import torch import torch.nn as nn import torch.nn.functional as F from typing import Optional, Tuple from Model.multi_head_Attention import MultiHeadAttention # Recurrent Block (Processing Over Time) class RecurrentBlock(nn.Module): def __init__(self, d_model: int, num_heads: int, dropout: float = 0.1): super().__init__() self.attention = MultiHeadAttention(d_model, num_heads, dropout) self.norm1, self.norm2 = nn.LayerNorm(d_model), nn.LayerNorm(d_model) self.feed_forward = nn.Sequential( nn.Linear(d_model, 4 * d_model), nn.GELU(), nn.Linear(4 * d_model, d_model), nn.Dropout(dropout) ) self.state_proj = nn.Linear(d_model, d_model) def forward(self, x: torch.Tensor, recurrent_state: torch.Tensor, mask: Optional[torch.Tensor] = None) -> Tuple[torch.Tensor, torch.Tensor]: recurrent_state = self.state_proj(recurrent_state) x = x + recurrent_state attended = self.attention(self.norm1(x), mask) return x + attended + self.feed_forward(self.norm2(x)), x