|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from typing import Optional, Tuple
|
|
from Model.multi_head_Attention import MultiHeadAttention
|
|
|
|
|
|
class RecurrentBlock(nn.Module):
|
|
def __init__(self, d_model: int, num_heads: int, dropout: float = 0.1):
|
|
super().__init__()
|
|
self.attention = MultiHeadAttention(d_model, num_heads, dropout)
|
|
self.norm1, self.norm2 = nn.LayerNorm(d_model), nn.LayerNorm(d_model)
|
|
self.feed_forward = nn.Sequential(
|
|
nn.Linear(d_model, 4 * d_model),
|
|
nn.GELU(),
|
|
nn.Linear(4 * d_model, d_model),
|
|
nn.Dropout(dropout)
|
|
)
|
|
self.state_proj = nn.Linear(d_model, d_model)
|
|
|
|
def forward(self, x: torch.Tensor, recurrent_state: torch.Tensor, mask: Optional[torch.Tensor] = None) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
recurrent_state = self.state_proj(recurrent_state)
|
|
x = x + recurrent_state
|
|
attended = self.attention(self.norm1(x), mask)
|
|
return x + attended + self.feed_forward(self.norm2(x)), x |