.vae, weights=qfloat8)
quantize(pipeline_fp8.text_encoder, weights=qfloat8)
quantize(pipeline_fp8.unet, weights=qfloat8)
# Save directory
save_dir_fp8 = "ghibli_sd_fp8"
os.makedirs(save_dir_fp8, exist_ok=True)
# Save the entire pipeline to ensure model_index.json is included
pipeline_fp8.save_pretrained(save_dir_fp8)
pip install -q "optimum-intel[openvino,diffusers]" openvino
import torch
from diffusers import StableDiffusionPipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
model_id = "danhtran2mind/Ghibli-Stable-Diffusion-2.1-Base-finetuning-FP8"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe.to(device)
Base model
stabilityai/stable-diffusion-2-1-base