File size: 3,666 Bytes
74c5d87 bde7c34 74c5d87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
---
tags:
- image-feature-extraction
- birder
- pytorch
library_name: birder
license: apache-2.0
---
# Model Card for hiera_abswin_base_mim
A Hiera with absolute window position embedding strategy image encoder pre-trained using Masked Image Modeling (MIM). This model has *not* been fine-tuned for a specific classification task and is intended to be used as a general-purpose feature extractor or a backbone for downstream tasks like object detection, segmentation, or custom classification.
## Model Details
- **Model Type:** Image encoder and detection backbone
- **Model Stats:**
- Params (M): 50.5
- Input image size: 224 x 224
- **Dataset:** Trained on a diverse dataset of approximately 12M images, including:
- iNaturalist 2021 (~3.3M)
- WebVision-2.0 (~1.5M random subset)
- imagenet-w21-webp-wds (~1M random subset)
- SA-1B (~220K random subset of 20 chunks)
- COCO (~120K)
- NABirds (~48K)
- GLDv2 (~40K random subset of 6 chunks)
- Birdsnap v1.1 (~44K)
- CUB-200 2011 (~18K)
- The Birder dataset (~6M, private dataset)
- **Papers:**
- Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles: <https://arxiv.org/abs/2306.00989>
- Window Attention is Bugged: How not to Interpolate Position Embeddings: <https://arxiv.org/abs/2311.05613>
## Model Usage
### Image Embeddings
```python
import birder
from birder.inference.classification import infer_image
(net, model_info) = birder.load_pretrained_model("hiera_abswin_base_mim", inference=True)
# Get the image size the model was trained on
size = birder.get_size_from_signature(model_info.signature)
# Create an inference transform
transform = birder.classification_transform(size, model_info.rgb_stats)
image = "path/to/image.jpeg" # or a PIL image
(out, embedding) = infer_image(net, image, transform, return_embedding=True)
# embedding is a NumPy array with shape of (1, 768)
```
### Detection Feature Map
```python
from PIL import Image
import birder
(net, model_info) = birder.load_pretrained_model("hiera_abswin_base_mim", inference=True)
# Get the image size the model was trained on
size = birder.get_size_from_signature(model_info.signature)
# Create an inference transform
transform = birder.classification_transform(size, model_info.rgb_stats)
image = Image.open("path/to/image.jpeg")
features = net.detection_features(transform(image).unsqueeze(0))
# features is a dict (stage name -> torch.Tensor)
print([(k, v.size()) for k, v in features.items()])
# Output example:
# [('stage1', torch.Size([1, 96, 56, 56])),
# ('stage2', torch.Size([1, 192, 28, 28])),
# ('stage3', torch.Size([1, 384, 14, 14])),
# ('stage4', torch.Size([1, 768, 7, 7]))]
```
## Citation
```bibtex
@misc{ryali2023hierahierarchicalvisiontransformer,
title={Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles},
author={Chaitanya Ryali and Yuan-Ting Hu and Daniel Bolya and Chen Wei and Haoqi Fan and Po-Yao Huang and Vaibhav Aggarwal and Arkabandhu Chowdhury and Omid Poursaeed and Judy Hoffman and Jitendra Malik and Yanghao Li and Christoph Feichtenhofer},
year={2023},
eprint={2306.00989},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2306.00989},
}
@misc{bolya2023windowattentionbuggedinterpolate,
title={Window Attention is Bugged: How not to Interpolate Position Embeddings},
author={Daniel Bolya and Chaitanya Ryali and Judy Hoffman and Christoph Feichtenhofer},
year={2023},
eprint={2311.05613},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2311.05613},
}
```
|