LogicCoder-7B
LogicCoder-7B is a 7B-parameter language model fine-tuned for code generation tasks. It is based on the DeepSeek-R1-Distill-Qwen-7B model and trained on a Python subset of the open-r1/codeforces-cots dataset.
This model was fine-tuned on pruned CoTs examples derived via our ASAP method(Anchor-guided, Surprisal-polished Pruning), focusing on highly compressed yet semantically informative reasoning traces.
🧠 Reasoning Mode
We recommend explicitly activating reasoning mode by inserting <think>
in the prompt.
🔧 Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("azzzacs/LogicCoder-7B", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("azzzacs/LogicCoder-7B", device_map="auto", trust_remote_code=True).eval()
message = [{"role": "user", "content": "Please write a Python quick sort algorithm.\n"}]
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False) + "<|Assistant|><think>\n"
model_inputs = tokenizer([prompt], return_tensors="pt").to(model.device)
outputs = model.generate(
model_inputs.input_ids,
max_new_tokens=4096,
do_sample=False,
eos_token_id=tokenizer.eos_token_id
)
print(tokenizer.decode(outputs[0][len(model_inputs.input_ids[0]):], skip_special_tokens=False))
- Downloads last month
- 25
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for azzzacs/LogicCoder-7B
Base model
deepseek-ai/DeepSeek-R1-Distill-Qwen-7B