Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,104 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- image-classification
|
4 |
+
- birder
|
5 |
+
- pytorch
|
6 |
+
library_name: birder
|
7 |
+
license: apache-2.0
|
8 |
+
---
|
9 |
+
|
10 |
+
# Model Card for hiera_abswin_base_mim
|
11 |
+
|
12 |
+
A Hiera with absolute window position embedding strategy image encoder pre-trained using Masked Image Modeling (MIM). This model has *not* been fine-tuned for a specific classification task and is intended to be used as a general-purpose feature extractor or a backbone for downstream tasks like object detection, segmentation, or custom classification.
|
13 |
+
|
14 |
+
## Model Details
|
15 |
+
|
16 |
+
- **Model Type:** Image encoder and detection backbone
|
17 |
+
- **Model Stats:**
|
18 |
+
- Params (M): 50.5
|
19 |
+
- Input image size: 224 x 224
|
20 |
+
- **Dataset:** Trained on a diverse dataset of approximately 12M images, including:
|
21 |
+
- iNaturalist 2021 (~3.3M)
|
22 |
+
- WebVision-2.0 (~1.5M random subset)
|
23 |
+
- imagenet-w21-webp-wds (~1M random subset)
|
24 |
+
- SA-1B (~220K random subset of 20 chunks)
|
25 |
+
- COCO (~120K)
|
26 |
+
- NABirds (~48K)
|
27 |
+
- GLDv2 (~40K random subset of 6 chunks)
|
28 |
+
- Birdsnap v1.1 (~44K)
|
29 |
+
- CUB-200 2011 (~18K)
|
30 |
+
- The Birder dataset (~6M, private dataset)
|
31 |
+
|
32 |
+
- **Papers:**
|
33 |
+
- Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles: <https://arxiv.org/abs/2306.00989>
|
34 |
+
- Window Attention is Bugged: How not to Interpolate Position Embeddings: <https://arxiv.org/abs/2311.05613>
|
35 |
+
|
36 |
+
## Model Usage
|
37 |
+
|
38 |
+
### Image Embeddings
|
39 |
+
|
40 |
+
```python
|
41 |
+
import birder
|
42 |
+
from birder.inference.classification import infer_image
|
43 |
+
|
44 |
+
(net, model_info) = birder.load_pretrained_model("hiera_abswin_base_mim", inference=True)
|
45 |
+
|
46 |
+
# Get the image size the model was trained on
|
47 |
+
size = birder.get_size_from_signature(model_info.signature)
|
48 |
+
|
49 |
+
# Create an inference transform
|
50 |
+
transform = birder.classification_transform(size, model_info.rgb_stats)
|
51 |
+
|
52 |
+
image = "path/to/image.jpeg" # or a PIL image
|
53 |
+
(out, embedding) = infer_image(net, image, transform, return_embedding=True)
|
54 |
+
# embedding is a NumPy array with shape of (1, 768)
|
55 |
+
```
|
56 |
+
|
57 |
+
### Detection Feature Map
|
58 |
+
|
59 |
+
```python
|
60 |
+
from PIL import Image
|
61 |
+
import birder
|
62 |
+
|
63 |
+
(net, model_info) = birder.load_pretrained_model("hiera_abswin_base_mim", inference=True)
|
64 |
+
|
65 |
+
# Get the image size the model was trained on
|
66 |
+
size = birder.get_size_from_signature(model_info.signature)
|
67 |
+
|
68 |
+
# Create an inference transform
|
69 |
+
transform = birder.classification_transform(size, model_info.rgb_stats)
|
70 |
+
|
71 |
+
image = Image.open("path/to/image.jpeg")
|
72 |
+
features = net.detection_features(transform(image).unsqueeze(0))
|
73 |
+
# features is a dict (stage name -> torch.Tensor)
|
74 |
+
print([(k, v.size()) for k, v in features.items()])
|
75 |
+
# Output example:
|
76 |
+
# [('stage1', torch.Size([1, 96, 56, 56])),
|
77 |
+
# ('stage2', torch.Size([1, 192, 28, 28])),
|
78 |
+
# ('stage3', torch.Size([1, 384, 14, 14])),
|
79 |
+
# ('stage4', torch.Size([1, 768, 7, 7]))]
|
80 |
+
```
|
81 |
+
|
82 |
+
## Citation
|
83 |
+
|
84 |
+
```bibtex
|
85 |
+
@misc{ryali2023hierahierarchicalvisiontransformer,
|
86 |
+
title={Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles},
|
87 |
+
author={Chaitanya Ryali and Yuan-Ting Hu and Daniel Bolya and Chen Wei and Haoqi Fan and Po-Yao Huang and Vaibhav Aggarwal and Arkabandhu Chowdhury and Omid Poursaeed and Judy Hoffman and Jitendra Malik and Yanghao Li and Christoph Feichtenhofer},
|
88 |
+
year={2023},
|
89 |
+
eprint={2306.00989},
|
90 |
+
archivePrefix={arXiv},
|
91 |
+
primaryClass={cs.CV},
|
92 |
+
url={https://arxiv.org/abs/2306.00989},
|
93 |
+
}
|
94 |
+
|
95 |
+
@misc{bolya2023windowattentionbuggedinterpolate,
|
96 |
+
title={Window Attention is Bugged: How not to Interpolate Position Embeddings},
|
97 |
+
author={Daniel Bolya and Chaitanya Ryali and Judy Hoffman and Christoph Feichtenhofer},
|
98 |
+
year={2023},
|
99 |
+
eprint={2311.05613},
|
100 |
+
archivePrefix={arXiv},
|
101 |
+
primaryClass={cs.CV},
|
102 |
+
url={https://arxiv.org/abs/2311.05613},
|
103 |
+
}
|
104 |
+
```
|